MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrexg Structured version   Visualization version   GIF version

Theorem nfrexg 3238
Description: Bound-variable hypothesis builder for restricted quantification. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfrex 3237 for a version with a disjoint variable condition, but not requiring ax-13 2372. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfrexg.1 𝑥𝐴
nfrexg.2 𝑥𝜑
Assertion
Ref Expression
nfrexg 𝑥𝑦𝐴 𝜑

Proof of Theorem nfrexg
StepHypRef Expression
1 nftru 1808 . . 3 𝑦
2 nfrexg.1 . . . 4 𝑥𝐴
32a1i 11 . . 3 (⊤ → 𝑥𝐴)
4 nfrexg.2 . . . 4 𝑥𝜑
54a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfrexdg 3236 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1546 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  wnf 1787  wnfc 2886  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069
This theorem is referenced by:  nfiung  4953
  Copyright terms: Public domain W3C validator