MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrexdg Structured version   Visualization version   GIF version

Theorem nfrexdg 3236
Description: Deduction version of nfrexg 3238. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfrexd 3235 for a version with a disjoint variable condition, but not requiring ax-13 2372. (Contributed by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfrexdg.1 𝑦𝜑
nfrexdg.2 (𝜑𝑥𝐴)
nfrexdg.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrexdg (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)

Proof of Theorem nfrexdg
StepHypRef Expression
1 dfrex2 3166 . 2 (∃𝑦𝐴 𝜓 ↔ ¬ ∀𝑦𝐴 ¬ 𝜓)
2 nfrexdg.1 . . . 4 𝑦𝜑
3 nfrexdg.2 . . . 4 (𝜑𝑥𝐴)
4 nfrexdg.3 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
54nfnd 1862 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
62, 3, 5nfrald 3148 . . 3 (𝜑 → Ⅎ𝑥𝑦𝐴 ¬ 𝜓)
76nfnd 1862 . 2 (𝜑 → Ⅎ𝑥 ¬ ∀𝑦𝐴 ¬ 𝜓)
81, 7nfxfrd 1857 1 (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wnf 1787  wnfc 2886  wral 3063  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069
This theorem is referenced by:  nfrexg  3238  nfiundg  46267
  Copyright terms: Public domain W3C validator