MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrexdg Structured version   Visualization version   GIF version

Theorem nfrexdg 3227
Description: Deduction version of nfrexg 3229. Usage of this theorem is discouraged because it depends on ax-13 2371. See nfrexd 3226 for a version with a disjoint variable condition, but not requiring ax-13 2371. (Contributed by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfrexdg.1 𝑦𝜑
nfrexdg.2 (𝜑𝑥𝐴)
nfrexdg.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrexdg (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)

Proof of Theorem nfrexdg
StepHypRef Expression
1 dfrex2 3161 . 2 (∃𝑦𝐴 𝜓 ↔ ¬ ∀𝑦𝐴 ¬ 𝜓)
2 nfrexdg.1 . . . 4 𝑦𝜑
3 nfrexdg.2 . . . 4 (𝜑𝑥𝐴)
4 nfrexdg.3 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
54nfnd 1866 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
62, 3, 5nfrald 3146 . . 3 (𝜑 → Ⅎ𝑥𝑦𝐴 ¬ 𝜓)
76nfnd 1866 . 2 (𝜑 → Ⅎ𝑥 ¬ ∀𝑦𝐴 ¬ 𝜓)
81, 7nfxfrd 1861 1 (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wnf 1791  wnfc 2884  wral 3061  wrex 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-13 2371  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067
This theorem is referenced by:  nfrexg  3229  nfiundg  46052
  Copyright terms: Public domain W3C validator