![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiung | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed union. Usage of this theorem is discouraged because it depends on ax-13 2366. See nfiun 5031 for a version with more disjoint variable conditions, but not requiring ax-13 2366. (Contributed by Mario Carneiro, 25-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfiung.1 | ⊢ Ⅎ𝑦𝐴 |
nfiung.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfiung | ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 5003 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
2 | nfiung.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | nfiung.2 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
4 | 3 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
5 | 2, 4 | nfrex 3359 | . . 3 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 |
6 | 5 | nfabg 2899 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
7 | 1, 6 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 {cab 2703 Ⅎwnfc 2876 ∃wrex 3060 ∪ ciun 5001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-13 2366 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-iun 5003 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |