MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiung Structured version   Visualization version   GIF version

Theorem nfiung 5030
Description: Bound-variable hypothesis builder for indexed union. Usage of this theorem is discouraged because it depends on ax-13 2375. See nfiun 5028 for a version with more disjoint variable conditions, but not requiring ax-13 2375. (Contributed by Mario Carneiro, 25-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfiung.1 𝑦𝐴
nfiung.2 𝑦𝐵
Assertion
Ref Expression
nfiung 𝑦 𝑥𝐴 𝐵

Proof of Theorem nfiung
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4998 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiung.1 . . . 4 𝑦𝐴
3 nfiung.2 . . . . 5 𝑦𝐵
43nfcri 2895 . . . 4 𝑦 𝑧𝐵
52, 4nfrex 3373 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfabg 2910 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2901 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {cab 2712  wnfc 2888  wrex 3068   ciun 4996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-13 2375  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-iun 4998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator