MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiung Structured version   Visualization version   GIF version

Theorem nfiung 4973
Description: Bound-variable hypothesis builder for indexed union. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfiun 4971 for a version with more disjoint variable conditions, but not requiring ax-13 2372. (Contributed by Mario Carneiro, 25-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfiung.1 𝑦𝐴
nfiung.2 𝑦𝐵
Assertion
Ref Expression
nfiung 𝑦 𝑥𝐴 𝐵

Proof of Theorem nfiung
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4941 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiung.1 . . . 4 𝑦𝐴
3 nfiung.2 . . . . 5 𝑦𝐵
43nfcri 2886 . . . 4 𝑦 𝑧𝐵
52, 4nfrex 3341 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfabg 2901 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2892 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  {cab 2709  wnfc 2879  wrex 3056   ciun 4939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-iun 4941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator