MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiung Structured version   Visualization version   GIF version

Theorem nfiung 5033
Description: Bound-variable hypothesis builder for indexed union. Usage of this theorem is discouraged because it depends on ax-13 2366. See nfiun 5031 for a version with more disjoint variable conditions, but not requiring ax-13 2366. (Contributed by Mario Carneiro, 25-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfiung.1 𝑦𝐴
nfiung.2 𝑦𝐵
Assertion
Ref Expression
nfiung 𝑦 𝑥𝐴 𝐵

Proof of Theorem nfiung
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 5003 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiung.1 . . . 4 𝑦𝐴
3 nfiung.2 . . . . 5 𝑦𝐵
43nfcri 2883 . . . 4 𝑦 𝑧𝐵
52, 4nfrex 3359 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfabg 2899 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2890 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  {cab 2703  wnfc 2876  wrex 3060   ciun 5001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-13 2366  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rex 3061  df-iun 5003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator