MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiung Structured version   Visualization version   GIF version

Theorem nfiung 5029
Description: Bound-variable hypothesis builder for indexed union. Usage of this theorem is discouraged because it depends on ax-13 2370. See nfiun 5027 for a version with more disjoint variable conditions, but not requiring ax-13 2370. (Contributed by Mario Carneiro, 25-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfiung.1 𝑦𝐴
nfiung.2 𝑦𝐵
Assertion
Ref Expression
nfiung 𝑦 𝑥𝐴 𝐵

Proof of Theorem nfiung
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4999 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiung.1 . . . 4 𝑦𝐴
3 nfiung.2 . . . . 5 𝑦𝐵
43nfcri 2889 . . . 4 𝑦 𝑧𝐵
52, 4nfrex 3370 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfabg 2909 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2900 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  {cab 2708  wnfc 2882  wrex 3069   ciun 4997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-13 2370  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-iun 4999
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator