| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrmo1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃*𝑥 ∈ 𝐴𝜑. (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| nfrmo1 | ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 3356 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfmo1 2551 | . 2 ⊢ Ⅎ𝑥∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∃*wmo 2532 ∃*wrmo 3355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 df-mo 2534 df-rmo 3356 |
| This theorem is referenced by: nfdisj1 5090 2reu3 47101 |
| Copyright terms: Public domain | W3C validator |