MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmo1 Structured version   Visualization version   GIF version

Theorem nfrmo1 3385
Description: The setvar 𝑥 is not free in ∃*𝑥𝐴𝜑. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1 𝑥∃*𝑥𝐴 𝜑

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 3356 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 nfmo1 2551 . 2 𝑥∃*𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1853 1 𝑥∃*𝑥𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1783  wcel 2109  ∃*wmo 2532  ∃*wrmo 3355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784  df-mo 2534  df-rmo 3356
This theorem is referenced by:  nfdisj1  5090  2reu3  47101
  Copyright terms: Public domain W3C validator