| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrmo1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃*𝑥 ∈ 𝐴𝜑. (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| nfrmo1 | ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 3346 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfmo1 2552 | . 2 ⊢ Ⅎ𝑥∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1784 ∈ wcel 2111 ∃*wmo 2533 ∃*wrmo 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1781 df-nf 1785 df-mo 2535 df-rmo 3346 |
| This theorem is referenced by: nfdisj1 5070 2reu3 47220 |
| Copyright terms: Public domain | W3C validator |