MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmo1 Structured version   Visualization version   GIF version

Theorem nfrmo1 3373
Description: The setvar 𝑥 is not free in ∃*𝑥𝐴𝜑. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
nfrmo1 𝑥∃*𝑥𝐴 𝜑

Proof of Theorem nfrmo1
StepHypRef Expression
1 df-rmo 3346 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 nfmo1 2552 . 2 𝑥∃*𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1854 1 𝑥∃*𝑥𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1784  wcel 2111  ∃*wmo 2533  ∃*wrmo 3345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-11 2160  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1781  df-nf 1785  df-mo 2535  df-rmo 3346
This theorem is referenced by:  nfdisj1  5070  2reu3  47220
  Copyright terms: Public domain W3C validator