MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdisj1 Structured version   Visualization version   GIF version

Theorem nfdisj1 5126
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
nfdisj1 𝑥Disj 𝑥𝐴 𝐵

Proof of Theorem nfdisj1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-disj 5113 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
2 nfrmo1 3408 . . 3 𝑥∃*𝑥𝐴 𝑦𝐵
32nfal 2317 . 2 𝑥𝑦∃*𝑥𝐴 𝑦𝐵
41, 3nfxfr 1856 1 𝑥Disj 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wal 1540  wnf 1786  wcel 2107  ∃*wrmo 3376  Disj wdisj 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2138  ax-11 2155  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-or 847  df-ex 1783  df-nf 1787  df-mo 2535  df-rmo 3377  df-disj 5113
This theorem is referenced by:  disjabrex  31791  disjabrexf  31792  hasheuni  33021  ldgenpisyslem1  33099  measvunilem  33148  measvunilem0  33149  measvuni  33150  measinblem  33156  voliune  33165  volfiniune  33166  volmeas  33167  dstrvprob  33408  ismeannd  45118
  Copyright terms: Public domain W3C validator