MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdisj1 Structured version   Visualization version   GIF version

Theorem nfdisj1 5049
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
nfdisj1 𝑥Disj 𝑥𝐴 𝐵

Proof of Theorem nfdisj1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-disj 5036 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
2 nfrmo1 3297 . . 3 𝑥∃*𝑥𝐴 𝑦𝐵
32nfal 2321 . 2 𝑥𝑦∃*𝑥𝐴 𝑦𝐵
41, 3nfxfr 1856 1 𝑥Disj 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wal 1537  wnf 1787  wcel 2108  ∃*wrmo 3066  Disj wdisj 5035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1784  df-nf 1788  df-mo 2540  df-rmo 3071  df-disj 5036
This theorem is referenced by:  disjabrex  30822  disjabrexf  30823  hasheuni  31953  ldgenpisyslem1  32031  measvunilem  32080  measvunilem0  32081  measvuni  32082  measinblem  32088  voliune  32097  volfiniune  32098  volmeas  32099  dstrvprob  32338  ismeannd  43895
  Copyright terms: Public domain W3C validator