Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfdisj1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
nfdisj1 | ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disj 5040 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | nfrmo1 3301 | . . 3 ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 2 | nfal 2317 | . 2 ⊢ Ⅎ𝑥∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
4 | 1, 3 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1537 Ⅎwnf 1786 ∈ wcel 2106 ∃*wrmo 3067 Disj wdisj 5039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1783 df-nf 1787 df-mo 2540 df-rmo 3071 df-disj 5040 |
This theorem is referenced by: disjabrex 30921 disjabrexf 30922 hasheuni 32053 ldgenpisyslem1 32131 measvunilem 32180 measvunilem0 32181 measvuni 32182 measinblem 32188 voliune 32197 volfiniune 32198 volmeas 32199 dstrvprob 32438 ismeannd 44005 |
Copyright terms: Public domain | W3C validator |