![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfdisj1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
nfdisj1 | ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disj 5119 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | nfrmo1 3395 | . . 3 ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 2 | nfal 2312 | . 2 ⊢ Ⅎ𝑥∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
4 | 1, 3 | nfxfr 1848 | 1 ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1532 Ⅎwnf 1778 ∈ wcel 2099 ∃*wrmo 3363 Disj wdisj 5118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-10 2130 ax-11 2147 ax-12 2167 |
This theorem depends on definitions: df-bi 206 df-or 846 df-ex 1775 df-nf 1779 df-mo 2529 df-rmo 3364 df-disj 5119 |
This theorem is referenced by: disjabrex 32502 disjabrexf 32503 hasheuni 33918 ldgenpisyslem1 33996 measvunilem 34045 measvunilem0 34046 measvuni 34047 measinblem 34053 voliune 34062 volfiniune 34063 volmeas 34064 dstrvprob 34305 ismeannd 46088 |
Copyright terms: Public domain | W3C validator |