MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdisj1 Structured version   Visualization version   GIF version

Theorem nfdisj1 5147
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
nfdisj1 𝑥Disj 𝑥𝐴 𝐵

Proof of Theorem nfdisj1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-disj 5134 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
2 nfrmo1 3419 . . 3 𝑥∃*𝑥𝐴 𝑦𝐵
32nfal 2327 . 2 𝑥𝑦∃*𝑥𝐴 𝑦𝐵
41, 3nfxfr 1851 1 𝑥Disj 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wal 1535  wnf 1781  wcel 2108  ∃*wrmo 3387  Disj wdisj 5133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782  df-mo 2543  df-rmo 3388  df-disj 5134
This theorem is referenced by:  disjabrex  32604  disjabrexf  32605  hasheuni  34049  ldgenpisyslem1  34127  measvunilem  34176  measvunilem0  34177  measvuni  34178  measinblem  34184  voliune  34193  volfiniune  34194  volmeas  34195  dstrvprob  34436  ismeannd  46388
  Copyright terms: Public domain W3C validator