![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfdisj1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
nfdisj1 | ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disj 5134 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | nfrmo1 3419 | . . 3 ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 2 | nfal 2327 | . 2 ⊢ Ⅎ𝑥∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
4 | 1, 3 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1535 Ⅎwnf 1781 ∈ wcel 2108 ∃*wrmo 3387 Disj wdisj 5133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-or 847 df-ex 1778 df-nf 1782 df-mo 2543 df-rmo 3388 df-disj 5134 |
This theorem is referenced by: disjabrex 32604 disjabrexf 32605 hasheuni 34049 ldgenpisyslem1 34127 measvunilem 34176 measvunilem0 34177 measvuni 34178 measinblem 34184 voliune 34193 volfiniune 34194 volmeas 34195 dstrvprob 34436 ismeannd 46388 |
Copyright terms: Public domain | W3C validator |