MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdisj1 Structured version   Visualization version   GIF version

Theorem nfdisj1 5070
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
nfdisj1 𝑥Disj 𝑥𝐴 𝐵

Proof of Theorem nfdisj1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-disj 5057 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
2 nfrmo1 3373 . . 3 𝑥∃*𝑥𝐴 𝑦𝐵
32nfal 2324 . 2 𝑥𝑦∃*𝑥𝐴 𝑦𝐵
41, 3nfxfr 1854 1 𝑥Disj 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wal 1539  wnf 1784  wcel 2111  ∃*wrmo 3345  Disj wdisj 5056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-11 2160  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1781  df-nf 1785  df-mo 2535  df-rmo 3346  df-disj 5057
This theorem is referenced by:  disjabrex  32562  disjabrexf  32563  hasheuni  34098  ldgenpisyslem1  34176  measvunilem  34225  measvunilem0  34226  measvuni  34227  measinblem  34233  voliune  34242  volfiniune  34243  volmeas  34244  dstrvprob  34485  ismeannd  46575
  Copyright terms: Public domain W3C validator