Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfdisj1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
nfdisj1 | ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disj 5036 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | nfrmo1 3297 | . . 3 ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 2 | nfal 2321 | . 2 ⊢ Ⅎ𝑥∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
4 | 1, 3 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1537 Ⅎwnf 1787 ∈ wcel 2108 ∃*wrmo 3066 Disj wdisj 5035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 df-mo 2540 df-rmo 3071 df-disj 5036 |
This theorem is referenced by: disjabrex 30822 disjabrexf 30823 hasheuni 31953 ldgenpisyslem1 32031 measvunilem 32080 measvunilem0 32081 measvuni 32082 measinblem 32088 voliune 32097 volfiniune 32098 volmeas 32099 dstrvprob 32338 ismeannd 43895 |
Copyright terms: Public domain | W3C validator |