| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdisj1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| nfdisj1 | ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-disj 5087 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | nfrmo1 3390 | . . 3 ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 2 | nfal 2323 | . 2 ⊢ Ⅎ𝑥∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 4 | 1, 3 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 Ⅎwnf 1783 ∈ wcel 2108 ∃*wrmo 3358 Disj wdisj 5086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 df-mo 2539 df-rmo 3359 df-disj 5087 |
| This theorem is referenced by: disjabrex 32563 disjabrexf 32564 hasheuni 34116 ldgenpisyslem1 34194 measvunilem 34243 measvunilem0 34244 measvuni 34245 measinblem 34251 voliune 34260 volfiniune 34261 volmeas 34262 dstrvprob 34504 ismeannd 46496 |
| Copyright terms: Public domain | W3C validator |