MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdisj1 Structured version   Visualization version   GIF version

Theorem nfdisj1 5132
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
nfdisj1 𝑥Disj 𝑥𝐴 𝐵

Proof of Theorem nfdisj1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-disj 5119 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
2 nfrmo1 3395 . . 3 𝑥∃*𝑥𝐴 𝑦𝐵
32nfal 2312 . 2 𝑥𝑦∃*𝑥𝐴 𝑦𝐵
41, 3nfxfr 1848 1 𝑥Disj 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wal 1532  wnf 1778  wcel 2099  ∃*wrmo 3363  Disj wdisj 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-10 2130  ax-11 2147  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-or 846  df-ex 1775  df-nf 1779  df-mo 2529  df-rmo 3364  df-disj 5119
This theorem is referenced by:  disjabrex  32502  disjabrexf  32503  hasheuni  33918  ldgenpisyslem1  33996  measvunilem  34045  measvunilem0  34046  measvuni  34047  measinblem  34053  voliune  34062  volfiniune  34063  volmeas  34064  dstrvprob  34305  ismeannd  46088
  Copyright terms: Public domain W3C validator