| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdisj1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| nfdisj1 | ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-disj 5057 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | nfrmo1 3373 | . . 3 ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 2 | nfal 2324 | . 2 ⊢ Ⅎ𝑥∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 4 | 1, 3 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1539 Ⅎwnf 1784 ∈ wcel 2111 ∃*wrmo 3345 Disj wdisj 5056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1781 df-nf 1785 df-mo 2535 df-rmo 3346 df-disj 5057 |
| This theorem is referenced by: disjabrex 32562 disjabrexf 32563 hasheuni 34098 ldgenpisyslem1 34176 measvunilem 34225 measvunilem0 34226 measvuni 34227 measinblem 34233 voliune 34242 volfiniune 34243 volmeas 34244 dstrvprob 34485 ismeannd 46575 |
| Copyright terms: Public domain | W3C validator |