Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝜑) |
2 | 1 | sb8euv 2599 |
. . 3
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃!𝑧[𝑧 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
3 | | sban 2084 |
. . . 4
⊢ ([𝑧 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) |
4 | 3 | eubii 2585 |
. . 3
⊢
(∃!𝑧[𝑧 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃!𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) |
5 | | clelsb1 2866 |
. . . . . 6
⊢ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) |
6 | 5 | anbi1i 623 |
. . . . 5
⊢ (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) |
7 | 6 | eubii 2585 |
. . . 4
⊢
(∃!𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ ∃!𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) |
8 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑦 𝑧 ∈ 𝐴 |
9 | | cbvreuw.1 |
. . . . . . 7
⊢
Ⅎ𝑦𝜑 |
10 | 9 | nfsbv 2328 |
. . . . . 6
⊢
Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
11 | 8, 10 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑦(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
12 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) |
13 | | eleq1w 2821 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
14 | | sbequ 2087 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
15 | | cbvreuw.2 |
. . . . . . . 8
⊢
Ⅎ𝑥𝜓 |
16 | | cbvreuw.3 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
17 | 15, 16 | sbiev 2312 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
18 | 14, 17 | bitrdi 286 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) |
19 | 13, 18 | anbi12d 630 |
. . . . 5
⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
20 | 11, 12, 19 | cbveuw 2607 |
. . . 4
⊢
(∃!𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
21 | 7, 20 | bitri 274 |
. . 3
⊢
(∃!𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
22 | 2, 4, 21 | 3bitri 296 |
. 2
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
23 | | df-reu 3070 |
. 2
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
24 | | df-reu 3070 |
. 2
⊢
(∃!𝑦 ∈
𝐴 𝜓 ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
25 | 22, 23, 24 | 3bitr4i 302 |
1
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |