![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvreuw | Structured version Visualization version GIF version |
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu 3424 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-13 2371. (Revised by Gino Giotto, 10-Jan-2024.) Avoid ax-10 2137. (Revised by Wolf Lammen, 10-Dec-2024.) |
Ref | Expression |
---|---|
cbvreuw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvreuw.2 | ⊢ Ⅎ𝑥𝜓 |
cbvreuw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvreuw | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvreuw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | cbvreuw.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvreuw.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvrexw 3304 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
5 | 1, 2, 3 | cbvrmow 3405 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
6 | 4, 5 | anbi12i 627 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑦 ∈ 𝐴 𝜓 ∧ ∃*𝑦 ∈ 𝐴 𝜓)) |
7 | reu5 3378 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
8 | reu5 3378 | . 2 ⊢ (∃!𝑦 ∈ 𝐴 𝜓 ↔ (∃𝑦 ∈ 𝐴 𝜓 ∧ ∃*𝑦 ∈ 𝐴 𝜓)) | |
9 | 6, 7, 8 | 3bitr4i 302 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 Ⅎwnf 1785 ∃wrex 3070 ∃!wreu 3374 ∃*wrmo 3375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-mo 2534 df-eu 2563 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 |
This theorem is referenced by: cbvrmowOLD 3411 cbvreuvwOLD 3413 reu8nf 3871 poimirlem25 36816 |
Copyright terms: Public domain | W3C validator |