MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvreuw Structured version   Visualization version   GIF version

Theorem cbvreuw 3406
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu 3424 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Mario Carneiro, 15-Oct-2016.) Avoid ax-13 2371. (Revised by Gino Giotto, 10-Jan-2024.) Avoid ax-10 2137. (Revised by Wolf Lammen, 10-Dec-2024.)
Hypotheses
Ref Expression
cbvreuw.1 𝑦𝜑
cbvreuw.2 𝑥𝜓
cbvreuw.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvreuw (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvreuw
StepHypRef Expression
1 cbvreuw.1 . . . 4 𝑦𝜑
2 cbvreuw.2 . . . 4 𝑥𝜓
3 cbvreuw.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvrexw 3304 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
51, 2, 3cbvrmow 3405 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
64, 5anbi12i 627 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑) ↔ (∃𝑦𝐴 𝜓 ∧ ∃*𝑦𝐴 𝜓))
7 reu5 3378 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
8 reu5 3378 . 2 (∃!𝑦𝐴 𝜓 ↔ (∃𝑦𝐴 𝜓 ∧ ∃*𝑦𝐴 𝜓))
96, 7, 83bitr4i 302 1 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wnf 1785  wrex 3070  ∃!wreu 3374  ∃*wrmo 3375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-mo 2534  df-eu 2563  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377
This theorem is referenced by:  cbvrmowOLD  3411  cbvreuvwOLD  3413  reu8nf  3871  poimirlem25  36816
  Copyright terms: Public domain W3C validator