MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreu1 Structured version   Visualization version   GIF version

Theorem nfreu1 3395
Description: The setvar 𝑥 is not free in ∃!𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfreu1 𝑥∃!𝑥𝐴 𝜑

Proof of Theorem nfreu1
StepHypRef Expression
1 df-reu 3364 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 nfeu1 2586 . 2 𝑥∃!𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1852 1 𝑥∃!𝑥𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1782  wcel 2107  ∃!weu 2566  ∃!wreu 3361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-10 2140  ax-11 2156  ax-12 2176
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1779  df-nf 1783  df-mo 2538  df-eu 2567  df-reu 3364
This theorem is referenced by:  riota2df  7393  2reu8  47082  iccpartdisj  47382
  Copyright terms: Public domain W3C validator