MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreu1 Structured version   Visualization version   GIF version

Theorem nfreu1 3320
Description: The setvar 𝑥 is not free in ∃!𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfreu1 𝑥∃!𝑥𝐴 𝜑

Proof of Theorem nfreu1
StepHypRef Expression
1 df-reu 3124 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 nfeu1 2662 . 2 𝑥∃!𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1954 1 𝑥∃!𝑥𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wa 386  wnf 1884  wcel 2166  ∃!weu 2639  ∃!wreu 3119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-10 2194  ax-11 2209  ax-12 2222
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-ex 1881  df-nf 1885  df-mo 2605  df-eu 2640  df-reu 3124
This theorem is referenced by:  riota2df  6886  2reu8  42017  iccpartdisj  42261
  Copyright terms: Public domain W3C validator