MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreu1 Structured version   Visualization version   GIF version

Theorem nfreu1 3296
Description: The setvar 𝑥 is not free in ∃!𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfreu1 𝑥∃!𝑥𝐴 𝜑

Proof of Theorem nfreu1
StepHypRef Expression
1 df-reu 3070 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 nfeu1 2588 . 2 𝑥∃!𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1856 1 𝑥∃!𝑥𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1787  wcel 2108  ∃!weu 2568  ∃!wreu 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-mo 2540  df-eu 2569  df-reu 3070
This theorem is referenced by:  riota2df  7236  2reu8  44491  iccpartdisj  44777
  Copyright terms: Public domain W3C validator