MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreu1 Structured version   Visualization version   GIF version

Theorem nfreu1 3391
Description: The setvar 𝑥 is not free in ∃!𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfreu1 𝑥∃!𝑥𝐴 𝜑

Proof of Theorem nfreu1
StepHypRef Expression
1 df-reu 3360 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 nfeu1 2587 . 2 𝑥∃!𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1853 1 𝑥∃!𝑥𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1783  wcel 2108  ∃!weu 2567  ∃!wreu 3357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2157  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-mo 2539  df-eu 2568  df-reu 3360
This theorem is referenced by:  riota2df  7383  2reu8  47089  iccpartdisj  47399
  Copyright terms: Public domain W3C validator