![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnoni | Structured version Visualization version GIF version |
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
nnoni.1 | ⊢ 𝐴 ∈ ω |
Ref | Expression |
---|---|
nnoni | ⊢ 𝐴 ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnoni.1 | . 2 ⊢ 𝐴 ∈ ω | |
2 | nnon 7893 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Oncon0 6386 ωcom 7887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-ss 3980 df-om 7888 |
This theorem is referenced by: omopthlem1 8696 omopthlem2 8697 omopthi 8698 |
Copyright terms: Public domain | W3C validator |