![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnoni | Structured version Visualization version GIF version |
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
nnoni.1 | ⊢ 𝐴 ∈ ω |
Ref | Expression |
---|---|
nnoni | ⊢ 𝐴 ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnoni.1 | . 2 ⊢ 𝐴 ∈ ω | |
2 | nnon 7813 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Oncon0 6322 ωcom 7807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3411 df-v 3450 df-in 3922 df-ss 3932 df-om 7808 |
This theorem is referenced by: omopthlem1 8610 omopthlem2 8611 omopthi 8612 |
Copyright terms: Public domain | W3C validator |