| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnoni | Structured version Visualization version GIF version | ||
| Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
| Ref | Expression |
|---|---|
| nnoni.1 | ⊢ 𝐴 ∈ ω |
| Ref | Expression |
|---|---|
| nnoni | ⊢ 𝐴 ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnoni.1 | . 2 ⊢ 𝐴 ∈ ω | |
| 2 | nnon 7802 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Oncon0 6306 ωcom 7796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3914 df-om 7797 |
| This theorem is referenced by: omopthlem1 8574 omopthlem2 8575 omopthi 8576 |
| Copyright terms: Public domain | W3C validator |