MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnoni Structured version   Visualization version   GIF version

Theorem nnoni 7910
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.)
Hypothesis
Ref Expression
nnoni.1 𝐴 ∈ ω
Assertion
Ref Expression
nnoni 𝐴 ∈ On

Proof of Theorem nnoni
StepHypRef Expression
1 nnoni.1 . 2 𝐴 ∈ ω
2 nnon 7909 . 2 (𝐴 ∈ ω → 𝐴 ∈ On)
31, 2ax-mp 5 1 𝐴 ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Oncon0 6395  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-ss 3993  df-om 7904
This theorem is referenced by:  omopthlem1  8715  omopthlem2  8716  omopthi  8717
  Copyright terms: Public domain W3C validator