MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnoni Structured version   Visualization version   GIF version

Theorem nnoni 7861
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.)
Hypothesis
Ref Expression
nnoni.1 𝐴 ∈ ω
Assertion
Ref Expression
nnoni 𝐴 ∈ On

Proof of Theorem nnoni
StepHypRef Expression
1 nnoni.1 . 2 𝐴 ∈ ω
2 nnon 7860 . 2 (𝐴 ∈ ω → 𝐴 ∈ On)
31, 2ax-mp 5 1 𝐴 ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Oncon0 6364  ωcom 7854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-in 3955  df-ss 3965  df-om 7855
This theorem is referenced by:  omopthlem1  8657  omopthlem2  8658  omopthi  8659
  Copyright terms: Public domain W3C validator