![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnoni | Structured version Visualization version GIF version |
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
nnoni.1 | ⊢ 𝐴 ∈ ω |
Ref | Expression |
---|---|
nnoni | ⊢ 𝐴 ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnoni.1 | . 2 ⊢ 𝐴 ∈ ω | |
2 | nnon 7870 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 Oncon0 6363 ωcom 7864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-in 3952 df-ss 3962 df-om 7865 |
This theorem is referenced by: omopthlem1 8673 omopthlem2 8674 omopthi 8675 |
Copyright terms: Public domain | W3C validator |