MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnoni Structured version   Visualization version   GIF version

Theorem nnoni 7352
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.)
Hypothesis
Ref Expression
nnoni.1 𝐴 ∈ ω
Assertion
Ref Expression
nnoni 𝐴 ∈ On

Proof of Theorem nnoni
StepHypRef Expression
1 nnoni.1 . 2 𝐴 ∈ ω
2 nnon 7351 . 2 (𝐴 ∈ ω → 𝐴 ∈ On)
31, 2ax-mp 5 1 𝐴 ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Oncon0 5978  ωcom 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-tr 4990  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-om 7346
This theorem is referenced by:  omopthlem1  8021  omopthlem2  8022  omopthi  8023
  Copyright terms: Public domain W3C validator