Proof of Theorem omopthlem2
Step | Hyp | Ref
| Expression |
1 | | omopthlem2.3 |
. . . . . . 7
⊢ 𝐶 ∈ ω |
2 | 1, 1 | nnmcli 8408 |
. . . . . 6
⊢ (𝐶 ·o 𝐶) ∈
ω |
3 | | omopthlem2.4 |
. . . . . 6
⊢ 𝐷 ∈ ω |
4 | 2, 3 | nnacli 8407 |
. . . . 5
⊢ ((𝐶 ·o 𝐶) +o 𝐷) ∈
ω |
5 | 4 | nnoni 7694 |
. . . 4
⊢ ((𝐶 ·o 𝐶) +o 𝐷) ∈ On |
6 | 5 | onirri 6358 |
. . 3
⊢ ¬
((𝐶 ·o
𝐶) +o 𝐷) ∈ ((𝐶 ·o 𝐶) +o 𝐷) |
7 | | eleq1 2826 |
. . 3
⊢ (((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) → (((𝐶 ·o 𝐶) +o 𝐷) ∈ ((𝐶 ·o 𝐶) +o 𝐷) ↔ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷))) |
8 | 6, 7 | mtbii 325 |
. 2
⊢ (((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷)) |
9 | | nnaword1 8422 |
. . . 4
⊢ (((𝐶 ·o 𝐶) ∈ ω ∧ 𝐷 ∈ ω) → (𝐶 ·o 𝐶) ⊆ ((𝐶 ·o 𝐶) +o 𝐷)) |
10 | 2, 3, 9 | mp2an 688 |
. . 3
⊢ (𝐶 ·o 𝐶) ⊆ ((𝐶 ·o 𝐶) +o 𝐷) |
11 | | omopthlem2.2 |
. . . . . . . . 9
⊢ 𝐵 ∈ ω |
12 | | omopthlem2.1 |
. . . . . . . . . . 11
⊢ 𝐴 ∈ ω |
13 | 12, 11 | nnacli 8407 |
. . . . . . . . . 10
⊢ (𝐴 +o 𝐵) ∈ ω |
14 | 13, 12 | nnacli 8407 |
. . . . . . . . 9
⊢ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω |
15 | | nnaword1 8422 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω) → 𝐵 ⊆ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴))) |
16 | 11, 14, 15 | mp2an 688 |
. . . . . . . 8
⊢ 𝐵 ⊆ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) |
17 | | nnacom 8410 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω) → (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) = (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵)) |
18 | 11, 14, 17 | mp2an 688 |
. . . . . . . 8
⊢ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) = (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) |
19 | 16, 18 | sseqtri 3953 |
. . . . . . 7
⊢ 𝐵 ⊆ (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) |
20 | | nnaass 8415 |
. . . . . . . . 9
⊢ (((𝐴 +o 𝐵) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵))) |
21 | 13, 12, 11, 20 | mp3an 1459 |
. . . . . . . 8
⊢ (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵)) |
22 | | nnm2 8443 |
. . . . . . . . 9
⊢ ((𝐴 +o 𝐵) ∈ ω → ((𝐴 +o 𝐵) ·o 2o) =
((𝐴 +o 𝐵) +o (𝐴 +o 𝐵))) |
23 | 13, 22 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝐴 +o 𝐵) ·o 2o) =
((𝐴 +o 𝐵) +o (𝐴 +o 𝐵)) |
24 | 21, 23 | eqtr4i 2769 |
. . . . . . 7
⊢ (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) ·o
2o) |
25 | 19, 24 | sseqtri 3953 |
. . . . . 6
⊢ 𝐵 ⊆ ((𝐴 +o 𝐵) ·o
2o) |
26 | | 2onn 8433 |
. . . . . . . 8
⊢
2o ∈ ω |
27 | 13, 26 | nnmcli 8408 |
. . . . . . 7
⊢ ((𝐴 +o 𝐵) ·o 2o) ∈
ω |
28 | 13, 13 | nnmcli 8408 |
. . . . . . 7
⊢ ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω |
29 | | nnawordi 8414 |
. . . . . . 7
⊢ ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) ·o 2o) ∈
ω ∧ ((𝐴
+o 𝐵)
·o (𝐴
+o 𝐵)) ∈
ω) → (𝐵 ⊆
((𝐴 +o 𝐵) ·o
2o) → (𝐵
+o ((𝐴
+o 𝐵)
·o (𝐴
+o 𝐵))) ⊆
(((𝐴 +o 𝐵) ·o
2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))) |
30 | 11, 27, 28, 29 | mp3an 1459 |
. . . . . 6
⊢ (𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o) →
(𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o)
+o ((𝐴
+o 𝐵)
·o (𝐴
+o 𝐵)))) |
31 | 25, 30 | ax-mp 5 |
. . . . 5
⊢ (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o)
+o ((𝐴
+o 𝐵)
·o (𝐴
+o 𝐵))) |
32 | | nnacom 8410 |
. . . . . 6
⊢ ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))) |
33 | 28, 11, 32 | mp2an 688 |
. . . . 5
⊢ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) |
34 | | nnacom 8410 |
. . . . . 6
⊢ ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ ((𝐴 +o 𝐵) ·o 2o) ∈
ω) → (((𝐴
+o 𝐵)
·o (𝐴
+o 𝐵))
+o ((𝐴
+o 𝐵)
·o 2o)) = (((𝐴 +o 𝐵) ·o 2o)
+o ((𝐴
+o 𝐵)
·o (𝐴
+o 𝐵)))) |
35 | 28, 27, 34 | mp2an 688 |
. . . . 5
⊢ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) =
(((𝐴 +o 𝐵) ·o
2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) |
36 | 31, 33, 35 | 3sstr4i 3960 |
. . . 4
⊢ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o
2o)) |
37 | 13, 1 | omopthlem1 8449 |
. . . 4
⊢ ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o))
∈ (𝐶
·o 𝐶)) |
38 | 28, 11 | nnacli 8407 |
. . . . . 6
⊢ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ω |
39 | 38 | nnoni 7694 |
. . . . 5
⊢ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ On |
40 | 2 | nnoni 7694 |
. . . . 5
⊢ (𝐶 ·o 𝐶) ∈ On |
41 | | ontr2 6298 |
. . . . 5
⊢
(((((𝐴 +o
𝐵) ·o
(𝐴 +o 𝐵)) +o 𝐵) ∈ On ∧ (𝐶 ·o 𝐶) ∈ On) → (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∧
(((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o))
∈ (𝐶
·o 𝐶))
→ (((𝐴 +o
𝐵) ·o
(𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶))) |
42 | 39, 40, 41 | mp2an 688 |
. . . 4
⊢
(((((𝐴 +o
𝐵) ·o
(𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∧
(((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o))
∈ (𝐶
·o 𝐶))
→ (((𝐴 +o
𝐵) ·o
(𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶)) |
43 | 36, 37, 42 | sylancr 586 |
. . 3
⊢ ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶)) |
44 | 10, 43 | sselid 3915 |
. 2
⊢ ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷)) |
45 | 8, 44 | nsyl3 138 |
1
⊢ ((𝐴 +o 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵)) |