MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthlem2 Structured version   Visualization version   GIF version

Theorem omopthlem2 8575
Description: Lemma for omopthi 8576. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopthlem2.1 𝐴 ∈ ω
omopthlem2.2 𝐵 ∈ ω
omopthlem2.3 𝐶 ∈ ω
omopthlem2.4 𝐷 ∈ ω
Assertion
Ref Expression
omopthlem2 ((𝐴 +o 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵))

Proof of Theorem omopthlem2
StepHypRef Expression
1 omopthlem2.3 . . . . . . 7 𝐶 ∈ ω
21, 1nnmcli 8530 . . . . . 6 (𝐶 ·o 𝐶) ∈ ω
3 omopthlem2.4 . . . . . 6 𝐷 ∈ ω
42, 3nnacli 8529 . . . . 5 ((𝐶 ·o 𝐶) +o 𝐷) ∈ ω
54nnoni 7803 . . . 4 ((𝐶 ·o 𝐶) +o 𝐷) ∈ On
65onirri 6420 . . 3 ¬ ((𝐶 ·o 𝐶) +o 𝐷) ∈ ((𝐶 ·o 𝐶) +o 𝐷)
7 eleq1 2819 . . 3 (((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) → (((𝐶 ·o 𝐶) +o 𝐷) ∈ ((𝐶 ·o 𝐶) +o 𝐷) ↔ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷)))
86, 7mtbii 326 . 2 (((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷))
9 nnaword1 8544 . . . 4 (((𝐶 ·o 𝐶) ∈ ω ∧ 𝐷 ∈ ω) → (𝐶 ·o 𝐶) ⊆ ((𝐶 ·o 𝐶) +o 𝐷))
102, 3, 9mp2an 692 . . 3 (𝐶 ·o 𝐶) ⊆ ((𝐶 ·o 𝐶) +o 𝐷)
11 omopthlem2.2 . . . . . . . . 9 𝐵 ∈ ω
12 omopthlem2.1 . . . . . . . . . . 11 𝐴 ∈ ω
1312, 11nnacli 8529 . . . . . . . . . 10 (𝐴 +o 𝐵) ∈ ω
1413, 12nnacli 8529 . . . . . . . . 9 ((𝐴 +o 𝐵) +o 𝐴) ∈ ω
15 nnaword1 8544 . . . . . . . . 9 ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω) → 𝐵 ⊆ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)))
1611, 14, 15mp2an 692 . . . . . . . 8 𝐵 ⊆ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴))
17 nnacom 8532 . . . . . . . . 9 ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω) → (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) = (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵))
1811, 14, 17mp2an 692 . . . . . . . 8 (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) = (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵)
1916, 18sseqtri 3983 . . . . . . 7 𝐵 ⊆ (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵)
20 nnaass 8537 . . . . . . . . 9 (((𝐴 +o 𝐵) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵)))
2113, 12, 11, 20mp3an 1463 . . . . . . . 8 (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵))
22 nnm2 8568 . . . . . . . . 9 ((𝐴 +o 𝐵) ∈ ω → ((𝐴 +o 𝐵) ·o 2o) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵)))
2313, 22ax-mp 5 . . . . . . . 8 ((𝐴 +o 𝐵) ·o 2o) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵))
2421, 23eqtr4i 2757 . . . . . . 7 (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) ·o 2o)
2519, 24sseqtri 3983 . . . . . 6 𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o)
26 2onn 8557 . . . . . . . 8 2o ∈ ω
2713, 26nnmcli 8530 . . . . . . 7 ((𝐴 +o 𝐵) ·o 2o) ∈ ω
2813, 13nnmcli 8530 . . . . . . 7 ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω
29 nnawordi 8536 . . . . . . 7 ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) ·o 2o) ∈ ω ∧ ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω) → (𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o) → (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))))
3011, 27, 28, 29mp3an 1463 . . . . . 6 (𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o) → (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))
3125, 30ax-mp 5 . . . . 5 (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))
32 nnacom 8532 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))
3328, 11, 32mp2an 692 . . . . 5 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))
34 nnacom 8532 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ ((𝐴 +o 𝐵) ·o 2o) ∈ ω) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) = (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))
3528, 27, 34mp2an 692 . . . . 5 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) = (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))
3631, 33, 353sstr4i 3986 . . . 4 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o))
3713, 1omopthlem1 8574 . . . 4 ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∈ (𝐶 ·o 𝐶))
3828, 11nnacli 8529 . . . . . 6 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ω
3938nnoni 7803 . . . . 5 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ On
402nnoni 7803 . . . . 5 (𝐶 ·o 𝐶) ∈ On
41 ontr2 6354 . . . . 5 (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ On ∧ (𝐶 ·o 𝐶) ∈ On) → (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∧ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∈ (𝐶 ·o 𝐶)) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶)))
4239, 40, 41mp2an 692 . . . 4 (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∧ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∈ (𝐶 ·o 𝐶)) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶))
4336, 37, 42sylancr 587 . . 3 ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶))
4410, 43sselid 3932 . 2 ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷))
458, 44nsyl3 138 1 ((𝐴 +o 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3902  Oncon0 6306  (class class class)co 7346  ωcom 7796  2oc2o 8379   +o coa 8382   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390
This theorem is referenced by:  omopthi  8576
  Copyright terms: Public domain W3C validator