Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthlem2 Structured version   Visualization version   GIF version

Theorem omopthlem2 8268
 Description: Lemma for omopthi 8269. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopthlem2.1 𝐴 ∈ ω
omopthlem2.2 𝐵 ∈ ω
omopthlem2.3 𝐶 ∈ ω
omopthlem2.4 𝐷 ∈ ω
Assertion
Ref Expression
omopthlem2 ((𝐴 +o 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵))

Proof of Theorem omopthlem2
StepHypRef Expression
1 omopthlem2.3 . . . . . . 7 𝐶 ∈ ω
21, 1nnmcli 8226 . . . . . 6 (𝐶 ·o 𝐶) ∈ ω
3 omopthlem2.4 . . . . . 6 𝐷 ∈ ω
42, 3nnacli 8225 . . . . 5 ((𝐶 ·o 𝐶) +o 𝐷) ∈ ω
54nnoni 7569 . . . 4 ((𝐶 ·o 𝐶) +o 𝐷) ∈ On
65onirri 6265 . . 3 ¬ ((𝐶 ·o 𝐶) +o 𝐷) ∈ ((𝐶 ·o 𝐶) +o 𝐷)
7 eleq1 2877 . . 3 (((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) → (((𝐶 ·o 𝐶) +o 𝐷) ∈ ((𝐶 ·o 𝐶) +o 𝐷) ↔ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷)))
86, 7mtbii 329 . 2 (((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷))
9 nnaword1 8240 . . . 4 (((𝐶 ·o 𝐶) ∈ ω ∧ 𝐷 ∈ ω) → (𝐶 ·o 𝐶) ⊆ ((𝐶 ·o 𝐶) +o 𝐷))
102, 3, 9mp2an 691 . . 3 (𝐶 ·o 𝐶) ⊆ ((𝐶 ·o 𝐶) +o 𝐷)
11 omopthlem2.2 . . . . . . . . 9 𝐵 ∈ ω
12 omopthlem2.1 . . . . . . . . . . 11 𝐴 ∈ ω
1312, 11nnacli 8225 . . . . . . . . . 10 (𝐴 +o 𝐵) ∈ ω
1413, 12nnacli 8225 . . . . . . . . 9 ((𝐴 +o 𝐵) +o 𝐴) ∈ ω
15 nnaword1 8240 . . . . . . . . 9 ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω) → 𝐵 ⊆ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)))
1611, 14, 15mp2an 691 . . . . . . . 8 𝐵 ⊆ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴))
17 nnacom 8228 . . . . . . . . 9 ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω) → (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) = (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵))
1811, 14, 17mp2an 691 . . . . . . . 8 (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) = (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵)
1916, 18sseqtri 3951 . . . . . . 7 𝐵 ⊆ (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵)
20 nnaass 8233 . . . . . . . . 9 (((𝐴 +o 𝐵) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵)))
2113, 12, 11, 20mp3an 1458 . . . . . . . 8 (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵))
22 nnm2 8261 . . . . . . . . 9 ((𝐴 +o 𝐵) ∈ ω → ((𝐴 +o 𝐵) ·o 2o) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵)))
2313, 22ax-mp 5 . . . . . . . 8 ((𝐴 +o 𝐵) ·o 2o) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵))
2421, 23eqtr4i 2824 . . . . . . 7 (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) ·o 2o)
2519, 24sseqtri 3951 . . . . . 6 𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o)
26 2onn 8251 . . . . . . . 8 2o ∈ ω
2713, 26nnmcli 8226 . . . . . . 7 ((𝐴 +o 𝐵) ·o 2o) ∈ ω
2813, 13nnmcli 8226 . . . . . . 7 ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω
29 nnawordi 8232 . . . . . . 7 ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) ·o 2o) ∈ ω ∧ ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω) → (𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o) → (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))))
3011, 27, 28, 29mp3an 1458 . . . . . 6 (𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o) → (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))
3125, 30ax-mp 5 . . . . 5 (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))
32 nnacom 8228 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))
3328, 11, 32mp2an 691 . . . . 5 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))
34 nnacom 8228 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ ((𝐴 +o 𝐵) ·o 2o) ∈ ω) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) = (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))
3528, 27, 34mp2an 691 . . . . 5 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) = (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))
3631, 33, 353sstr4i 3958 . . . 4 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o))
3713, 1omopthlem1 8267 . . . 4 ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∈ (𝐶 ·o 𝐶))
3828, 11nnacli 8225 . . . . . 6 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ω
3938nnoni 7569 . . . . 5 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ On
402nnoni 7569 . . . . 5 (𝐶 ·o 𝐶) ∈ On
41 ontr2 6206 . . . . 5 (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ On ∧ (𝐶 ·o 𝐶) ∈ On) → (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∧ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∈ (𝐶 ·o 𝐶)) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶)))
4239, 40, 41mp2an 691 . . . 4 (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∧ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∈ (𝐶 ·o 𝐶)) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶))
4336, 37, 42sylancr 590 . . 3 ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶))
4410, 43sseldi 3913 . 2 ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷))
458, 44nsyl3 140 1 ((𝐴 +o 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ⊆ wss 3881  Oncon0 6159  (class class class)co 7135  ωcom 7562  2oc2o 8081   +o coa 8084   ·o comu 8085 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-omul 8092 This theorem is referenced by:  omopthi  8269
 Copyright terms: Public domain W3C validator