Proof of Theorem omopthlem2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | omopthlem2.3 | . . . . . . 7
⊢ 𝐶 ∈ ω | 
| 2 | 1, 1 | nnmcli 8653 | . . . . . 6
⊢ (𝐶 ·o 𝐶) ∈
ω | 
| 3 |  | omopthlem2.4 | . . . . . 6
⊢ 𝐷 ∈ ω | 
| 4 | 2, 3 | nnacli 8652 | . . . . 5
⊢ ((𝐶 ·o 𝐶) +o 𝐷) ∈
ω | 
| 5 | 4 | nnoni 7894 | . . . 4
⊢ ((𝐶 ·o 𝐶) +o 𝐷) ∈ On | 
| 6 | 5 | onirri 6497 | . . 3
⊢  ¬
((𝐶 ·o
𝐶) +o 𝐷) ∈ ((𝐶 ·o 𝐶) +o 𝐷) | 
| 7 |  | eleq1 2829 | . . 3
⊢ (((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) → (((𝐶 ·o 𝐶) +o 𝐷) ∈ ((𝐶 ·o 𝐶) +o 𝐷) ↔ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷))) | 
| 8 | 6, 7 | mtbii 326 | . 2
⊢ (((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷)) | 
| 9 |  | nnaword1 8667 | . . . 4
⊢ (((𝐶 ·o 𝐶) ∈ ω ∧ 𝐷 ∈ ω) → (𝐶 ·o 𝐶) ⊆ ((𝐶 ·o 𝐶) +o 𝐷)) | 
| 10 | 2, 3, 9 | mp2an 692 | . . 3
⊢ (𝐶 ·o 𝐶) ⊆ ((𝐶 ·o 𝐶) +o 𝐷) | 
| 11 |  | omopthlem2.2 | . . . . . . . . 9
⊢ 𝐵 ∈ ω | 
| 12 |  | omopthlem2.1 | . . . . . . . . . . 11
⊢ 𝐴 ∈ ω | 
| 13 | 12, 11 | nnacli 8652 | . . . . . . . . . 10
⊢ (𝐴 +o 𝐵) ∈ ω | 
| 14 | 13, 12 | nnacli 8652 | . . . . . . . . 9
⊢ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω | 
| 15 |  | nnaword1 8667 | . . . . . . . . 9
⊢ ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω) → 𝐵 ⊆ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴))) | 
| 16 | 11, 14, 15 | mp2an 692 | . . . . . . . 8
⊢ 𝐵 ⊆ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) | 
| 17 |  | nnacom 8655 | . . . . . . . . 9
⊢ ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω) → (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) = (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵)) | 
| 18 | 11, 14, 17 | mp2an 692 | . . . . . . . 8
⊢ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) = (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) | 
| 19 | 16, 18 | sseqtri 4032 | . . . . . . 7
⊢ 𝐵 ⊆ (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) | 
| 20 |  | nnaass 8660 | . . . . . . . . 9
⊢ (((𝐴 +o 𝐵) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵))) | 
| 21 | 13, 12, 11, 20 | mp3an 1463 | . . . . . . . 8
⊢ (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵)) | 
| 22 |  | nnm2 8691 | . . . . . . . . 9
⊢ ((𝐴 +o 𝐵) ∈ ω → ((𝐴 +o 𝐵) ·o 2o) =
((𝐴 +o 𝐵) +o (𝐴 +o 𝐵))) | 
| 23 | 13, 22 | ax-mp 5 | . . . . . . . 8
⊢ ((𝐴 +o 𝐵) ·o 2o) =
((𝐴 +o 𝐵) +o (𝐴 +o 𝐵)) | 
| 24 | 21, 23 | eqtr4i 2768 | . . . . . . 7
⊢ (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) ·o
2o) | 
| 25 | 19, 24 | sseqtri 4032 | . . . . . 6
⊢ 𝐵 ⊆ ((𝐴 +o 𝐵) ·o
2o) | 
| 26 |  | 2onn 8680 | . . . . . . . 8
⊢
2o ∈ ω | 
| 27 | 13, 26 | nnmcli 8653 | . . . . . . 7
⊢ ((𝐴 +o 𝐵) ·o 2o) ∈
ω | 
| 28 | 13, 13 | nnmcli 8653 | . . . . . . 7
⊢ ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω | 
| 29 |  | nnawordi 8659 | . . . . . . 7
⊢ ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) ·o 2o) ∈
ω ∧ ((𝐴
+o 𝐵)
·o (𝐴
+o 𝐵)) ∈
ω) → (𝐵 ⊆
((𝐴 +o 𝐵) ·o
2o) → (𝐵
+o ((𝐴
+o 𝐵)
·o (𝐴
+o 𝐵))) ⊆
(((𝐴 +o 𝐵) ·o
2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))) | 
| 30 | 11, 27, 28, 29 | mp3an 1463 | . . . . . 6
⊢ (𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o) →
(𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o)
+o ((𝐴
+o 𝐵)
·o (𝐴
+o 𝐵)))) | 
| 31 | 25, 30 | ax-mp 5 | . . . . 5
⊢ (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o)
+o ((𝐴
+o 𝐵)
·o (𝐴
+o 𝐵))) | 
| 32 |  | nnacom 8655 | . . . . . 6
⊢ ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))) | 
| 33 | 28, 11, 32 | mp2an 692 | . . . . 5
⊢ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) | 
| 34 |  | nnacom 8655 | . . . . . 6
⊢ ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ ((𝐴 +o 𝐵) ·o 2o) ∈
ω) → (((𝐴
+o 𝐵)
·o (𝐴
+o 𝐵))
+o ((𝐴
+o 𝐵)
·o 2o)) = (((𝐴 +o 𝐵) ·o 2o)
+o ((𝐴
+o 𝐵)
·o (𝐴
+o 𝐵)))) | 
| 35 | 28, 27, 34 | mp2an 692 | . . . . 5
⊢ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) =
(((𝐴 +o 𝐵) ·o
2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) | 
| 36 | 31, 33, 35 | 3sstr4i 4035 | . . . 4
⊢ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o
2o)) | 
| 37 | 13, 1 | omopthlem1 8697 | . . . 4
⊢ ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o))
∈ (𝐶
·o 𝐶)) | 
| 38 | 28, 11 | nnacli 8652 | . . . . . 6
⊢ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ω | 
| 39 | 38 | nnoni 7894 | . . . . 5
⊢ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ On | 
| 40 | 2 | nnoni 7894 | . . . . 5
⊢ (𝐶 ·o 𝐶) ∈ On | 
| 41 |  | ontr2 6431 | . . . . 5
⊢
(((((𝐴 +o
𝐵) ·o
(𝐴 +o 𝐵)) +o 𝐵) ∈ On ∧ (𝐶 ·o 𝐶) ∈ On) → (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∧
(((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o))
∈ (𝐶
·o 𝐶))
→ (((𝐴 +o
𝐵) ·o
(𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶))) | 
| 42 | 39, 40, 41 | mp2an 692 | . . . 4
⊢
(((((𝐴 +o
𝐵) ·o
(𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∧
(((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o))
∈ (𝐶
·o 𝐶))
→ (((𝐴 +o
𝐵) ·o
(𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶)) | 
| 43 | 36, 37, 42 | sylancr 587 | . . 3
⊢ ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶)) | 
| 44 | 10, 43 | sselid 3981 | . 2
⊢ ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷)) | 
| 45 | 8, 44 | nsyl3 138 | 1
⊢ ((𝐴 +o 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵)) |