MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthlem2 Structured version   Visualization version   GIF version

Theorem omopthlem2 8490
Description: Lemma for omopthi 8491. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopthlem2.1 𝐴 ∈ ω
omopthlem2.2 𝐵 ∈ ω
omopthlem2.3 𝐶 ∈ ω
omopthlem2.4 𝐷 ∈ ω
Assertion
Ref Expression
omopthlem2 ((𝐴 +o 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵))

Proof of Theorem omopthlem2
StepHypRef Expression
1 omopthlem2.3 . . . . . . 7 𝐶 ∈ ω
21, 1nnmcli 8446 . . . . . 6 (𝐶 ·o 𝐶) ∈ ω
3 omopthlem2.4 . . . . . 6 𝐷 ∈ ω
42, 3nnacli 8445 . . . . 5 ((𝐶 ·o 𝐶) +o 𝐷) ∈ ω
54nnoni 7719 . . . 4 ((𝐶 ·o 𝐶) +o 𝐷) ∈ On
65onirri 6373 . . 3 ¬ ((𝐶 ·o 𝐶) +o 𝐷) ∈ ((𝐶 ·o 𝐶) +o 𝐷)
7 eleq1 2826 . . 3 (((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) → (((𝐶 ·o 𝐶) +o 𝐷) ∈ ((𝐶 ·o 𝐶) +o 𝐷) ↔ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷)))
86, 7mtbii 326 . 2 (((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷))
9 nnaword1 8460 . . . 4 (((𝐶 ·o 𝐶) ∈ ω ∧ 𝐷 ∈ ω) → (𝐶 ·o 𝐶) ⊆ ((𝐶 ·o 𝐶) +o 𝐷))
102, 3, 9mp2an 689 . . 3 (𝐶 ·o 𝐶) ⊆ ((𝐶 ·o 𝐶) +o 𝐷)
11 omopthlem2.2 . . . . . . . . 9 𝐵 ∈ ω
12 omopthlem2.1 . . . . . . . . . . 11 𝐴 ∈ ω
1312, 11nnacli 8445 . . . . . . . . . 10 (𝐴 +o 𝐵) ∈ ω
1413, 12nnacli 8445 . . . . . . . . 9 ((𝐴 +o 𝐵) +o 𝐴) ∈ ω
15 nnaword1 8460 . . . . . . . . 9 ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω) → 𝐵 ⊆ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)))
1611, 14, 15mp2an 689 . . . . . . . 8 𝐵 ⊆ (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴))
17 nnacom 8448 . . . . . . . . 9 ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) +o 𝐴) ∈ ω) → (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) = (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵))
1811, 14, 17mp2an 689 . . . . . . . 8 (𝐵 +o ((𝐴 +o 𝐵) +o 𝐴)) = (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵)
1916, 18sseqtri 3957 . . . . . . 7 𝐵 ⊆ (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵)
20 nnaass 8453 . . . . . . . . 9 (((𝐴 +o 𝐵) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵)))
2113, 12, 11, 20mp3an 1460 . . . . . . . 8 (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵))
22 nnm2 8483 . . . . . . . . 9 ((𝐴 +o 𝐵) ∈ ω → ((𝐴 +o 𝐵) ·o 2o) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵)))
2313, 22ax-mp 5 . . . . . . . 8 ((𝐴 +o 𝐵) ·o 2o) = ((𝐴 +o 𝐵) +o (𝐴 +o 𝐵))
2421, 23eqtr4i 2769 . . . . . . 7 (((𝐴 +o 𝐵) +o 𝐴) +o 𝐵) = ((𝐴 +o 𝐵) ·o 2o)
2519, 24sseqtri 3957 . . . . . 6 𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o)
26 2onn 8472 . . . . . . . 8 2o ∈ ω
2713, 26nnmcli 8446 . . . . . . 7 ((𝐴 +o 𝐵) ·o 2o) ∈ ω
2813, 13nnmcli 8446 . . . . . . 7 ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω
29 nnawordi 8452 . . . . . . 7 ((𝐵 ∈ ω ∧ ((𝐴 +o 𝐵) ·o 2o) ∈ ω ∧ ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω) → (𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o) → (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))))
3011, 27, 28, 29mp3an 1460 . . . . . 6 (𝐵 ⊆ ((𝐴 +o 𝐵) ·o 2o) → (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))
3125, 30ax-mp 5 . . . . 5 (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))) ⊆ (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))
32 nnacom 8448 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))
3328, 11, 32mp2an 689 . . . . 5 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (𝐵 +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))
34 nnacom 8448 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ ((𝐴 +o 𝐵) ·o 2o) ∈ ω) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) = (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵))))
3528, 27, 34mp2an 689 . . . . 5 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) = (((𝐴 +o 𝐵) ·o 2o) +o ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)))
3631, 33, 353sstr4i 3964 . . . 4 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o))
3713, 1omopthlem1 8489 . . . 4 ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∈ (𝐶 ·o 𝐶))
3828, 11nnacli 8445 . . . . . 6 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ω
3938nnoni 7719 . . . . 5 (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ On
402nnoni 7719 . . . . 5 (𝐶 ·o 𝐶) ∈ On
41 ontr2 6313 . . . . 5 (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ On ∧ (𝐶 ·o 𝐶) ∈ On) → (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∧ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∈ (𝐶 ·o 𝐶)) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶)))
4239, 40, 41mp2an 689 . . . 4 (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ⊆ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∧ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o ((𝐴 +o 𝐵) ·o 2o)) ∈ (𝐶 ·o 𝐶)) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶))
4336, 37, 42sylancr 587 . . 3 ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ (𝐶 ·o 𝐶))
4410, 43sselid 3919 . 2 ((𝐴 +o 𝐵) ∈ 𝐶 → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ∈ ((𝐶 ·o 𝐶) +o 𝐷))
458, 44nsyl3 138 1 ((𝐴 +o 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887  Oncon0 6266  (class class class)co 7275  ωcom 7712  2oc2o 8291   +o coa 8294   ·o comu 8295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302
This theorem is referenced by:  omopthi  8491
  Copyright terms: Public domain W3C validator