| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnord | Structured version Visualization version GIF version | ||
| Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
| Ref | Expression |
|---|---|
| nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7894 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | eloni 6393 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Ord word 6382 Oncon0 6383 ωcom 7888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rab 3436 df-v 3481 df-ss 3967 df-uni 4907 df-tr 5259 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-ord 6386 df-on 6387 df-om 7889 |
| This theorem is referenced by: nnlim 7902 nnsuc 7906 omsucne 7907 omun 7910 nnaordi 8657 nnaord 8658 nnaword 8666 nnmord 8671 nnmwordi 8674 nnawordex 8676 nnaordex2 8678 omsmo 8697 eldifsucnn 8703 enrefnn 9088 dif1enlemOLD 9198 pssnn 9209 unfi 9212 phplem2 9246 php 9248 php4 9251 nndomog 9254 phplem1OLD 9255 phplem2OLD 9256 phplem3OLD 9257 phplem4OLD 9258 phpOLD 9260 nndomogOLD 9264 onomeneq 9266 ominf 9295 ominfOLD 9296 isinf 9297 isinfOLD 9298 dif1ennnALT 9312 findcard3 9319 unblem1 9329 isfinite2 9335 unfilem1 9344 inf3lem5 9673 inf3lem6 9674 cantnfp1lem2 9720 cantnfp1lem3 9721 ttrcltr 9757 ttrclss 9761 dmttrcl 9762 rnttrcl 9763 ttrclselem2 9767 dif1card 10051 nnadju 10239 pwsdompw 10244 ackbij1lem5 10264 ackbij1lem14 10273 ackbij1lem16 10275 ackbij1b 10279 ackbij2 10283 sornom 10318 infpssrlem4 10347 infpssrlem5 10348 fin23lem26 10366 fin23lem23 10367 isf32lem2 10395 isf32lem3 10396 isf32lem4 10397 domtriomlem 10483 axdc3lem2 10492 axdc3lem4 10494 canthp1lem2 10694 elni2 10918 piord 10921 addnidpi 10942 indpi 10948 om2uzf1oi 13995 fzennn 14010 hashp1i 14443 om2noseqf1o 28308 bnj529 34756 bnj1098 34798 bnj570 34920 bnj594 34927 bnj580 34928 bnj967 34960 bnj1001 34974 bnj1053 34991 bnj1071 34992 nnuni 35728 hfun 36180 finminlem 36320 finxpsuclem 37399 finxpsuc 37400 wepwso 43060 dflim5 43347 |
| Copyright terms: Public domain | W3C validator |