![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnord | Structured version Visualization version GIF version |
Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
Ref | Expression |
---|---|
nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7404 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | eloni 6041 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 Ord word 6030 Oncon0 6031 ωcom 7398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pr 5187 ax-un 7281 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3684 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-br 4931 df-opab 4993 df-tr 5032 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-om 7399 |
This theorem is referenced by: nnlim 7411 nnsuc 7415 nnaordi 8047 nnaord 8048 nnaword 8056 nnmord 8061 nnmwordi 8064 nnawordex 8066 omsmo 8083 phplem1 8494 phplem2 8495 phplem3 8496 phplem4 8497 php 8499 php4 8502 nndomo 8509 ominf 8527 isinf 8528 pssnn 8533 dif1en 8548 unblem1 8567 isfinite2 8573 unfilem1 8579 inf3lem5 8891 inf3lem6 8892 cantnfp1lem2 8938 cantnfp1lem3 8939 dif1card 9232 pwsdompw 9426 ackbij1lem5 9446 ackbij1lem14 9455 ackbij1lem16 9457 ackbij1b 9461 ackbij2 9465 sornom 9499 infpssrlem4 9528 infpssrlem5 9529 fin23lem26 9547 fin23lem23 9548 isf32lem2 9576 isf32lem3 9577 isf32lem4 9578 domtriomlem 9664 axdc3lem2 9673 axdc3lem4 9675 canthp1lem2 9875 elni2 10099 piord 10102 addnidpi 10123 indpi 10129 om2uzf1oi 13139 fzennn 13154 hashp1i 13580 bnj529 31660 bnj1098 31703 bnj570 31824 bnj594 31831 bnj580 31832 bnj967 31864 bnj1001 31877 bnj1053 31893 bnj1071 31894 hfun 33160 finminlem 33187 finxpsuclem 34119 finxpsuc 34120 wepwso 39039 |
Copyright terms: Public domain | W3C validator |