| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnord | Structured version Visualization version GIF version | ||
| Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
| Ref | Expression |
|---|---|
| nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7828 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | eloni 6330 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ord word 6319 Oncon0 6320 ωcom 7822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3403 df-v 3446 df-ss 3928 df-uni 4868 df-tr 5210 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-om 7823 |
| This theorem is referenced by: nnlim 7836 nnsuc 7840 omsucne 7841 omun 7844 nnaordi 8559 nnaord 8560 nnaword 8568 nnmord 8573 nnmwordi 8576 nnawordex 8578 nnaordex2 8580 omsmo 8599 eldifsucnn 8605 enrefnn 8995 dif1enlemOLD 9098 pssnn 9109 unfi 9112 phplem2 9146 php 9148 php4 9151 nndomog 9154 onomeneq 9155 ominf 9181 ominfOLD 9182 isinf 9183 isinfOLD 9184 dif1ennnALT 9198 findcard3 9205 unblem1 9215 isfinite2 9221 unfilem1 9230 inf3lem5 9563 inf3lem6 9564 cantnfp1lem2 9610 cantnfp1lem3 9611 ttrcltr 9647 ttrclss 9651 dmttrcl 9652 rnttrcl 9653 ttrclselem2 9657 dif1card 9941 nnadju 10129 pwsdompw 10134 ackbij1lem5 10154 ackbij1lem14 10163 ackbij1lem16 10165 ackbij1b 10169 ackbij2 10173 sornom 10208 infpssrlem4 10237 infpssrlem5 10238 fin23lem26 10256 fin23lem23 10257 isf32lem2 10285 isf32lem3 10286 isf32lem4 10287 domtriomlem 10373 axdc3lem2 10382 axdc3lem4 10384 canthp1lem2 10584 elni2 10808 piord 10811 addnidpi 10832 indpi 10838 om2uzf1oi 13896 fzennn 13911 hashp1i 14346 om2noseqf1o 28236 bnj529 34725 bnj1098 34767 bnj570 34889 bnj594 34896 bnj580 34897 bnj967 34929 bnj1001 34943 bnj1053 34960 bnj1071 34961 nnuni 35708 hfun 36160 finminlem 36300 finxpsuclem 37379 finxpsuc 37380 wepwso 43026 dflim5 43312 |
| Copyright terms: Public domain | W3C validator |