Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnord | Structured version Visualization version GIF version |
Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
Ref | Expression |
---|---|
nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7591 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | eloni 6184 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 Ord word 6173 Oncon0 6174 ωcom 7585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rab 3079 df-v 3411 df-in 3867 df-ss 3877 df-uni 4802 df-tr 5143 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-ord 6177 df-on 6178 df-om 7586 |
This theorem is referenced by: nnlim 7598 nnsuc 7602 omsucne 7603 nnaordi 8260 nnaord 8261 nnaword 8269 nnmord 8274 nnmwordi 8277 nnawordex 8279 omsmo 8297 enrefnn 8630 phplem1 8731 phplem2 8732 phplem3 8733 phplem4 8734 php 8736 php4 8739 nndomog 8743 dif1enlem 8744 pssnn 8751 unfi 8754 ominf 8781 isinf 8782 pssnnOLD 8787 dif1enOLD 8800 unblem1 8816 isfinite2 8822 unfilem1 8828 inf3lem5 9141 inf3lem6 9142 cantnfp1lem2 9188 cantnfp1lem3 9189 dif1card 9483 nnadju 9670 pwsdompw 9677 ackbij1lem5 9697 ackbij1lem14 9706 ackbij1lem16 9708 ackbij1b 9712 ackbij2 9716 sornom 9750 infpssrlem4 9779 infpssrlem5 9780 fin23lem26 9798 fin23lem23 9799 isf32lem2 9827 isf32lem3 9828 isf32lem4 9829 domtriomlem 9915 axdc3lem2 9924 axdc3lem4 9926 canthp1lem2 10126 elni2 10350 piord 10353 addnidpi 10374 indpi 10380 om2uzf1oi 13383 fzennn 13398 hashp1i 13827 bnj529 32252 bnj1098 32295 bnj570 32417 bnj594 32424 bnj580 32425 bnj967 32457 bnj1001 32471 bnj1053 32488 bnj1071 32489 hfun 34063 finminlem 34090 finxpsuclem 35128 finxpsuc 35129 wepwso 40395 |
Copyright terms: Public domain | W3C validator |