![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnord | Structured version Visualization version GIF version |
Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
Ref | Expression |
---|---|
nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7893 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | eloni 6396 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Ord word 6385 Oncon0 6386 ωcom 7887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-ss 3980 df-uni 4913 df-tr 5266 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-om 7888 |
This theorem is referenced by: nnlim 7901 nnsuc 7905 omsucne 7906 omun 7910 nnaordi 8655 nnaord 8656 nnaword 8664 nnmord 8669 nnmwordi 8672 nnawordex 8674 nnaordex2 8676 omsmo 8695 eldifsucnn 8701 enrefnn 9086 dif1enlemOLD 9196 pssnn 9207 unfi 9210 phplem2 9243 php 9245 php4 9248 nndomog 9251 phplem1OLD 9252 phplem2OLD 9253 phplem3OLD 9254 phplem4OLD 9255 phpOLD 9257 nndomogOLD 9261 onomeneq 9263 ominf 9292 ominfOLD 9293 isinf 9294 isinfOLD 9295 dif1ennnALT 9309 findcard3 9316 unblem1 9326 isfinite2 9332 unfilem1 9341 inf3lem5 9670 inf3lem6 9671 cantnfp1lem2 9717 cantnfp1lem3 9718 ttrcltr 9754 ttrclss 9758 dmttrcl 9759 rnttrcl 9760 ttrclselem2 9764 dif1card 10048 nnadju 10236 pwsdompw 10241 ackbij1lem5 10261 ackbij1lem14 10270 ackbij1lem16 10272 ackbij1b 10276 ackbij2 10280 sornom 10315 infpssrlem4 10344 infpssrlem5 10345 fin23lem26 10363 fin23lem23 10364 isf32lem2 10392 isf32lem3 10393 isf32lem4 10394 domtriomlem 10480 axdc3lem2 10489 axdc3lem4 10491 canthp1lem2 10691 elni2 10915 piord 10918 addnidpi 10939 indpi 10945 om2uzf1oi 13991 fzennn 14006 hashp1i 14439 om2noseqf1o 28322 bnj529 34734 bnj1098 34776 bnj570 34898 bnj594 34905 bnj580 34906 bnj967 34938 bnj1001 34952 bnj1053 34969 bnj1071 34970 nnuni 35707 hfun 36160 finminlem 36301 finxpsuclem 37380 finxpsuc 37381 wepwso 43032 dflim5 43319 |
Copyright terms: Public domain | W3C validator |