| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnord | Structured version Visualization version GIF version | ||
| Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
| Ref | Expression |
|---|---|
| nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7802 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | eloni 6316 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Ord word 6305 Oncon0 6306 ωcom 7796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-ss 3914 df-uni 4857 df-tr 5197 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-om 7797 |
| This theorem is referenced by: nnlim 7810 nnsuc 7814 omsucne 7815 omun 7818 nnaordi 8533 nnaord 8534 nnaword 8542 nnmord 8547 nnmwordi 8550 nnawordex 8552 nnaordex2 8554 omsmo 8573 eldifsucnn 8579 enrefnn 8968 pssnn 9078 unfi 9080 phplem2 9114 php 9116 php4 9119 nndomog 9122 onomeneq 9123 ominf 9148 isinf 9149 dif1ennnALT 9161 findcard3 9167 unblem1 9176 isfinite2 9182 unfilem1 9189 inf3lem5 9522 inf3lem6 9523 cantnfp1lem2 9569 cantnfp1lem3 9570 ttrcltr 9606 ttrclss 9610 dmttrcl 9611 rnttrcl 9612 ttrclselem2 9616 dif1card 9901 nnadju 10089 pwsdompw 10094 ackbij1lem5 10114 ackbij1lem14 10123 ackbij1lem16 10125 ackbij1b 10129 ackbij2 10133 sornom 10168 infpssrlem4 10197 infpssrlem5 10198 fin23lem26 10216 fin23lem23 10217 isf32lem2 10245 isf32lem3 10246 isf32lem4 10247 domtriomlem 10333 axdc3lem2 10342 axdc3lem4 10344 canthp1lem2 10544 elni2 10768 piord 10771 addnidpi 10792 indpi 10798 om2uzf1oi 13860 fzennn 13875 hashp1i 14310 om2noseqf1o 28231 bnj529 34753 bnj1098 34795 bnj570 34917 bnj594 34924 bnj580 34925 bnj967 34957 bnj1001 34971 bnj1053 34988 bnj1071 34989 fineqvnttrclselem2 35142 fineqvnttrclselem3 35143 nnuni 35771 hfun 36222 finminlem 36362 finxpsuclem 37441 finxpsuc 37442 wepwso 43135 dflim5 43421 |
| Copyright terms: Public domain | W3C validator |