![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnord | Structured version Visualization version GIF version |
Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
Ref | Expression |
---|---|
nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7909 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | eloni 6405 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Ord word 6394 Oncon0 6395 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-om 7904 |
This theorem is referenced by: nnlim 7917 nnsuc 7921 omsucne 7922 omun 7926 nnaordi 8674 nnaord 8675 nnaword 8683 nnmord 8688 nnmwordi 8691 nnawordex 8693 nnaordex2 8695 omsmo 8714 eldifsucnn 8720 enrefnn 9113 dif1enlemOLD 9223 pssnn 9234 unfi 9238 phplem2 9271 php 9273 php4 9276 nndomog 9279 phplem1OLD 9280 phplem2OLD 9281 phplem3OLD 9282 phplem4OLD 9283 phpOLD 9285 nndomogOLD 9289 onomeneq 9291 ominf 9321 ominfOLD 9322 isinf 9323 isinfOLD 9324 dif1ennnALT 9339 findcard3 9346 unblem1 9356 isfinite2 9362 unfilem1 9371 inf3lem5 9701 inf3lem6 9702 cantnfp1lem2 9748 cantnfp1lem3 9749 ttrcltr 9785 ttrclss 9789 dmttrcl 9790 rnttrcl 9791 ttrclselem2 9795 dif1card 10079 nnadju 10267 pwsdompw 10272 ackbij1lem5 10292 ackbij1lem14 10301 ackbij1lem16 10303 ackbij1b 10307 ackbij2 10311 sornom 10346 infpssrlem4 10375 infpssrlem5 10376 fin23lem26 10394 fin23lem23 10395 isf32lem2 10423 isf32lem3 10424 isf32lem4 10425 domtriomlem 10511 axdc3lem2 10520 axdc3lem4 10522 canthp1lem2 10722 elni2 10946 piord 10949 addnidpi 10970 indpi 10976 om2uzf1oi 14004 fzennn 14019 hashp1i 14452 om2noseqf1o 28325 bnj529 34717 bnj1098 34759 bnj570 34881 bnj594 34888 bnj580 34889 bnj967 34921 bnj1001 34935 bnj1053 34952 bnj1071 34953 nnuni 35689 hfun 36142 finminlem 36284 finxpsuclem 37363 finxpsuc 37364 wepwso 43000 dflim5 43291 |
Copyright terms: Public domain | W3C validator |