| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnord | Structured version Visualization version GIF version | ||
| Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
| Ref | Expression |
|---|---|
| nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7848 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | eloni 6342 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ord word 6331 Oncon0 6332 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-ss 3931 df-uni 4872 df-tr 5215 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-om 7843 |
| This theorem is referenced by: nnlim 7856 nnsuc 7860 omsucne 7861 omun 7864 nnaordi 8582 nnaord 8583 nnaword 8591 nnmord 8596 nnmwordi 8599 nnawordex 8601 nnaordex2 8603 omsmo 8622 eldifsucnn 8628 enrefnn 9018 dif1enlemOLD 9121 pssnn 9132 unfi 9135 phplem2 9169 php 9171 php4 9174 nndomog 9177 onomeneq 9178 ominf 9205 ominfOLD 9206 isinf 9207 isinfOLD 9208 dif1ennnALT 9222 findcard3 9229 unblem1 9239 isfinite2 9245 unfilem1 9254 inf3lem5 9585 inf3lem6 9586 cantnfp1lem2 9632 cantnfp1lem3 9633 ttrcltr 9669 ttrclss 9673 dmttrcl 9674 rnttrcl 9675 ttrclselem2 9679 dif1card 9963 nnadju 10151 pwsdompw 10156 ackbij1lem5 10176 ackbij1lem14 10185 ackbij1lem16 10187 ackbij1b 10191 ackbij2 10195 sornom 10230 infpssrlem4 10259 infpssrlem5 10260 fin23lem26 10278 fin23lem23 10279 isf32lem2 10307 isf32lem3 10308 isf32lem4 10309 domtriomlem 10395 axdc3lem2 10404 axdc3lem4 10406 canthp1lem2 10606 elni2 10830 piord 10833 addnidpi 10854 indpi 10860 om2uzf1oi 13918 fzennn 13933 hashp1i 14368 om2noseqf1o 28195 bnj529 34731 bnj1098 34773 bnj570 34895 bnj594 34902 bnj580 34903 bnj967 34935 bnj1001 34949 bnj1053 34966 bnj1071 34967 nnuni 35714 hfun 36166 finminlem 36306 finxpsuclem 37385 finxpsuc 37386 wepwso 43032 dflim5 43318 |
| Copyright terms: Public domain | W3C validator |