Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnord | Structured version Visualization version GIF version |
Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
Ref | Expression |
---|---|
nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7718 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | eloni 6276 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Ord word 6265 Oncon0 6266 ωcom 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-tr 5192 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-om 7713 |
This theorem is referenced by: nnlim 7726 nnsuc 7730 omsucne 7731 nnaordi 8449 nnaord 8450 nnaword 8458 nnmord 8463 nnmwordi 8466 nnawordex 8468 omsmo 8488 eldifsucnn 8494 enrefnn 8837 dif1enlem 8943 pssnn 8951 unfi 8955 phplem2 8991 php 8993 php4 8996 nndomog 8999 phplem1OLD 9000 phplem2OLD 9001 phplem3OLD 9002 phplem4OLD 9003 phpOLD 9005 nndomogOLD 9009 onomeneq 9011 ominf 9035 isinf 9036 pssnnOLD 9040 dif1enALT 9050 unblem1 9066 isfinite2 9072 unfilem1 9078 inf3lem5 9390 inf3lem6 9391 cantnfp1lem2 9437 cantnfp1lem3 9438 ttrcltr 9474 ttrclss 9478 dmttrcl 9479 rnttrcl 9480 ttrclselem2 9484 dif1card 9766 nnadju 9953 pwsdompw 9960 ackbij1lem5 9980 ackbij1lem14 9989 ackbij1lem16 9991 ackbij1b 9995 ackbij2 9999 sornom 10033 infpssrlem4 10062 infpssrlem5 10063 fin23lem26 10081 fin23lem23 10082 isf32lem2 10110 isf32lem3 10111 isf32lem4 10112 domtriomlem 10198 axdc3lem2 10207 axdc3lem4 10209 canthp1lem2 10409 elni2 10633 piord 10636 addnidpi 10657 indpi 10663 om2uzf1oi 13673 fzennn 13688 hashp1i 14118 bnj529 32721 bnj1098 32763 bnj570 32885 bnj594 32892 bnj580 32893 bnj967 32925 bnj1001 32939 bnj1053 32956 bnj1071 32957 nnuni 33692 hfun 34480 finminlem 34507 finxpsuclem 35568 finxpsuc 35569 wepwso 40868 |
Copyright terms: Public domain | W3C validator |