| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnord | Structured version Visualization version GIF version | ||
| Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
| Ref | Expression |
|---|---|
| nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7805 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | eloni 6317 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ord word 6306 Oncon0 6307 ωcom 7799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3395 df-v 3438 df-ss 3920 df-uni 4859 df-tr 5200 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-om 7800 |
| This theorem is referenced by: nnlim 7813 nnsuc 7817 omsucne 7818 omun 7821 nnaordi 8536 nnaord 8537 nnaword 8545 nnmord 8550 nnmwordi 8553 nnawordex 8555 nnaordex2 8557 omsmo 8576 eldifsucnn 8582 enrefnn 8972 pssnn 9082 unfi 9085 phplem2 9119 php 9121 php4 9124 nndomog 9127 onomeneq 9128 ominf 9153 isinf 9154 dif1ennnALT 9166 findcard3 9172 unblem1 9181 isfinite2 9187 unfilem1 9194 inf3lem5 9528 inf3lem6 9529 cantnfp1lem2 9575 cantnfp1lem3 9576 ttrcltr 9612 ttrclss 9616 dmttrcl 9617 rnttrcl 9618 ttrclselem2 9622 dif1card 9904 nnadju 10092 pwsdompw 10097 ackbij1lem5 10117 ackbij1lem14 10126 ackbij1lem16 10128 ackbij1b 10132 ackbij2 10136 sornom 10171 infpssrlem4 10200 infpssrlem5 10201 fin23lem26 10219 fin23lem23 10220 isf32lem2 10248 isf32lem3 10249 isf32lem4 10250 domtriomlem 10336 axdc3lem2 10345 axdc3lem4 10347 canthp1lem2 10547 elni2 10771 piord 10774 addnidpi 10795 indpi 10801 om2uzf1oi 13860 fzennn 13875 hashp1i 14310 om2noseqf1o 28202 bnj529 34724 bnj1098 34766 bnj570 34888 bnj594 34895 bnj580 34896 bnj967 34928 bnj1001 34942 bnj1053 34959 bnj1071 34960 fineqvnttrclselem2 35091 fineqvnttrclselem3 35092 nnuni 35720 hfun 36172 finminlem 36312 finxpsuclem 37391 finxpsuc 37392 wepwso 43036 dflim5 43322 |
| Copyright terms: Public domain | W3C validator |