Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnord | Structured version Visualization version GIF version |
Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
Ref | Expression |
---|---|
nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7693 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | eloni 6261 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Ord word 6250 Oncon0 6251 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-om 7688 |
This theorem is referenced by: nnlim 7701 nnsuc 7705 omsucne 7706 nnaordi 8411 nnaord 8412 nnaword 8420 nnmord 8425 nnmwordi 8428 nnawordex 8430 omsmo 8448 enrefnn 8791 phplem1 8892 phplem2 8893 phplem3 8894 phplem4 8895 php 8897 php4 8900 nndomog 8904 dif1enlem 8905 pssnn 8913 unfi 8917 ominf 8964 isinf 8965 pssnnOLD 8969 dif1enALT 8980 unblem1 8996 isfinite2 9002 unfilem1 9008 inf3lem5 9320 inf3lem6 9321 cantnfp1lem2 9367 cantnfp1lem3 9368 dif1card 9697 nnadju 9884 pwsdompw 9891 ackbij1lem5 9911 ackbij1lem14 9920 ackbij1lem16 9922 ackbij1b 9926 ackbij2 9930 sornom 9964 infpssrlem4 9993 infpssrlem5 9994 fin23lem26 10012 fin23lem23 10013 isf32lem2 10041 isf32lem3 10042 isf32lem4 10043 domtriomlem 10129 axdc3lem2 10138 axdc3lem4 10140 canthp1lem2 10340 elni2 10564 piord 10567 addnidpi 10588 indpi 10594 om2uzf1oi 13601 fzennn 13616 hashp1i 14046 bnj529 32621 bnj1098 32663 bnj570 32785 bnj594 32792 bnj580 32793 bnj967 32825 bnj1001 32839 bnj1053 32856 bnj1071 32857 nnuni 33595 eldifsucnn 33597 ttrcltr 33702 ttrclss 33706 dmttrcl 33707 rnttrcl 33708 ttrclselem2 33712 hfun 34407 finminlem 34434 finxpsuclem 35495 finxpsuc 35496 wepwso 40784 |
Copyright terms: Public domain | W3C validator |