| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnord | Structured version Visualization version GIF version | ||
| Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
| Ref | Expression |
|---|---|
| nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7828 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | eloni 6330 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ord word 6319 Oncon0 6320 ωcom 7822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3403 df-v 3446 df-ss 3928 df-uni 4868 df-tr 5210 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-om 7823 |
| This theorem is referenced by: nnlim 7836 nnsuc 7840 omsucne 7841 omun 7844 nnaordi 8559 nnaord 8560 nnaword 8568 nnmord 8573 nnmwordi 8576 nnawordex 8578 nnaordex2 8580 omsmo 8599 eldifsucnn 8605 enrefnn 8995 dif1enlemOLD 9098 pssnn 9109 unfi 9112 phplem2 9146 php 9148 php4 9151 nndomog 9154 onomeneq 9155 ominf 9181 ominfOLD 9182 isinf 9183 isinfOLD 9184 dif1ennnALT 9198 findcard3 9205 unblem1 9215 isfinite2 9221 unfilem1 9230 inf3lem5 9561 inf3lem6 9562 cantnfp1lem2 9608 cantnfp1lem3 9609 ttrcltr 9645 ttrclss 9649 dmttrcl 9650 rnttrcl 9651 ttrclselem2 9655 dif1card 9939 nnadju 10127 pwsdompw 10132 ackbij1lem5 10152 ackbij1lem14 10161 ackbij1lem16 10163 ackbij1b 10167 ackbij2 10171 sornom 10206 infpssrlem4 10235 infpssrlem5 10236 fin23lem26 10254 fin23lem23 10255 isf32lem2 10283 isf32lem3 10284 isf32lem4 10285 domtriomlem 10371 axdc3lem2 10380 axdc3lem4 10382 canthp1lem2 10582 elni2 10806 piord 10809 addnidpi 10830 indpi 10836 om2uzf1oi 13894 fzennn 13909 hashp1i 14344 om2noseqf1o 28235 bnj529 34724 bnj1098 34766 bnj570 34888 bnj594 34895 bnj580 34896 bnj967 34928 bnj1001 34942 bnj1053 34959 bnj1071 34960 nnuni 35707 hfun 36159 finminlem 36299 finxpsuclem 37378 finxpsuc 37379 wepwso 43025 dflim5 43311 |
| Copyright terms: Public domain | W3C validator |