| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnord | Structured version Visualization version GIF version | ||
| Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
| Ref | Expression |
|---|---|
| nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7872 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | eloni 6367 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ord word 6356 Oncon0 6357 ωcom 7866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-ss 3948 df-uni 4889 df-tr 5235 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-om 7867 |
| This theorem is referenced by: nnlim 7880 nnsuc 7884 omsucne 7885 omun 7888 nnaordi 8635 nnaord 8636 nnaword 8644 nnmord 8649 nnmwordi 8652 nnawordex 8654 nnaordex2 8656 omsmo 8675 eldifsucnn 8681 enrefnn 9066 dif1enlemOLD 9176 pssnn 9187 unfi 9190 phplem2 9224 php 9226 php4 9229 nndomog 9232 phplem1OLD 9233 phplem2OLD 9234 phplem3OLD 9235 phpOLD 9236 nndomogOLD 9240 onomeneq 9242 ominf 9271 ominfOLD 9272 isinf 9273 isinfOLD 9274 dif1ennnALT 9288 findcard3 9295 unblem1 9305 isfinite2 9311 unfilem1 9320 inf3lem5 9651 inf3lem6 9652 cantnfp1lem2 9698 cantnfp1lem3 9699 ttrcltr 9735 ttrclss 9739 dmttrcl 9740 rnttrcl 9741 ttrclselem2 9745 dif1card 10029 nnadju 10217 pwsdompw 10222 ackbij1lem5 10242 ackbij1lem14 10251 ackbij1lem16 10253 ackbij1b 10257 ackbij2 10261 sornom 10296 infpssrlem4 10325 infpssrlem5 10326 fin23lem26 10344 fin23lem23 10345 isf32lem2 10373 isf32lem3 10374 isf32lem4 10375 domtriomlem 10461 axdc3lem2 10470 axdc3lem4 10472 canthp1lem2 10672 elni2 10896 piord 10899 addnidpi 10920 indpi 10926 om2uzf1oi 13976 fzennn 13991 hashp1i 14426 om2noseqf1o 28252 bnj529 34777 bnj1098 34819 bnj570 34941 bnj594 34948 bnj580 34949 bnj967 34981 bnj1001 34995 bnj1053 35012 bnj1071 35013 nnuni 35749 hfun 36201 finminlem 36341 finxpsuclem 37420 finxpsuc 37421 wepwso 43042 dflim5 43328 |
| Copyright terms: Public domain | W3C validator |