Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthi Structured version   Visualization version   GIF version

Theorem omopthi 8004
 Description: An ordered pair theorem for ω. Theorem 17.3 of [Quine] p. 124. This proof is adapted from nn0opthi 13350. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopth.1 𝐴 ∈ ω
omopth.2 𝐵 ∈ ω
omopth.3 𝐶 ∈ ω
omopth.4 𝐷 ∈ ω
Assertion
Ref Expression
omopthi ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem omopthi
StepHypRef Expression
1 omopth.1 . . . . . . . . . . . . 13 𝐴 ∈ ω
2 omopth.2 . . . . . . . . . . . . 13 𝐵 ∈ ω
31, 2nnacli 7961 . . . . . . . . . . . 12 (𝐴 +o 𝐵) ∈ ω
43nnoni 7333 . . . . . . . . . . 11 (𝐴 +o 𝐵) ∈ On
54onordi 6067 . . . . . . . . . 10 Ord (𝐴 +o 𝐵)
6 omopth.3 . . . . . . . . . . . . 13 𝐶 ∈ ω
7 omopth.4 . . . . . . . . . . . . 13 𝐷 ∈ ω
86, 7nnacli 7961 . . . . . . . . . . . 12 (𝐶 +o 𝐷) ∈ ω
98nnoni 7333 . . . . . . . . . . 11 (𝐶 +o 𝐷) ∈ On
109onordi 6067 . . . . . . . . . 10 Ord (𝐶 +o 𝐷)
11 ordtri3 5999 . . . . . . . . . 10 ((Ord (𝐴 +o 𝐵) ∧ Ord (𝐶 +o 𝐷)) → ((𝐴 +o 𝐵) = (𝐶 +o 𝐷) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) ∨ (𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵))))
125, 10, 11mp2an 685 . . . . . . . . 9 ((𝐴 +o 𝐵) = (𝐶 +o 𝐷) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) ∨ (𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵)))
1312con2bii 349 . . . . . . . 8 (((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) ∨ (𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵)) ↔ ¬ (𝐴 +o 𝐵) = (𝐶 +o 𝐷))
141, 2, 8, 7omopthlem2 8003 . . . . . . . . . 10 ((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) → ¬ (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵))
15 eqcom 2832 . . . . . . . . . 10 ((((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ↔ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
1614, 15sylnib 320 . . . . . . . . 9 ((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
176, 7, 3, 2omopthlem2 8003 . . . . . . . . 9 ((𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
1816, 17jaoi 890 . . . . . . . 8 (((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) ∨ (𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵)) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
1913, 18sylbir 227 . . . . . . 7 (¬ (𝐴 +o 𝐵) = (𝐶 +o 𝐷) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
2019con4i 114 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐴 +o 𝐵) = (𝐶 +o 𝐷))
21 id 22 . . . . . . . . 9 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
2220, 20oveq12d 6923 . . . . . . . . . 10 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) = ((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)))
2322oveq1d 6920 . . . . . . . . 9 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐷) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
2421, 23eqtr4d 2864 . . . . . . . 8 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐷))
253, 3nnmcli 7962 . . . . . . . . 9 ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω
26 nnacan 7975 . . . . . . . . 9 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐷 ∈ ω) → ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐷) ↔ 𝐵 = 𝐷))
2725, 2, 7, 26mp3an 1591 . . . . . . . 8 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐷) ↔ 𝐵 = 𝐷)
2824, 27sylib 210 . . . . . . 7 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → 𝐵 = 𝐷)
2928oveq2d 6921 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐶 +o 𝐵) = (𝐶 +o 𝐷))
3020, 29eqtr4d 2864 . . . . 5 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐴 +o 𝐵) = (𝐶 +o 𝐵))
31 nnacom 7964 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 +o 𝐴) = (𝐴 +o 𝐵))
322, 1, 31mp2an 685 . . . . 5 (𝐵 +o 𝐴) = (𝐴 +o 𝐵)
33 nnacom 7964 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 +o 𝐶) = (𝐶 +o 𝐵))
342, 6, 33mp2an 685 . . . . 5 (𝐵 +o 𝐶) = (𝐶 +o 𝐵)
3530, 32, 343eqtr4g 2886 . . . 4 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐵 +o 𝐴) = (𝐵 +o 𝐶))
36 nnacan 7975 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵 +o 𝐴) = (𝐵 +o 𝐶) ↔ 𝐴 = 𝐶))
372, 1, 6, 36mp3an 1591 . . . 4 ((𝐵 +o 𝐴) = (𝐵 +o 𝐶) ↔ 𝐴 = 𝐶)
3835, 37sylib 210 . . 3 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → 𝐴 = 𝐶)
3938, 28jca 509 . 2 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
40 oveq12 6914 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 +o 𝐵) = (𝐶 +o 𝐷))
4140, 40oveq12d 6923 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) = ((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)))
42 simpr 479 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
4341, 42oveq12d 6923 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
4439, 43impbii 201 1 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 198   ∧ wa 386   ∨ wo 880   = wceq 1658   ∈ wcel 2166  Ord word 5962  (class class class)co 6905  ωcom 7326   +o coa 7823   ·o comu 7824 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-omul 7831 This theorem is referenced by:  omopth  8005
 Copyright terms: Public domain W3C validator