MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthi Structured version   Visualization version   GIF version

Theorem omopthi 8267
Description: An ordered pair theorem for ω. Theorem 17.3 of [Quine] p. 124. This proof is adapted from nn0opthi 13626. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopth.1 𝐴 ∈ ω
omopth.2 𝐵 ∈ ω
omopth.3 𝐶 ∈ ω
omopth.4 𝐷 ∈ ω
Assertion
Ref Expression
omopthi ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem omopthi
StepHypRef Expression
1 omopth.1 . . . . . . . . . . . . 13 𝐴 ∈ ω
2 omopth.2 . . . . . . . . . . . . 13 𝐵 ∈ ω
31, 2nnacli 8223 . . . . . . . . . . . 12 (𝐴 +o 𝐵) ∈ ω
43nnoni 7567 . . . . . . . . . . 11 (𝐴 +o 𝐵) ∈ On
54onordi 6263 . . . . . . . . . 10 Ord (𝐴 +o 𝐵)
6 omopth.3 . . . . . . . . . . . . 13 𝐶 ∈ ω
7 omopth.4 . . . . . . . . . . . . 13 𝐷 ∈ ω
86, 7nnacli 8223 . . . . . . . . . . . 12 (𝐶 +o 𝐷) ∈ ω
98nnoni 7567 . . . . . . . . . . 11 (𝐶 +o 𝐷) ∈ On
109onordi 6263 . . . . . . . . . 10 Ord (𝐶 +o 𝐷)
11 ordtri3 6195 . . . . . . . . . 10 ((Ord (𝐴 +o 𝐵) ∧ Ord (𝐶 +o 𝐷)) → ((𝐴 +o 𝐵) = (𝐶 +o 𝐷) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) ∨ (𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵))))
125, 10, 11mp2an 691 . . . . . . . . 9 ((𝐴 +o 𝐵) = (𝐶 +o 𝐷) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) ∨ (𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵)))
1312con2bii 361 . . . . . . . 8 (((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) ∨ (𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵)) ↔ ¬ (𝐴 +o 𝐵) = (𝐶 +o 𝐷))
141, 2, 8, 7omopthlem2 8266 . . . . . . . . . 10 ((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) → ¬ (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵))
15 eqcom 2805 . . . . . . . . . 10 ((((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ↔ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
1614, 15sylnib 331 . . . . . . . . 9 ((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
176, 7, 3, 2omopthlem2 8266 . . . . . . . . 9 ((𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
1816, 17jaoi 854 . . . . . . . 8 (((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) ∨ (𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵)) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
1913, 18sylbir 238 . . . . . . 7 (¬ (𝐴 +o 𝐵) = (𝐶 +o 𝐷) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
2019con4i 114 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐴 +o 𝐵) = (𝐶 +o 𝐷))
21 id 22 . . . . . . . . 9 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
2220, 20oveq12d 7153 . . . . . . . . . 10 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) = ((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)))
2322oveq1d 7150 . . . . . . . . 9 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐷) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
2421, 23eqtr4d 2836 . . . . . . . 8 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐷))
253, 3nnmcli 8224 . . . . . . . . 9 ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω
26 nnacan 8237 . . . . . . . . 9 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐷 ∈ ω) → ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐷) ↔ 𝐵 = 𝐷))
2725, 2, 7, 26mp3an 1458 . . . . . . . 8 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐷) ↔ 𝐵 = 𝐷)
2824, 27sylib 221 . . . . . . 7 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → 𝐵 = 𝐷)
2928oveq2d 7151 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐶 +o 𝐵) = (𝐶 +o 𝐷))
3020, 29eqtr4d 2836 . . . . 5 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐴 +o 𝐵) = (𝐶 +o 𝐵))
31 nnacom 8226 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 +o 𝐴) = (𝐴 +o 𝐵))
322, 1, 31mp2an 691 . . . . 5 (𝐵 +o 𝐴) = (𝐴 +o 𝐵)
33 nnacom 8226 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 +o 𝐶) = (𝐶 +o 𝐵))
342, 6, 33mp2an 691 . . . . 5 (𝐵 +o 𝐶) = (𝐶 +o 𝐵)
3530, 32, 343eqtr4g 2858 . . . 4 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐵 +o 𝐴) = (𝐵 +o 𝐶))
36 nnacan 8237 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵 +o 𝐴) = (𝐵 +o 𝐶) ↔ 𝐴 = 𝐶))
372, 1, 6, 36mp3an 1458 . . . 4 ((𝐵 +o 𝐴) = (𝐵 +o 𝐶) ↔ 𝐴 = 𝐶)
3835, 37sylib 221 . . 3 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → 𝐴 = 𝐶)
3938, 28jca 515 . 2 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
40 oveq12 7144 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 +o 𝐵) = (𝐶 +o 𝐷))
4140, 40oveq12d 7153 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) = ((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)))
42 simpr 488 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
4341, 42oveq12d 7153 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
4439, 43impbii 212 1 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  Ord word 6158  (class class class)co 7135  ωcom 7560   +o coa 8082   ·o comu 8083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090
This theorem is referenced by:  omopth  8268
  Copyright terms: Public domain W3C validator