MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthi Structured version   Visualization version   GIF version

Theorem omopthi 8673
Description: An ordered pair theorem for ω. Theorem 17.3 of [Quine] p. 124. This proof is adapted from nn0opthi 14288. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopth.1 𝐴 ∈ ω
omopth.2 𝐵 ∈ ω
omopth.3 𝐶 ∈ ω
omopth.4 𝐷 ∈ ω
Assertion
Ref Expression
omopthi ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem omopthi
StepHypRef Expression
1 omopth.1 . . . . . . . . . . . . 13 𝐴 ∈ ω
2 omopth.2 . . . . . . . . . . . . 13 𝐵 ∈ ω
31, 2nnacli 8626 . . . . . . . . . . . 12 (𝐴 +o 𝐵) ∈ ω
43nnoni 7868 . . . . . . . . . . 11 (𝐴 +o 𝐵) ∈ On
54onordi 6465 . . . . . . . . . 10 Ord (𝐴 +o 𝐵)
6 omopth.3 . . . . . . . . . . . . 13 𝐶 ∈ ω
7 omopth.4 . . . . . . . . . . . . 13 𝐷 ∈ ω
86, 7nnacli 8626 . . . . . . . . . . . 12 (𝐶 +o 𝐷) ∈ ω
98nnoni 7868 . . . . . . . . . . 11 (𝐶 +o 𝐷) ∈ On
109onordi 6465 . . . . . . . . . 10 Ord (𝐶 +o 𝐷)
11 ordtri3 6388 . . . . . . . . . 10 ((Ord (𝐴 +o 𝐵) ∧ Ord (𝐶 +o 𝐷)) → ((𝐴 +o 𝐵) = (𝐶 +o 𝐷) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) ∨ (𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵))))
125, 10, 11mp2an 692 . . . . . . . . 9 ((𝐴 +o 𝐵) = (𝐶 +o 𝐷) ↔ ¬ ((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) ∨ (𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵)))
1312con2bii 357 . . . . . . . 8 (((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) ∨ (𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵)) ↔ ¬ (𝐴 +o 𝐵) = (𝐶 +o 𝐷))
141, 2, 8, 7omopthlem2 8672 . . . . . . . . . 10 ((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) → ¬ (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵))
15 eqcom 2742 . . . . . . . . . 10 ((((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) ↔ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
1614, 15sylnib 328 . . . . . . . . 9 ((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
176, 7, 3, 2omopthlem2 8672 . . . . . . . . 9 ((𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
1816, 17jaoi 857 . . . . . . . 8 (((𝐴 +o 𝐵) ∈ (𝐶 +o 𝐷) ∨ (𝐶 +o 𝐷) ∈ (𝐴 +o 𝐵)) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
1913, 18sylbir 235 . . . . . . 7 (¬ (𝐴 +o 𝐵) = (𝐶 +o 𝐷) → ¬ (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
2019con4i 114 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐴 +o 𝐵) = (𝐶 +o 𝐷))
21 id 22 . . . . . . . . 9 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
2220, 20oveq12d 7423 . . . . . . . . . 10 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) = ((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)))
2322oveq1d 7420 . . . . . . . . 9 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐷) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
2421, 23eqtr4d 2773 . . . . . . . 8 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐷))
253, 3nnmcli 8627 . . . . . . . . 9 ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω
26 nnacan 8640 . . . . . . . . 9 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐷 ∈ ω) → ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐷) ↔ 𝐵 = 𝐷))
2725, 2, 7, 26mp3an 1463 . . . . . . . 8 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐷) ↔ 𝐵 = 𝐷)
2824, 27sylib 218 . . . . . . 7 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → 𝐵 = 𝐷)
2928oveq2d 7421 . . . . . 6 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐶 +o 𝐵) = (𝐶 +o 𝐷))
3020, 29eqtr4d 2773 . . . . 5 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐴 +o 𝐵) = (𝐶 +o 𝐵))
31 nnacom 8629 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 +o 𝐴) = (𝐴 +o 𝐵))
322, 1, 31mp2an 692 . . . . 5 (𝐵 +o 𝐴) = (𝐴 +o 𝐵)
33 nnacom 8629 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 +o 𝐶) = (𝐶 +o 𝐵))
342, 6, 33mp2an 692 . . . . 5 (𝐵 +o 𝐶) = (𝐶 +o 𝐵)
3530, 32, 343eqtr4g 2795 . . . 4 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐵 +o 𝐴) = (𝐵 +o 𝐶))
36 nnacan 8640 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵 +o 𝐴) = (𝐵 +o 𝐶) ↔ 𝐴 = 𝐶))
372, 1, 6, 36mp3an 1463 . . . 4 ((𝐵 +o 𝐴) = (𝐵 +o 𝐶) ↔ 𝐴 = 𝐶)
3835, 37sylib 218 . . 3 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → 𝐴 = 𝐶)
3938, 28jca 511 . 2 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
40 oveq12 7414 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 +o 𝐵) = (𝐶 +o 𝐷))
4140, 40oveq12d 7423 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) = ((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)))
42 simpr 484 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
4341, 42oveq12d 7423 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷))
4439, 43impbii 209 1 ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  Ord word 6351  (class class class)co 7405  ωcom 7861   +o coa 8477   ·o comu 8478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485
This theorem is referenced by:  omopth  8674
  Copyright terms: Public domain W3C validator