Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnon | Structured version Visualization version GIF version |
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
nnon | ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 7716 | . 2 ⊢ ω ⊆ On | |
2 | 1 | sseli 3917 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Oncon0 6266 ωcom 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-om 7713 |
This theorem is referenced by: nnoni 7719 nnord 7720 peano4 7739 findsg 7746 onasuc 8358 onmsuc 8359 nna0 8435 nnm0 8436 nnasuc 8437 nnmsuc 8438 nnesuc 8439 nnecl 8444 nnawordi 8452 nnmword 8464 nnawordex 8468 nnaordex 8469 oaabslem 8477 oaabs 8478 oaabs2 8479 omabslem 8480 omabs 8481 nnneo 8485 nneob 8486 onfin2 9014 nndomo 9016 findcard3 9057 dffi3 9190 card2inf 9314 elom3 9406 cantnfp1lem3 9438 cnfcomlem 9457 cnfcom 9458 cnfcom3 9462 ttrcltr 9474 ttrclselem1 9483 ttrclselem2 9484 finnum 9706 cardnn 9721 nnsdomel 9748 harsucnn 9756 nnadjuALT 9954 ficardun2 9958 ficardun2OLD 9959 ackbij1lem15 9990 ackbij2lem2 9996 ackbij2lem3 9997 ackbij2 9999 fin23lem22 10083 isf32lem5 10113 fin1a2lem4 10159 fin1a2lem9 10164 pwfseqlem3 10416 winainflem 10449 wunr1om 10475 tskr1om 10523 grothomex 10585 pion 10635 om2uzlt2i 13671 bnj168 32709 satfvsuc 33323 satf0suc 33338 sat1el2xp 33341 fmlasuc0 33346 elhf2 34477 findreccl 34642 rdgeqoa 35541 exrecfnlem 35550 finxpreclem4 35565 finxpreclem6 35567 harinf 40856 omssrncard 41147 nna1iscard 41152 |
Copyright terms: Public domain | W3C validator |