Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnon | Structured version Visualization version GIF version |
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
nnon | ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 7691 | . 2 ⊢ ω ⊆ On | |
2 | 1 | sseli 3913 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Oncon0 6251 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-om 7688 |
This theorem is referenced by: nnoni 7694 nnord 7695 peano4 7713 findsg 7720 onasuc 8320 onmsuc 8321 nna0 8397 nnm0 8398 nnasuc 8399 nnmsuc 8400 nnesuc 8401 nnecl 8406 nnawordi 8414 nnmword 8426 nnawordex 8430 nnaordex 8431 oaabslem 8437 oaabs 8438 oaabs2 8439 omabslem 8440 omabs 8441 nnneo 8445 nneob 8446 onfin2 8945 nndomo 8947 findcard3 8987 dffi3 9120 card2inf 9244 elom3 9336 cantnfp1lem3 9368 cnfcomlem 9387 cnfcom 9388 cnfcom3 9392 finnum 9637 cardnn 9652 nnsdomel 9679 harsucnn 9687 nnadjuALT 9885 ficardun2 9889 ficardun2OLD 9890 ackbij1lem15 9921 ackbij2lem2 9927 ackbij2lem3 9928 ackbij2 9930 fin23lem22 10014 isf32lem5 10044 fin1a2lem4 10090 fin1a2lem9 10095 pwfseqlem3 10347 winainflem 10380 wunr1om 10406 tskr1om 10454 grothomex 10516 pion 10566 om2uzlt2i 13599 bnj168 32609 satfvsuc 33223 satf0suc 33238 sat1el2xp 33241 fmlasuc0 33246 ttrcltr 33702 ttrclselem1 33711 ttrclselem2 33712 elhf2 34404 findreccl 34569 rdgeqoa 35468 exrecfnlem 35477 finxpreclem4 35492 finxpreclem6 35494 harinf 40772 |
Copyright terms: Public domain | W3C validator |