![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnon | Structured version Visualization version GIF version |
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
nnon | ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 7891 | . 2 ⊢ ω ⊆ On | |
2 | 1 | sseli 3991 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Oncon0 6386 ωcom 7887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-ss 3980 df-om 7888 |
This theorem is referenced by: nnoni 7894 nnord 7895 peano4 7915 findsg 7920 onasuc 8565 onmsuc 8566 nna0 8641 nnm0 8642 nnasuc 8643 nnmsuc 8644 nnesuc 8645 nnecl 8650 nnawordi 8658 nnmword 8670 nnawordex 8674 nnaordex 8675 oaabslem 8684 oaabs 8685 oaabs2 8686 omabslem 8687 omabs 8688 nnneo 8692 nneob 8693 naddoa 8739 omnaddcl 8740 dif1ennn 9200 findcard2 9203 onfin2 9266 nndomo 9267 findcard3 9316 findcard3OLD 9317 dffi3 9469 card2inf 9593 elom3 9686 cantnfp1lem3 9718 cnfcomlem 9737 cnfcom 9738 cnfcom3 9742 ttrcltr 9754 ttrclselem1 9763 ttrclselem2 9764 finnum 9986 cardnn 10001 nnsdomel 10028 harsucnn 10036 nnadjuALT 10237 ficardun2 10240 ackbij1lem15 10271 ackbij2lem2 10277 ackbij2lem3 10278 ackbij2 10280 fin23lem22 10365 isf32lem5 10395 fin1a2lem4 10441 fin1a2lem9 10446 pwfseqlem3 10698 winainflem 10731 wunr1om 10757 tskr1om 10805 grothomex 10867 pion 10917 om2uzlt2i 13989 madefi 27965 oldfi 27966 precsexlem3 28248 precsexlem4 28249 precsexlem5 28250 om2noseqlt 28320 om2noseqlt2 28321 zs12bday 28439 constrfin 33751 bnj168 34723 satfvsuc 35346 satf0suc 35361 sat1el2xp 35364 fmlasuc0 35369 elhf2 36157 findreccl 36436 rdgeqoa 37353 exrecfnlem 37362 finxpreclem4 37377 finxpreclem6 37379 harinf 43023 onexoegt 43233 oaabsb 43284 nnoeomeqom 43302 cantnfub 43311 dflim5 43319 onmcl 43321 omabs2 43322 tfsconcat0b 43336 naddcnffo 43354 naddonnn 43385 naddwordnexlem0 43386 naddwordnexlem3 43389 oawordex3 43390 naddwordnexlem4 43391 omssrncard 43530 nna1iscard 43535 |
Copyright terms: Public domain | W3C validator |