Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnon | Structured version Visualization version GIF version |
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
nnon | ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 7788 | . 2 ⊢ ω ⊆ On | |
2 | 1 | sseli 3931 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Oncon0 6306 ωcom 7784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3444 df-in 3908 df-ss 3918 df-om 7785 |
This theorem is referenced by: nnoni 7791 nnord 7792 peano4 7811 findsg 7818 onasuc 8433 onmsuc 8434 nna0 8510 nnm0 8511 nnasuc 8512 nnmsuc 8513 nnesuc 8514 nnecl 8519 nnawordi 8527 nnmword 8539 nnawordex 8543 nnaordex 8544 oaabslem 8552 oaabs 8553 oaabs2 8554 omabslem 8555 omabs 8556 nnneo 8560 nneob 8561 dif1ennn 9030 findcard2 9033 onfin2 9100 nndomo 9102 findcard3 9154 findcard3OLD 9155 dffi3 9292 card2inf 9416 elom3 9509 cantnfp1lem3 9541 cnfcomlem 9560 cnfcom 9561 cnfcom3 9565 ttrcltr 9577 ttrclselem1 9586 ttrclselem2 9587 finnum 9809 cardnn 9824 nnsdomel 9851 harsucnn 9859 nnadjuALT 10059 ficardun2 10063 ficardun2OLD 10064 ackbij1lem15 10095 ackbij2lem2 10101 ackbij2lem3 10102 ackbij2 10104 fin23lem22 10188 isf32lem5 10218 fin1a2lem4 10264 fin1a2lem9 10269 pwfseqlem3 10521 winainflem 10554 wunr1om 10580 tskr1om 10628 grothomex 10690 pion 10740 om2uzlt2i 13776 bnj168 33007 satfvsuc 33620 satf0suc 33635 sat1el2xp 33638 fmlasuc0 33643 elhf2 34614 findreccl 34779 rdgeqoa 35695 exrecfnlem 35704 finxpreclem4 35719 finxpreclem6 35721 harinf 41170 dflim5 41367 omabs2 41369 naddcnffo 41382 omssrncard 41521 nna1iscard 41526 |
Copyright terms: Public domain | W3C validator |