![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnon | Structured version Visualization version GIF version |
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
nnon | ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 7907 | . 2 ⊢ ω ⊆ On | |
2 | 1 | sseli 4004 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Oncon0 6395 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-om 7904 |
This theorem is referenced by: nnoni 7910 nnord 7911 peano4 7931 findsg 7937 onasuc 8584 onmsuc 8585 nna0 8660 nnm0 8661 nnasuc 8662 nnmsuc 8663 nnesuc 8664 nnecl 8669 nnawordi 8677 nnmword 8689 nnawordex 8693 nnaordex 8694 oaabslem 8703 oaabs 8704 oaabs2 8705 omabslem 8706 omabs 8707 nnneo 8711 nneob 8712 naddoa 8758 omnaddcl 8759 dif1ennn 9227 findcard2 9230 onfin2 9294 nndomo 9296 findcard3 9346 findcard3OLD 9347 dffi3 9500 card2inf 9624 elom3 9717 cantnfp1lem3 9749 cnfcomlem 9768 cnfcom 9769 cnfcom3 9773 ttrcltr 9785 ttrclselem1 9794 ttrclselem2 9795 finnum 10017 cardnn 10032 nnsdomel 10059 harsucnn 10067 nnadjuALT 10268 ficardun2 10271 ackbij1lem15 10302 ackbij2lem2 10308 ackbij2lem3 10309 ackbij2 10311 fin23lem22 10396 isf32lem5 10426 fin1a2lem4 10472 fin1a2lem9 10477 pwfseqlem3 10729 winainflem 10762 wunr1om 10788 tskr1om 10836 grothomex 10898 pion 10948 om2uzlt2i 14002 madefi 27968 oldfi 27969 precsexlem3 28251 precsexlem4 28252 precsexlem5 28253 om2noseqlt 28323 om2noseqlt2 28324 zs12bday 28442 constrfin 33736 bnj168 34706 satfvsuc 35329 satf0suc 35344 sat1el2xp 35347 fmlasuc0 35352 elhf2 36139 findreccl 36419 rdgeqoa 37336 exrecfnlem 37345 finxpreclem4 37360 finxpreclem6 37362 harinf 42991 onexoegt 43205 oaabsb 43256 nnoeomeqom 43274 cantnfub 43283 dflim5 43291 onmcl 43293 omabs2 43294 tfsconcat0b 43308 naddcnffo 43326 naddonnn 43357 naddwordnexlem0 43358 naddwordnexlem3 43361 oawordex3 43362 naddwordnexlem4 43363 omssrncard 43502 nna1iscard 43507 |
Copyright terms: Public domain | W3C validator |