MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthlem1 Structured version   Visualization version   GIF version

Theorem omopthlem1 8132
Description: Lemma for omopthi 8134. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopthlem1.1 𝐴 ∈ ω
omopthlem1.2 𝐶 ∈ ω
Assertion
Ref Expression
omopthlem1 (𝐴𝐶 → ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶))

Proof of Theorem omopthlem1
StepHypRef Expression
1 omopthlem1.1 . . . . 5 𝐴 ∈ ω
2 peano2 7458 . . . . 5 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
31, 2ax-mp 5 . . . 4 suc 𝐴 ∈ ω
4 omopthlem1.2 . . . 4 𝐶 ∈ ω
5 nnmwordi 8111 . . . 4 ((suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ suc 𝐴 ∈ ω) → (suc 𝐴𝐶 → (suc 𝐴 ·o suc 𝐴) ⊆ (suc 𝐴 ·o 𝐶)))
63, 4, 3, 5mp3an 1453 . . 3 (suc 𝐴𝐶 → (suc 𝐴 ·o suc 𝐴) ⊆ (suc 𝐴 ·o 𝐶))
7 nnmwordri 8112 . . . 4 ((suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐶 ∈ ω) → (suc 𝐴𝐶 → (suc 𝐴 ·o 𝐶) ⊆ (𝐶 ·o 𝐶)))
83, 4, 4, 7mp3an 1453 . . 3 (suc 𝐴𝐶 → (suc 𝐴 ·o 𝐶) ⊆ (𝐶 ·o 𝐶))
96, 8sstrd 3899 . 2 (suc 𝐴𝐶 → (suc 𝐴 ·o suc 𝐴) ⊆ (𝐶 ·o 𝐶))
101nnoni 7443 . . 3 𝐴 ∈ On
114nnoni 7443 . . 3 𝐶 ∈ On
1210, 11onsucssi 7412 . 2 (𝐴𝐶 ↔ suc 𝐴𝐶)
131, 1nnmcli 8091 . . . . . 6 (𝐴 ·o 𝐴) ∈ ω
14 2onn 8116 . . . . . . 7 2o ∈ ω
151, 14nnmcli 8091 . . . . . 6 (𝐴 ·o 2o) ∈ ω
1613, 15nnacli 8090 . . . . 5 ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ ω
1716nnoni 7443 . . . 4 ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ On
184, 4nnmcli 8091 . . . . 5 (𝐶 ·o 𝐶) ∈ ω
1918nnoni 7443 . . . 4 (𝐶 ·o 𝐶) ∈ On
2017, 19onsucssi 7412 . . 3 (((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶) ↔ suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ⊆ (𝐶 ·o 𝐶))
213, 1nnmcli 8091 . . . . . 6 (suc 𝐴 ·o 𝐴) ∈ ω
22 nnasuc 8082 . . . . . 6 (((suc 𝐴 ·o 𝐴) ∈ ω ∧ 𝐴 ∈ ω) → ((suc 𝐴 ·o 𝐴) +o suc 𝐴) = suc ((suc 𝐴 ·o 𝐴) +o 𝐴))
2321, 1, 22mp2an 688 . . . . 5 ((suc 𝐴 ·o 𝐴) +o suc 𝐴) = suc ((suc 𝐴 ·o 𝐴) +o 𝐴)
24 nnmsuc 8083 . . . . . 6 ((suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (suc 𝐴 ·o suc 𝐴) = ((suc 𝐴 ·o 𝐴) +o suc 𝐴))
253, 1, 24mp2an 688 . . . . 5 (suc 𝐴 ·o suc 𝐴) = ((suc 𝐴 ·o 𝐴) +o suc 𝐴)
26 nnaass 8098 . . . . . . . 8 (((𝐴 ·o 𝐴) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝐴) +o 𝐴) +o 𝐴) = ((𝐴 ·o 𝐴) +o (𝐴 +o 𝐴)))
2713, 1, 1, 26mp3an 1453 . . . . . . 7 (((𝐴 ·o 𝐴) +o 𝐴) +o 𝐴) = ((𝐴 ·o 𝐴) +o (𝐴 +o 𝐴))
28 nnmcom 8102 . . . . . . . . . 10 ((suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (suc 𝐴 ·o 𝐴) = (𝐴 ·o suc 𝐴))
293, 1, 28mp2an 688 . . . . . . . . 9 (suc 𝐴 ·o 𝐴) = (𝐴 ·o suc 𝐴)
30 nnmsuc 8083 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 ·o suc 𝐴) = ((𝐴 ·o 𝐴) +o 𝐴))
311, 1, 30mp2an 688 . . . . . . . . 9 (𝐴 ·o suc 𝐴) = ((𝐴 ·o 𝐴) +o 𝐴)
3229, 31eqtri 2819 . . . . . . . 8 (suc 𝐴 ·o 𝐴) = ((𝐴 ·o 𝐴) +o 𝐴)
3332oveq1i 7026 . . . . . . 7 ((suc 𝐴 ·o 𝐴) +o 𝐴) = (((𝐴 ·o 𝐴) +o 𝐴) +o 𝐴)
34 nnm2 8126 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴))
351, 34ax-mp 5 . . . . . . . 8 (𝐴 ·o 2o) = (𝐴 +o 𝐴)
3635oveq2i 7027 . . . . . . 7 ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = ((𝐴 ·o 𝐴) +o (𝐴 +o 𝐴))
3727, 33, 363eqtr4ri 2830 . . . . . 6 ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = ((suc 𝐴 ·o 𝐴) +o 𝐴)
38 suceq 6131 . . . . . 6 (((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = ((suc 𝐴 ·o 𝐴) +o 𝐴) → suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = suc ((suc 𝐴 ·o 𝐴) +o 𝐴))
3937, 38ax-mp 5 . . . . 5 suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = suc ((suc 𝐴 ·o 𝐴) +o 𝐴)
4023, 25, 393eqtr4ri 2830 . . . 4 suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = (suc 𝐴 ·o suc 𝐴)
4140sseq1i 3916 . . 3 (suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ⊆ (𝐶 ·o 𝐶) ↔ (suc 𝐴 ·o suc 𝐴) ⊆ (𝐶 ·o 𝐶))
4220, 41bitri 276 . 2 (((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶) ↔ (suc 𝐴 ·o suc 𝐴) ⊆ (𝐶 ·o 𝐶))
439, 12, 423imtr4i 293 1 (𝐴𝐶 → ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1522  wcel 2081  wss 3859  suc csuc 6068  (class class class)co 7016  ωcom 7436  2oc2o 7947   +o coa 7950   ·o comu 7951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-omul 7958
This theorem is referenced by:  omopthlem2  8133
  Copyright terms: Public domain W3C validator