MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthlem1 Structured version   Visualization version   GIF version

Theorem omopthlem1 8569
Description: Lemma for omopthi 8571. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopthlem1.1 𝐴 ∈ ω
omopthlem1.2 𝐶 ∈ ω
Assertion
Ref Expression
omopthlem1 (𝐴𝐶 → ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶))

Proof of Theorem omopthlem1
StepHypRef Expression
1 omopthlem1.1 . . . . 5 𝐴 ∈ ω
2 peano2 7815 . . . . 5 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
31, 2ax-mp 5 . . . 4 suc 𝐴 ∈ ω
4 omopthlem1.2 . . . 4 𝐶 ∈ ω
5 nnmwordi 8545 . . . 4 ((suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ suc 𝐴 ∈ ω) → (suc 𝐴𝐶 → (suc 𝐴 ·o suc 𝐴) ⊆ (suc 𝐴 ·o 𝐶)))
63, 4, 3, 5mp3an 1463 . . 3 (suc 𝐴𝐶 → (suc 𝐴 ·o suc 𝐴) ⊆ (suc 𝐴 ·o 𝐶))
7 nnmwordri 8546 . . . 4 ((suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐶 ∈ ω) → (suc 𝐴𝐶 → (suc 𝐴 ·o 𝐶) ⊆ (𝐶 ·o 𝐶)))
83, 4, 4, 7mp3an 1463 . . 3 (suc 𝐴𝐶 → (suc 𝐴 ·o 𝐶) ⊆ (𝐶 ·o 𝐶))
96, 8sstrd 3940 . 2 (suc 𝐴𝐶 → (suc 𝐴 ·o suc 𝐴) ⊆ (𝐶 ·o 𝐶))
101nnoni 7798 . . 3 𝐴 ∈ On
114nnoni 7798 . . 3 𝐶 ∈ On
1210, 11onsucssi 7766 . 2 (𝐴𝐶 ↔ suc 𝐴𝐶)
131, 1nnmcli 8525 . . . . . 6 (𝐴 ·o 𝐴) ∈ ω
14 2onn 8552 . . . . . . 7 2o ∈ ω
151, 14nnmcli 8525 . . . . . 6 (𝐴 ·o 2o) ∈ ω
1613, 15nnacli 8524 . . . . 5 ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ ω
1716nnoni 7798 . . . 4 ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ On
184, 4nnmcli 8525 . . . . 5 (𝐶 ·o 𝐶) ∈ ω
1918nnoni 7798 . . . 4 (𝐶 ·o 𝐶) ∈ On
2017, 19onsucssi 7766 . . 3 (((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶) ↔ suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ⊆ (𝐶 ·o 𝐶))
213, 1nnmcli 8525 . . . . . 6 (suc 𝐴 ·o 𝐴) ∈ ω
22 nnasuc 8516 . . . . . 6 (((suc 𝐴 ·o 𝐴) ∈ ω ∧ 𝐴 ∈ ω) → ((suc 𝐴 ·o 𝐴) +o suc 𝐴) = suc ((suc 𝐴 ·o 𝐴) +o 𝐴))
2321, 1, 22mp2an 692 . . . . 5 ((suc 𝐴 ·o 𝐴) +o suc 𝐴) = suc ((suc 𝐴 ·o 𝐴) +o 𝐴)
24 nnmsuc 8517 . . . . . 6 ((suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (suc 𝐴 ·o suc 𝐴) = ((suc 𝐴 ·o 𝐴) +o suc 𝐴))
253, 1, 24mp2an 692 . . . . 5 (suc 𝐴 ·o suc 𝐴) = ((suc 𝐴 ·o 𝐴) +o suc 𝐴)
26 nnaass 8532 . . . . . . . 8 (((𝐴 ·o 𝐴) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝐴) +o 𝐴) +o 𝐴) = ((𝐴 ·o 𝐴) +o (𝐴 +o 𝐴)))
2713, 1, 1, 26mp3an 1463 . . . . . . 7 (((𝐴 ·o 𝐴) +o 𝐴) +o 𝐴) = ((𝐴 ·o 𝐴) +o (𝐴 +o 𝐴))
28 nnmcom 8536 . . . . . . . . . 10 ((suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (suc 𝐴 ·o 𝐴) = (𝐴 ·o suc 𝐴))
293, 1, 28mp2an 692 . . . . . . . . 9 (suc 𝐴 ·o 𝐴) = (𝐴 ·o suc 𝐴)
30 nnmsuc 8517 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 ·o suc 𝐴) = ((𝐴 ·o 𝐴) +o 𝐴))
311, 1, 30mp2an 692 . . . . . . . . 9 (𝐴 ·o suc 𝐴) = ((𝐴 ·o 𝐴) +o 𝐴)
3229, 31eqtri 2754 . . . . . . . 8 (suc 𝐴 ·o 𝐴) = ((𝐴 ·o 𝐴) +o 𝐴)
3332oveq1i 7351 . . . . . . 7 ((suc 𝐴 ·o 𝐴) +o 𝐴) = (((𝐴 ·o 𝐴) +o 𝐴) +o 𝐴)
34 nnm2 8563 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴))
351, 34ax-mp 5 . . . . . . . 8 (𝐴 ·o 2o) = (𝐴 +o 𝐴)
3635oveq2i 7352 . . . . . . 7 ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = ((𝐴 ·o 𝐴) +o (𝐴 +o 𝐴))
3727, 33, 363eqtr4ri 2765 . . . . . 6 ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = ((suc 𝐴 ·o 𝐴) +o 𝐴)
38 suceq 6369 . . . . . 6 (((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = ((suc 𝐴 ·o 𝐴) +o 𝐴) → suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = suc ((suc 𝐴 ·o 𝐴) +o 𝐴))
3937, 38ax-mp 5 . . . . 5 suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = suc ((suc 𝐴 ·o 𝐴) +o 𝐴)
4023, 25, 393eqtr4ri 2765 . . . 4 suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = (suc 𝐴 ·o suc 𝐴)
4140sseq1i 3958 . . 3 (suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ⊆ (𝐶 ·o 𝐶) ↔ (suc 𝐴 ·o suc 𝐴) ⊆ (𝐶 ·o 𝐶))
4220, 41bitri 275 . 2 (((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶) ↔ (suc 𝐴 ·o suc 𝐴) ⊆ (𝐶 ·o 𝐶))
439, 12, 423imtr4i 292 1 (𝐴𝐶 → ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3897  suc csuc 6303  (class class class)co 7341  ωcom 7791  2oc2o 8374   +o coa 8377   ·o comu 8378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385
This theorem is referenced by:  omopthlem2  8570
  Copyright terms: Public domain W3C validator