Proof of Theorem norassOLD
Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . 6
⊢ ((𝜑 ↔ 𝜒) → (𝜑 ↔ 𝜒)) |
2 | 1 | notbid 318 |
. . . . 5
⊢ ((𝜑 ↔ 𝜒) → (¬ 𝜑 ↔ ¬ 𝜒)) |
3 | 2 | bicomd 222 |
. . . 4
⊢ ((𝜑 ↔ 𝜒) → (¬ 𝜒 ↔ ¬ 𝜑)) |
4 | 2 | anbi2d 629 |
. . . . 5
⊢ ((𝜑 ↔ 𝜒) → ((¬ 𝜓 ∧ ¬ 𝜑) ↔ (¬ 𝜓 ∧ ¬ 𝜒))) |
5 | 4 | notbid 318 |
. . . 4
⊢ ((𝜑 ↔ 𝜒) → (¬ (¬ 𝜓 ∧ ¬ 𝜑) ↔ ¬ (¬ 𝜓 ∧ ¬ 𝜒))) |
6 | 3, 5 | anbi12d 631 |
. . 3
⊢ ((𝜑 ↔ 𝜒) → ((¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑)) ↔ (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒)))) |
7 | | olc 865 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝜓 ∨ 𝜑)) |
8 | | oran 987 |
. . . . . . . . . . 11
⊢ ((𝜓 ∨ 𝜑) ↔ ¬ (¬ 𝜓 ∧ ¬ 𝜑)) |
9 | 7, 8 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ (¬ 𝜓 ∧ ¬ 𝜑)) |
10 | 9 | anim1ci 616 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝜒) → (¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑))) |
11 | | animorl 975 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝜒) → (𝜑 ∨ (¬ 𝜓 ∧ ¬ 𝜒))) |
12 | | oran 987 |
. . . . . . . . . 10
⊢ ((𝜑 ∨ (¬ 𝜓 ∧ ¬ 𝜒)) ↔ ¬ (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒))) |
13 | 11, 12 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒))) |
14 | 10, 13 | jcnd 163 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ ((¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑)) → (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒)))) |
15 | 14 | ex 413 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝜒 → ¬ ((¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑)) → (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒))))) |
16 | 15 | con4d 115 |
. . . . . 6
⊢ (𝜑 → (((¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑)) → (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒))) → 𝜒)) |
17 | 16 | com12 32 |
. . . . 5
⊢ (((¬
𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑)) → (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒))) → (𝜑 → 𝜒)) |
18 | | olc 865 |
. . . . . . . . . . 11
⊢ (𝜒 → (𝜓 ∨ 𝜒)) |
19 | | oran 987 |
. . . . . . . . . . 11
⊢ ((𝜓 ∨ 𝜒) ↔ ¬ (¬ 𝜓 ∧ ¬ 𝜒)) |
20 | 18, 19 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜒 → ¬ (¬ 𝜓 ∧ ¬ 𝜒)) |
21 | 20 | anim1ci 616 |
. . . . . . . . 9
⊢ ((𝜒 ∧ ¬ 𝜑) → (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒))) |
22 | | animorl 975 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ ¬ 𝜑) → (𝜒 ∨ (¬ 𝜓 ∧ ¬ 𝜑))) |
23 | | oran 987 |
. . . . . . . . . 10
⊢ ((𝜒 ∨ (¬ 𝜓 ∧ ¬ 𝜑)) ↔ ¬ (¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑))) |
24 | 22, 23 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜒 ∧ ¬ 𝜑) → ¬ (¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑))) |
25 | 21, 24 | jcnd 163 |
. . . . . . . 8
⊢ ((𝜒 ∧ ¬ 𝜑) → ¬ ((¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒)) → (¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑)))) |
26 | 25 | ex 413 |
. . . . . . 7
⊢ (𝜒 → (¬ 𝜑 → ¬ ((¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒)) → (¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑))))) |
27 | 26 | con4d 115 |
. . . . . 6
⊢ (𝜒 → (((¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒)) → (¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑))) → 𝜑)) |
28 | 27 | com12 32 |
. . . . 5
⊢ (((¬
𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒)) → (¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑))) → (𝜒 → 𝜑)) |
29 | 17, 28 | anim12i 613 |
. . . 4
⊢ ((((¬
𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑)) → (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒))) ∧ ((¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒)) → (¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑)))) → ((𝜑 → 𝜒) ∧ (𝜒 → 𝜑))) |
30 | | dfbi2 475 |
. . . 4
⊢ (((¬
𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑)) ↔ (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒))) ↔ (((¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑)) → (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒))) ∧ ((¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒)) → (¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑))))) |
31 | | dfbi2 475 |
. . . 4
⊢ ((𝜑 ↔ 𝜒) ↔ ((𝜑 → 𝜒) ∧ (𝜒 → 𝜑))) |
32 | 29, 30, 31 | 3imtr4i 292 |
. . 3
⊢ (((¬
𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑)) ↔ (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒))) → (𝜑 ↔ 𝜒)) |
33 | 6, 32 | impbii 208 |
. 2
⊢ ((𝜑 ↔ 𝜒) ↔ ((¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑)) ↔ (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒)))) |
34 | | norcom 1527 |
. . . 4
⊢ (((𝜑 ⊽ 𝜓) ⊽ 𝜒) ↔ (𝜒 ⊽ (𝜑 ⊽ 𝜓))) |
35 | | df-nor 1526 |
. . . 4
⊢ ((𝜒 ⊽ (𝜑 ⊽ 𝜓)) ↔ ¬ (𝜒 ∨ (𝜑 ⊽ 𝜓))) |
36 | | ioran 981 |
. . . . 5
⊢ (¬
(𝜒 ∨ (𝜑 ⊽ 𝜓)) ↔ (¬ 𝜒 ∧ ¬ (𝜑 ⊽ 𝜓))) |
37 | | norcom 1527 |
. . . . . . . 8
⊢ ((𝜑 ⊽ 𝜓) ↔ (𝜓 ⊽ 𝜑)) |
38 | | df-nor 1526 |
. . . . . . . 8
⊢ ((𝜓 ⊽ 𝜑) ↔ ¬ (𝜓 ∨ 𝜑)) |
39 | | ioran 981 |
. . . . . . . 8
⊢ (¬
(𝜓 ∨ 𝜑) ↔ (¬ 𝜓 ∧ ¬ 𝜑)) |
40 | 37, 38, 39 | 3bitri 297 |
. . . . . . 7
⊢ ((𝜑 ⊽ 𝜓) ↔ (¬ 𝜓 ∧ ¬ 𝜑)) |
41 | 40 | notbii 320 |
. . . . . 6
⊢ (¬
(𝜑 ⊽ 𝜓) ↔ ¬ (¬ 𝜓 ∧ ¬ 𝜑)) |
42 | 41 | anbi2i 623 |
. . . . 5
⊢ ((¬
𝜒 ∧ ¬ (𝜑 ⊽ 𝜓)) ↔ (¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑))) |
43 | 36, 42 | bitri 274 |
. . . 4
⊢ (¬
(𝜒 ∨ (𝜑 ⊽ 𝜓)) ↔ (¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑))) |
44 | 34, 35, 43 | 3bitri 297 |
. . 3
⊢ (((𝜑 ⊽ 𝜓) ⊽ 𝜒) ↔ (¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑))) |
45 | | df-nor 1526 |
. . . 4
⊢ ((𝜑 ⊽ (𝜓 ⊽ 𝜒)) ↔ ¬ (𝜑 ∨ (𝜓 ⊽ 𝜒))) |
46 | | ioran 981 |
. . . 4
⊢ (¬
(𝜑 ∨ (𝜓 ⊽ 𝜒)) ↔ (¬ 𝜑 ∧ ¬ (𝜓 ⊽ 𝜒))) |
47 | | df-nor 1526 |
. . . . . . 7
⊢ ((𝜓 ⊽ 𝜒) ↔ ¬ (𝜓 ∨ 𝜒)) |
48 | | ioran 981 |
. . . . . . 7
⊢ (¬
(𝜓 ∨ 𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒)) |
49 | 47, 48 | bitri 274 |
. . . . . 6
⊢ ((𝜓 ⊽ 𝜒) ↔ (¬ 𝜓 ∧ ¬ 𝜒)) |
50 | 49 | notbii 320 |
. . . . 5
⊢ (¬
(𝜓 ⊽ 𝜒) ↔ ¬ (¬ 𝜓 ∧ ¬ 𝜒)) |
51 | 50 | anbi2i 623 |
. . . 4
⊢ ((¬
𝜑 ∧ ¬ (𝜓 ⊽ 𝜒)) ↔ (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒))) |
52 | 45, 46, 51 | 3bitri 297 |
. . 3
⊢ ((𝜑 ⊽ (𝜓 ⊽ 𝜒)) ↔ (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒))) |
53 | 44, 52 | bibi12i 340 |
. 2
⊢ ((((𝜑 ⊽ 𝜓) ⊽ 𝜒) ↔ (𝜑 ⊽ (𝜓 ⊽ 𝜒))) ↔ ((¬ 𝜒 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜑)) ↔ (¬ 𝜑 ∧ ¬ (¬ 𝜓 ∧ ¬ 𝜒)))) |
54 | 33, 53 | bitr4i 277 |
1
⊢ ((𝜑 ↔ 𝜒) ↔ (((𝜑 ⊽ 𝜓) ⊽ 𝜒) ↔ (𝜑 ⊽ (𝜓 ⊽ 𝜒)))) |