MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvclvec Structured version   Visualization version   GIF version

Theorem nvclvec 24084
Description: A normed vector space is a left vector space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nvclvec (𝑊 ∈ NrmVec → 𝑊 ∈ LVec)

Proof of Theorem nvclvec
StepHypRef Expression
1 isnvc 24082 . 2 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
21simprbi 498 1 (𝑊 ∈ NrmVec → 𝑊 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  LVecclvec 20607  NrmModcnlm 23959  NrmVeccnvc 23960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3449  df-in 3921  df-nvc 23966
This theorem is referenced by:  nvctvc  24087  lssnvc  24089
  Copyright terms: Public domain W3C validator