MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvclvec Structured version   Visualization version   GIF version

Theorem nvclvec 24718
Description: A normed vector space is a left vector space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nvclvec (𝑊 ∈ NrmVec → 𝑊 ∈ LVec)

Proof of Theorem nvclvec
StepHypRef Expression
1 isnvc 24716 . 2 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
21simprbi 496 1 (𝑊 ∈ NrmVec → 𝑊 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  LVecclvec 21101  NrmModcnlm 24593  NrmVeccnvc 24594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-in 3958  df-nvc 24600
This theorem is referenced by:  nvctvc  24721  lssnvc  24723
  Copyright terms: Public domain W3C validator