MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvclvec Structured version   Visualization version   GIF version

Theorem nvclvec 24213
Description: A normed vector space is a left vector space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nvclvec (𝑊 ∈ NrmVec → 𝑊 ∈ LVec)

Proof of Theorem nvclvec
StepHypRef Expression
1 isnvc 24211 . 2 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
21simprbi 497 1 (𝑊 ∈ NrmVec → 𝑊 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  LVecclvec 20712  NrmModcnlm 24088  NrmVeccnvc 24089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-nvc 24095
This theorem is referenced by:  nvctvc  24216  lssnvc  24218
  Copyright terms: Public domain W3C validator