![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvclmod | Structured version Visualization version GIF version |
Description: A normed vector space is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nvclmod | ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvcnlm 24732 | . 2 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) | |
2 | nlmlmod 24714 | . 2 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 LModclmod 20874 NrmModcnlm 24608 NrmVeccnvc 24609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-nul 5311 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-nlm 24614 df-nvc 24615 |
This theorem is referenced by: ncvspi 25203 cssbn 25422 |
Copyright terms: Public domain | W3C validator |