MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvclmod Structured version   Visualization version   GIF version

Theorem nvclmod 24637
Description: A normed vector space is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nvclmod (𝑊 ∈ NrmVec → 𝑊 ∈ LMod)

Proof of Theorem nvclmod
StepHypRef Expression
1 nvcnlm 24635 . 2 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
2 nlmlmod 24617 . 2 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
31, 2syl 17 1 (𝑊 ∈ NrmVec → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  LModclmod 20817  NrmModcnlm 24519  NrmVeccnvc 24520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-nlm 24525  df-nvc 24526
This theorem is referenced by:  ncvspi  25108  cssbn  25327
  Copyright terms: Public domain W3C validator