MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvcnlm Structured version   Visualization version   GIF version

Theorem nvcnlm 23766
Description: A normed vector space is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nvcnlm (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)

Proof of Theorem nvcnlm
StepHypRef Expression
1 isnvc 23765 . 2 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
21simplbi 497 1 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  LVecclvec 20279  NrmModcnlm 23642  NrmVeccnvc 23643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-nvc 23649
This theorem is referenced by:  nvclmod  23768  nvctvc  23770  lssnvc  23772  ncvsprp  24221  ncvsm1  24223  ncvsdif  24224  ncvspi  24225  ncvs1  24226  ncvspds  24230  bnnlm  24410  cssbn  24444
  Copyright terms: Public domain W3C validator