| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvcnlm | Structured version Visualization version GIF version | ||
| Description: A normed vector space is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nvcnlm | ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnvc 24620 | . 2 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 LVecclvec 21046 NrmModcnlm 24505 NrmVeccnvc 24506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3440 df-in 3906 df-nvc 24512 |
| This theorem is referenced by: nvclmod 24623 nvctvc 24625 lssnvc 24627 ncvsprp 25089 ncvsm1 25091 ncvsdif 25092 ncvspi 25093 ncvs1 25094 ncvspds 25098 bnnlm 25278 cssbn 25312 |
| Copyright terms: Public domain | W3C validator |