Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvcnlm | Structured version Visualization version GIF version |
Description: A normed vector space is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nvcnlm | ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnvc 23887 | . 2 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2101 LVecclvec 20392 NrmModcnlm 23764 NrmVeccnvc 23765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1540 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3436 df-in 3896 df-nvc 23771 |
This theorem is referenced by: nvclmod 23890 nvctvc 23892 lssnvc 23894 ncvsprp 24344 ncvsm1 24346 ncvsdif 24347 ncvspi 24348 ncvs1 24349 ncvspds 24353 bnnlm 24533 cssbn 24567 |
Copyright terms: Public domain | W3C validator |