MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvcnlm Structured version   Visualization version   GIF version

Theorem nvcnlm 24604
Description: A normed vector space is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nvcnlm (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)

Proof of Theorem nvcnlm
StepHypRef Expression
1 isnvc 24603 . 2 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
21simplbi 497 1 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  LVecclvec 21029  NrmModcnlm 24488  NrmVeccnvc 24489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3436  df-in 3907  df-nvc 24495
This theorem is referenced by:  nvclmod  24606  nvctvc  24608  lssnvc  24610  ncvsprp  25072  ncvsm1  25074  ncvsdif  25075  ncvspi  25076  ncvs1  25077  ncvspds  25081  bnnlm  25261  cssbn  25295
  Copyright terms: Public domain W3C validator