MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvcnlm Structured version   Visualization version   GIF version

Theorem nvcnlm 24738
Description: A normed vector space is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nvcnlm (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)

Proof of Theorem nvcnlm
StepHypRef Expression
1 isnvc 24737 . 2 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
21simplbi 497 1 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  LVecclvec 21124  NrmModcnlm 24614  NrmVeccnvc 24615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983  df-nvc 24621
This theorem is referenced by:  nvclmod  24740  nvctvc  24742  lssnvc  24744  ncvsprp  25205  ncvsm1  25207  ncvsdif  25208  ncvspi  25209  ncvs1  25210  ncvspds  25214  bnnlm  25394  cssbn  25428
  Copyright terms: Public domain W3C validator