MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem10 Structured version   Visualization version   GIF version

Theorem ordtypelem10 9037
Description: Lemma for ordtype 9042. Using ax-rep 5160, exclude the possibility that 𝑂 is a proper class and does not enumerate all of 𝐴. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem10 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem10
Dummy variables 𝑏 𝑐 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . 3 𝐹 = recs(𝐺)
2 ordtypelem.2 . . 3 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . 3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . 3 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . 3 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . 3 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . 3 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem8 9035 . 2 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
91, 2, 3, 4, 5, 6, 7ordtypelem4 9031 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
109frnd 6510 . . . 4 (𝜑 → ran 𝑂𝐴)
11 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏𝐴)
126adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 We 𝐴)
137adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 Se 𝐴)
149ffund 6507 . . . . . . . . . . . 12 (𝜑 → Fun 𝑂)
1514funfnd 6371 . . . . . . . . . . 11 (𝜑𝑂 Fn dom 𝑂)
1615adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Fn dom 𝑂)
171, 2, 3, 4, 5, 12, 13ordtypelem8 9035 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
18 isof1o 7076 . . . . . . . . . . . 12 (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) → 𝑂:dom 𝑂1-1-onto→ran 𝑂)
19 f1of1 6606 . . . . . . . . . . . 12 (𝑂:dom 𝑂1-1-onto→ran 𝑂𝑂:dom 𝑂1-1→ran 𝑂)
2017, 18, 193syl 18 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂:dom 𝑂1-1→ran 𝑂)
21 simpl 486 . . . . . . . . . . . . 13 ((𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂) → 𝑏𝐴)
22 seex 5491 . . . . . . . . . . . . 13 ((𝑅 Se 𝐴𝑏𝐴) → {𝑐𝐴𝑐𝑅𝑏} ∈ V)
237, 21, 22syl2an 598 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → {𝑐𝐴𝑐𝑅𝑏} ∈ V)
2410adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂𝐴)
25 rexnal 3165 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏 ↔ ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
261, 2, 3, 4, 5, 6, 7ordtypelem7 9034 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → ((𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2726ord 861 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → (¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2827rexlimdva 3208 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏𝐴) → (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2925, 28syl5bir 246 . . . . . . . . . . . . . . . 16 ((𝜑𝑏𝐴) → (¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
3029con1d 147 . . . . . . . . . . . . . . 15 ((𝜑𝑏𝐴) → (¬ 𝑏 ∈ ran 𝑂 → ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
3130impr 458 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
32 breq1 5039 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑂𝑚) → (𝑐𝑅𝑏 ↔ (𝑂𝑚)𝑅𝑏))
3332ralrn 6851 . . . . . . . . . . . . . . 15 (𝑂 Fn dom 𝑂 → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
3416, 33syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
3531, 34mpbird 260 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏)
36 ssrab 3979 . . . . . . . . . . . . 13 (ran 𝑂 ⊆ {𝑐𝐴𝑐𝑅𝑏} ↔ (ran 𝑂𝐴 ∧ ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏))
3724, 35, 36sylanbrc 586 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ⊆ {𝑐𝐴𝑐𝑅𝑏})
3823, 37ssexd 5198 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ∈ V)
39 f1dmex 7668 . . . . . . . . . . 11 ((𝑂:dom 𝑂1-1→ran 𝑂 ∧ ran 𝑂 ∈ V) → dom 𝑂 ∈ V)
4020, 38, 39syl2anc 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → dom 𝑂 ∈ V)
4116, 40fnexd 6978 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 ∈ V)
421, 2, 3, 4, 5, 12, 13, 41ordtypelem9 9036 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
43 isof1o 7076 . . . . . . . 8 (𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴) → 𝑂:dom 𝑂1-1-onto𝐴)
44 f1ofo 6614 . . . . . . . 8 (𝑂:dom 𝑂1-1-onto𝐴𝑂:dom 𝑂onto𝐴)
45 forn 6584 . . . . . . . 8 (𝑂:dom 𝑂onto𝐴 → ran 𝑂 = 𝐴)
4642, 43, 44, 454syl 19 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 = 𝐴)
4711, 46eleqtrrd 2855 . . . . . 6 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏 ∈ ran 𝑂)
4847expr 460 . . . . 5 ((𝜑𝑏𝐴) → (¬ 𝑏 ∈ ran 𝑂𝑏 ∈ ran 𝑂))
4948pm2.18d 127 . . . 4 ((𝜑𝑏𝐴) → 𝑏 ∈ ran 𝑂)
5010, 49eqelssd 3915 . . 3 (𝜑 → ran 𝑂 = 𝐴)
51 isoeq5 7074 . . 3 (ran 𝑂 = 𝐴 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
5250, 51syl 17 . 2 (𝜑 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
538, 52mpbid 235 1 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  wrex 3071  {crab 3074  Vcvv 3409  cin 3859  wss 3860   class class class wbr 5036  cmpt 5116   E cep 5438   Se wse 5485   We wwe 5486  dom cdm 5528  ran crn 5529  cima 5531  Oncon0 6174   Fn wfn 6335  1-1wf1 6337  ontowfo 6338  1-1-ontowf1o 6339  cfv 6340   Isom wiso 6341  crio 7113  recscrecs 8023  OrdIsocoi 9019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-wrecs 7963  df-recs 8024  df-oi 9020
This theorem is referenced by:  ordtype  9042
  Copyright terms: Public domain W3C validator