MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem10 Structured version   Visualization version   GIF version

Theorem ordtypelem10 9522
Description: Lemma for ordtype 9527. Using ax-rep 5286, exclude the possibility that 𝑂 is a proper class and does not enumerate all of 𝐴. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐢 = {𝑀 ∈ 𝐴 ∣ βˆ€π‘— ∈ ran β„Ž 𝑗𝑅𝑀}
ordtypelem.3 𝐺 = (β„Ž ∈ V ↦ (℩𝑣 ∈ 𝐢 βˆ€π‘’ ∈ 𝐢 Β¬ 𝑒𝑅𝑣))
ordtypelem.5 𝑇 = {π‘₯ ∈ On ∣ βˆƒπ‘‘ ∈ 𝐴 βˆ€π‘§ ∈ (𝐹 β€œ π‘₯)𝑧𝑅𝑑}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (πœ‘ β†’ 𝑅 We 𝐴)
ordtypelem.8 (πœ‘ β†’ 𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem10 (πœ‘ β†’ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Distinct variable groups:   𝑣,𝑒,𝐢   β„Ž,𝑗,𝑑,𝑒,𝑣,𝑀,π‘₯,𝑧,𝑅   𝐴,β„Ž,𝑗,𝑑,𝑒,𝑣,𝑀,π‘₯,𝑧   𝑑,𝑂,𝑒,𝑣,π‘₯   πœ‘,𝑑,π‘₯   β„Ž,𝐹,𝑗,𝑑,𝑒,𝑣,𝑀,π‘₯,𝑧
Allowed substitution hints:   πœ‘(𝑧,𝑀,𝑣,𝑒,β„Ž,𝑗)   𝐢(π‘₯,𝑧,𝑀,𝑑,β„Ž,𝑗)   𝑇(π‘₯,𝑧,𝑀,𝑣,𝑒,𝑑,β„Ž,𝑗)   𝐺(π‘₯,𝑧,𝑀,𝑣,𝑒,𝑑,β„Ž,𝑗)   𝑂(𝑧,𝑀,β„Ž,𝑗)

Proof of Theorem ordtypelem10
Dummy variables 𝑏 𝑐 π‘š are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . 3 𝐹 = recs(𝐺)
2 ordtypelem.2 . . 3 𝐢 = {𝑀 ∈ 𝐴 ∣ βˆ€π‘— ∈ ran β„Ž 𝑗𝑅𝑀}
3 ordtypelem.3 . . 3 𝐺 = (β„Ž ∈ V ↦ (℩𝑣 ∈ 𝐢 βˆ€π‘’ ∈ 𝐢 Β¬ 𝑒𝑅𝑣))
4 ordtypelem.5 . . 3 𝑇 = {π‘₯ ∈ On ∣ βˆƒπ‘‘ ∈ 𝐴 βˆ€π‘§ ∈ (𝐹 β€œ π‘₯)𝑧𝑅𝑑}
5 ordtypelem.6 . . 3 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . 3 (πœ‘ β†’ 𝑅 We 𝐴)
7 ordtypelem.8 . . 3 (πœ‘ β†’ 𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem8 9520 . 2 (πœ‘ β†’ 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
91, 2, 3, 4, 5, 6, 7ordtypelem4 9516 . . . . 5 (πœ‘ β†’ 𝑂:(𝑇 ∩ dom 𝐹)⟢𝐴)
109frnd 6726 . . . 4 (πœ‘ β†’ ran 𝑂 βŠ† 𝐴)
11 simprl 770 . . . . . . 7 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ 𝑏 ∈ 𝐴)
126adantr 482 . . . . . . . . 9 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ 𝑅 We 𝐴)
137adantr 482 . . . . . . . . 9 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ 𝑅 Se 𝐴)
149ffund 6722 . . . . . . . . . . . 12 (πœ‘ β†’ Fun 𝑂)
1514funfnd 6580 . . . . . . . . . . 11 (πœ‘ β†’ 𝑂 Fn dom 𝑂)
1615adantr 482 . . . . . . . . . 10 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ 𝑂 Fn dom 𝑂)
171, 2, 3, 4, 5, 12, 13ordtypelem8 9520 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
18 isof1o 7320 . . . . . . . . . . . 12 (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) β†’ 𝑂:dom 𝑂–1-1-ontoβ†’ran 𝑂)
19 f1of1 6833 . . . . . . . . . . . 12 (𝑂:dom 𝑂–1-1-ontoβ†’ran 𝑂 β†’ 𝑂:dom 𝑂–1-1β†’ran 𝑂)
2017, 18, 193syl 18 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ 𝑂:dom 𝑂–1-1β†’ran 𝑂)
21 simpl 484 . . . . . . . . . . . . 13 ((𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂) β†’ 𝑏 ∈ 𝐴)
22 seex 5639 . . . . . . . . . . . . 13 ((𝑅 Se 𝐴 ∧ 𝑏 ∈ 𝐴) β†’ {𝑐 ∈ 𝐴 ∣ 𝑐𝑅𝑏} ∈ V)
237, 21, 22syl2an 597 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ {𝑐 ∈ 𝐴 ∣ 𝑐𝑅𝑏} ∈ V)
2410adantr 482 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ ran 𝑂 βŠ† 𝐴)
25 rexnal 3101 . . . . . . . . . . . . . . . . 17 (βˆƒπ‘š ∈ dom 𝑂 Β¬ (π‘‚β€˜π‘š)𝑅𝑏 ↔ Β¬ βˆ€π‘š ∈ dom 𝑂(π‘‚β€˜π‘š)𝑅𝑏)
261, 2, 3, 4, 5, 6, 7ordtypelem7 9519 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ 𝑏 ∈ 𝐴) ∧ π‘š ∈ dom 𝑂) β†’ ((π‘‚β€˜π‘š)𝑅𝑏 ∨ 𝑏 ∈ ran 𝑂))
2726ord 863 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ 𝑏 ∈ 𝐴) ∧ π‘š ∈ dom 𝑂) β†’ (Β¬ (π‘‚β€˜π‘š)𝑅𝑏 β†’ 𝑏 ∈ ran 𝑂))
2827rexlimdva 3156 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑏 ∈ 𝐴) β†’ (βˆƒπ‘š ∈ dom 𝑂 Β¬ (π‘‚β€˜π‘š)𝑅𝑏 β†’ 𝑏 ∈ ran 𝑂))
2925, 28biimtrrid 242 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑏 ∈ 𝐴) β†’ (Β¬ βˆ€π‘š ∈ dom 𝑂(π‘‚β€˜π‘š)𝑅𝑏 β†’ 𝑏 ∈ ran 𝑂))
3029con1d 145 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑏 ∈ 𝐴) β†’ (Β¬ 𝑏 ∈ ran 𝑂 β†’ βˆ€π‘š ∈ dom 𝑂(π‘‚β€˜π‘š)𝑅𝑏))
3130impr 456 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ βˆ€π‘š ∈ dom 𝑂(π‘‚β€˜π‘š)𝑅𝑏)
32 breq1 5152 . . . . . . . . . . . . . . . 16 (𝑐 = (π‘‚β€˜π‘š) β†’ (𝑐𝑅𝑏 ↔ (π‘‚β€˜π‘š)𝑅𝑏))
3332ralrn 7090 . . . . . . . . . . . . . . 15 (𝑂 Fn dom 𝑂 β†’ (βˆ€π‘ ∈ ran 𝑂 𝑐𝑅𝑏 ↔ βˆ€π‘š ∈ dom 𝑂(π‘‚β€˜π‘š)𝑅𝑏))
3416, 33syl 17 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ (βˆ€π‘ ∈ ran 𝑂 𝑐𝑅𝑏 ↔ βˆ€π‘š ∈ dom 𝑂(π‘‚β€˜π‘š)𝑅𝑏))
3531, 34mpbird 257 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ βˆ€π‘ ∈ ran 𝑂 𝑐𝑅𝑏)
36 ssrab 4071 . . . . . . . . . . . . 13 (ran 𝑂 βŠ† {𝑐 ∈ 𝐴 ∣ 𝑐𝑅𝑏} ↔ (ran 𝑂 βŠ† 𝐴 ∧ βˆ€π‘ ∈ ran 𝑂 𝑐𝑅𝑏))
3724, 35, 36sylanbrc 584 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ ran 𝑂 βŠ† {𝑐 ∈ 𝐴 ∣ 𝑐𝑅𝑏})
3823, 37ssexd 5325 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ ran 𝑂 ∈ V)
39 f1dmex 7943 . . . . . . . . . . 11 ((𝑂:dom 𝑂–1-1β†’ran 𝑂 ∧ ran 𝑂 ∈ V) β†’ dom 𝑂 ∈ V)
4020, 38, 39syl2anc 585 . . . . . . . . . 10 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ dom 𝑂 ∈ V)
4116, 40fnexd 7220 . . . . . . . . 9 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ 𝑂 ∈ V)
421, 2, 3, 4, 5, 12, 13, 41ordtypelem9 9521 . . . . . . . 8 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
43 isof1o 7320 . . . . . . . 8 (𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴) β†’ 𝑂:dom 𝑂–1-1-onto→𝐴)
44 f1ofo 6841 . . . . . . . 8 (𝑂:dom 𝑂–1-1-onto→𝐴 β†’ 𝑂:dom 𝑂–onto→𝐴)
45 forn 6809 . . . . . . . 8 (𝑂:dom 𝑂–onto→𝐴 β†’ ran 𝑂 = 𝐴)
4642, 43, 44, 454syl 19 . . . . . . 7 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ ran 𝑂 = 𝐴)
4711, 46eleqtrrd 2837 . . . . . 6 ((πœ‘ ∧ (𝑏 ∈ 𝐴 ∧ Β¬ 𝑏 ∈ ran 𝑂)) β†’ 𝑏 ∈ ran 𝑂)
4847expr 458 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ 𝐴) β†’ (Β¬ 𝑏 ∈ ran 𝑂 β†’ 𝑏 ∈ ran 𝑂))
4948pm2.18d 127 . . . 4 ((πœ‘ ∧ 𝑏 ∈ 𝐴) β†’ 𝑏 ∈ ran 𝑂)
5010, 49eqelssd 4004 . . 3 (πœ‘ β†’ ran 𝑂 = 𝐴)
51 isoeq5 7318 . . 3 (ran 𝑂 = 𝐴 β†’ (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
5250, 51syl 17 . 2 (πœ‘ β†’ (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
538, 52mpbid 231 1 (πœ‘ β†’ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071  {crab 3433  Vcvv 3475   ∩ cin 3948   βŠ† wss 3949   class class class wbr 5149   ↦ cmpt 5232   E cep 5580   Se wse 5630   We wwe 5631  dom cdm 5677  ran crn 5678   β€œ cima 5680  Oncon0 6365   Fn wfn 6539  β€“1-1β†’wf1 6541  β€“ontoβ†’wfo 6542  β€“1-1-ontoβ†’wf1o 6543  β€˜cfv 6544   Isom wiso 6545  β„©crio 7364  recscrecs 8370  OrdIsocoi 9504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-oi 9505
This theorem is referenced by:  ordtype  9527
  Copyright terms: Public domain W3C validator