MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem10 Structured version   Visualization version   GIF version

Theorem ordtypelem10 9216
Description: Lemma for ordtype 9221. Using ax-rep 5205, exclude the possibility that 𝑂 is a proper class and does not enumerate all of 𝐴. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem10 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem10
Dummy variables 𝑏 𝑐 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . 3 𝐹 = recs(𝐺)
2 ordtypelem.2 . . 3 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . 3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . 3 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . 3 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . 3 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . 3 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem8 9214 . 2 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
91, 2, 3, 4, 5, 6, 7ordtypelem4 9210 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
109frnd 6592 . . . 4 (𝜑 → ran 𝑂𝐴)
11 simprl 767 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏𝐴)
126adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 We 𝐴)
137adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 Se 𝐴)
149ffund 6588 . . . . . . . . . . . 12 (𝜑 → Fun 𝑂)
1514funfnd 6449 . . . . . . . . . . 11 (𝜑𝑂 Fn dom 𝑂)
1615adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Fn dom 𝑂)
171, 2, 3, 4, 5, 12, 13ordtypelem8 9214 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
18 isof1o 7174 . . . . . . . . . . . 12 (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) → 𝑂:dom 𝑂1-1-onto→ran 𝑂)
19 f1of1 6699 . . . . . . . . . . . 12 (𝑂:dom 𝑂1-1-onto→ran 𝑂𝑂:dom 𝑂1-1→ran 𝑂)
2017, 18, 193syl 18 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂:dom 𝑂1-1→ran 𝑂)
21 simpl 482 . . . . . . . . . . . . 13 ((𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂) → 𝑏𝐴)
22 seex 5542 . . . . . . . . . . . . 13 ((𝑅 Se 𝐴𝑏𝐴) → {𝑐𝐴𝑐𝑅𝑏} ∈ V)
237, 21, 22syl2an 595 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → {𝑐𝐴𝑐𝑅𝑏} ∈ V)
2410adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂𝐴)
25 rexnal 3165 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏 ↔ ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
261, 2, 3, 4, 5, 6, 7ordtypelem7 9213 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → ((𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2726ord 860 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → (¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2827rexlimdva 3212 . . . . . . . . . . . . . . . . 17 ((𝜑𝑏𝐴) → (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
2925, 28syl5bir 242 . . . . . . . . . . . . . . . 16 ((𝜑𝑏𝐴) → (¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
3029con1d 145 . . . . . . . . . . . . . . 15 ((𝜑𝑏𝐴) → (¬ 𝑏 ∈ ran 𝑂 → ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
3130impr 454 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
32 breq1 5073 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑂𝑚) → (𝑐𝑅𝑏 ↔ (𝑂𝑚)𝑅𝑏))
3332ralrn 6946 . . . . . . . . . . . . . . 15 (𝑂 Fn dom 𝑂 → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
3416, 33syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
3531, 34mpbird 256 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏)
36 ssrab 4002 . . . . . . . . . . . . 13 (ran 𝑂 ⊆ {𝑐𝐴𝑐𝑅𝑏} ↔ (ran 𝑂𝐴 ∧ ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏))
3724, 35, 36sylanbrc 582 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ⊆ {𝑐𝐴𝑐𝑅𝑏})
3823, 37ssexd 5243 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ∈ V)
39 f1dmex 7773 . . . . . . . . . . 11 ((𝑂:dom 𝑂1-1→ran 𝑂 ∧ ran 𝑂 ∈ V) → dom 𝑂 ∈ V)
4020, 38, 39syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → dom 𝑂 ∈ V)
4116, 40fnexd 7076 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 ∈ V)
421, 2, 3, 4, 5, 12, 13, 41ordtypelem9 9215 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
43 isof1o 7174 . . . . . . . 8 (𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴) → 𝑂:dom 𝑂1-1-onto𝐴)
44 f1ofo 6707 . . . . . . . 8 (𝑂:dom 𝑂1-1-onto𝐴𝑂:dom 𝑂onto𝐴)
45 forn 6675 . . . . . . . 8 (𝑂:dom 𝑂onto𝐴 → ran 𝑂 = 𝐴)
4642, 43, 44, 454syl 19 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 = 𝐴)
4711, 46eleqtrrd 2842 . . . . . 6 ((𝜑 ∧ (𝑏𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏 ∈ ran 𝑂)
4847expr 456 . . . . 5 ((𝜑𝑏𝐴) → (¬ 𝑏 ∈ ran 𝑂𝑏 ∈ ran 𝑂))
4948pm2.18d 127 . . . 4 ((𝜑𝑏𝐴) → 𝑏 ∈ ran 𝑂)
5010, 49eqelssd 3938 . . 3 (𝜑 → ran 𝑂 = 𝐴)
51 isoeq5 7172 . . 3 (ran 𝑂 = 𝐴 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
5250, 51syl 17 . 2 (𝜑 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
538, 52mpbid 231 1 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cin 3882  wss 3883   class class class wbr 5070  cmpt 5153   E cep 5485   Se wse 5533   We wwe 5534  dom cdm 5580  ran crn 5581  cima 5583  Oncon0 6251   Fn wfn 6413  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418   Isom wiso 6419  crio 7211  recscrecs 8172  OrdIsocoi 9198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-oi 9199
This theorem is referenced by:  ordtype  9221
  Copyright terms: Public domain W3C validator