Step | Hyp | Ref
| Expression |
1 | | ordtypelem.1 |
. . 3
⊢ 𝐹 = recs(𝐺) |
2 | | ordtypelem.2 |
. . 3
⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
3 | | ordtypelem.3 |
. . 3
⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
4 | | ordtypelem.5 |
. . 3
⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
5 | | ordtypelem.6 |
. . 3
⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
6 | | ordtypelem.7 |
. . 3
⊢ (𝜑 → 𝑅 We 𝐴) |
7 | | ordtypelem.8 |
. . 3
⊢ (𝜑 → 𝑅 Se 𝐴) |
8 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem8 8700 |
. 2
⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) |
9 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem4 8696 |
. . . . 5
⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
10 | 9 | frnd 6286 |
. . . 4
⊢ (𝜑 → ran 𝑂 ⊆ 𝐴) |
11 | | simprl 789 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏 ∈ 𝐴) |
12 | 6 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 We 𝐴) |
13 | 7 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 Se 𝐴) |
14 | 1, 2, 3, 4, 5, 12,
13 | ordtypelem8 8700 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) |
15 | | isof1o 6829 |
. . . . . . . . . . 11
⊢ (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) → 𝑂:dom 𝑂–1-1-onto→ran
𝑂) |
16 | | f1of 6379 |
. . . . . . . . . . 11
⊢ (𝑂:dom 𝑂–1-1-onto→ran
𝑂 → 𝑂:dom 𝑂⟶ran 𝑂) |
17 | 14, 15, 16 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂:dom 𝑂⟶ran 𝑂) |
18 | | f1of1 6378 |
. . . . . . . . . . . 12
⊢ (𝑂:dom 𝑂–1-1-onto→ran
𝑂 → 𝑂:dom 𝑂–1-1→ran 𝑂) |
19 | 14, 15, 18 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂:dom 𝑂–1-1→ran 𝑂) |
20 | | simpl 476 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂) → 𝑏 ∈ 𝐴) |
21 | | seex 5306 |
. . . . . . . . . . . . 13
⊢ ((𝑅 Se 𝐴 ∧ 𝑏 ∈ 𝐴) → {𝑐 ∈ 𝐴 ∣ 𝑐𝑅𝑏} ∈ V) |
22 | 7, 20, 21 | syl2an 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → {𝑐 ∈ 𝐴 ∣ 𝑐𝑅𝑏} ∈ V) |
23 | 10 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ⊆ 𝐴) |
24 | | rexnal 3204 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑚 ∈ dom
𝑂 ¬ (𝑂‘𝑚)𝑅𝑏 ↔ ¬ ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏) |
25 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem7 8699 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑚 ∈ dom 𝑂) → ((𝑂‘𝑚)𝑅𝑏 ∨ 𝑏 ∈ ran 𝑂)) |
26 | 25 | ord 897 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑚 ∈ dom 𝑂) → (¬ (𝑂‘𝑚)𝑅𝑏 → 𝑏 ∈ ran 𝑂)) |
27 | 26 | rexlimdva 3241 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (∃𝑚 ∈ dom 𝑂 ¬ (𝑂‘𝑚)𝑅𝑏 → 𝑏 ∈ ran 𝑂)) |
28 | 24, 27 | syl5bir 235 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (¬ ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏 → 𝑏 ∈ ran 𝑂)) |
29 | 28 | con1d 142 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (¬ 𝑏 ∈ ran 𝑂 → ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏)) |
30 | 29 | impr 448 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏) |
31 | 9 | ffund 6283 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Fun 𝑂) |
32 | | funfn 6154 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
𝑂 ↔ 𝑂 Fn dom 𝑂) |
33 | 31, 32 | sylib 210 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑂 Fn dom 𝑂) |
34 | 33 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Fn dom 𝑂) |
35 | | breq1 4877 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝑂‘𝑚) → (𝑐𝑅𝑏 ↔ (𝑂‘𝑚)𝑅𝑏)) |
36 | 35 | ralrn 6612 |
. . . . . . . . . . . . . . 15
⊢ (𝑂 Fn dom 𝑂 → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏)) |
37 | 34, 36 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏)) |
38 | 30, 37 | mpbird 249 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏) |
39 | | ssrab 3906 |
. . . . . . . . . . . . 13
⊢ (ran
𝑂 ⊆ {𝑐 ∈ 𝐴 ∣ 𝑐𝑅𝑏} ↔ (ran 𝑂 ⊆ 𝐴 ∧ ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏)) |
40 | 23, 38, 39 | sylanbrc 580 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ⊆ {𝑐 ∈ 𝐴 ∣ 𝑐𝑅𝑏}) |
41 | 22, 40 | ssexd 5031 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ∈ V) |
42 | | f1dmex 7399 |
. . . . . . . . . . 11
⊢ ((𝑂:dom 𝑂–1-1→ran 𝑂 ∧ ran 𝑂 ∈ V) → dom 𝑂 ∈ V) |
43 | 19, 41, 42 | syl2anc 581 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → dom 𝑂 ∈ V) |
44 | | fex 6746 |
. . . . . . . . . 10
⊢ ((𝑂:dom 𝑂⟶ran 𝑂 ∧ dom 𝑂 ∈ V) → 𝑂 ∈ V) |
45 | 17, 43, 44 | syl2anc 581 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 ∈ V) |
46 | 1, 2, 3, 4, 5, 12,
13, 45 | ordtypelem9 8701 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) |
47 | | isof1o 6829 |
. . . . . . . 8
⊢ (𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴) → 𝑂:dom 𝑂–1-1-onto→𝐴) |
48 | | f1ofo 6386 |
. . . . . . . 8
⊢ (𝑂:dom 𝑂–1-1-onto→𝐴 → 𝑂:dom 𝑂–onto→𝐴) |
49 | | forn 6357 |
. . . . . . . 8
⊢ (𝑂:dom 𝑂–onto→𝐴 → ran 𝑂 = 𝐴) |
50 | 46, 47, 48, 49 | 4syl 19 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 = 𝐴) |
51 | 11, 50 | eleqtrrd 2910 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏 ∈ ran 𝑂) |
52 | 51 | expr 450 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (¬ 𝑏 ∈ ran 𝑂 → 𝑏 ∈ ran 𝑂)) |
53 | 52 | pm2.18d 127 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → 𝑏 ∈ ran 𝑂) |
54 | 10, 53 | eqelssd 3848 |
. . 3
⊢ (𝜑 → ran 𝑂 = 𝐴) |
55 | | isoeq5 6827 |
. . 3
⊢ (ran
𝑂 = 𝐴 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))) |
56 | 54, 55 | syl 17 |
. 2
⊢ (𝜑 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))) |
57 | 8, 56 | mpbid 224 |
1
⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) |