Step | Hyp | Ref
| Expression |
1 | | ordtypelem.1 |
. . 3
⊢ 𝐹 = recs(𝐺) |
2 | | ordtypelem.2 |
. . 3
⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
3 | | ordtypelem.3 |
. . 3
⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
4 | | ordtypelem.5 |
. . 3
⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
5 | | ordtypelem.6 |
. . 3
⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
6 | | ordtypelem.7 |
. . 3
⊢ (𝜑 → 𝑅 We 𝐴) |
7 | | ordtypelem.8 |
. . 3
⊢ (𝜑 → 𝑅 Se 𝐴) |
8 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem8 9284 |
. 2
⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) |
9 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem4 9280 |
. . . . 5
⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
10 | 9 | frnd 6608 |
. . . 4
⊢ (𝜑 → ran 𝑂 ⊆ 𝐴) |
11 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏 ∈ 𝐴) |
12 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 We 𝐴) |
13 | 7 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑅 Se 𝐴) |
14 | 9 | ffund 6604 |
. . . . . . . . . . . 12
⊢ (𝜑 → Fun 𝑂) |
15 | 14 | funfnd 6465 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑂 Fn dom 𝑂) |
16 | 15 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Fn dom 𝑂) |
17 | 1, 2, 3, 4, 5, 12,
13 | ordtypelem8 9284 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) |
18 | | isof1o 7194 |
. . . . . . . . . . . 12
⊢ (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) → 𝑂:dom 𝑂–1-1-onto→ran
𝑂) |
19 | | f1of1 6715 |
. . . . . . . . . . . 12
⊢ (𝑂:dom 𝑂–1-1-onto→ran
𝑂 → 𝑂:dom 𝑂–1-1→ran 𝑂) |
20 | 17, 18, 19 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂:dom 𝑂–1-1→ran 𝑂) |
21 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂) → 𝑏 ∈ 𝐴) |
22 | | seex 5551 |
. . . . . . . . . . . . 13
⊢ ((𝑅 Se 𝐴 ∧ 𝑏 ∈ 𝐴) → {𝑐 ∈ 𝐴 ∣ 𝑐𝑅𝑏} ∈ V) |
23 | 7, 21, 22 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → {𝑐 ∈ 𝐴 ∣ 𝑐𝑅𝑏} ∈ V) |
24 | 10 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ⊆ 𝐴) |
25 | | rexnal 3169 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑚 ∈ dom
𝑂 ¬ (𝑂‘𝑚)𝑅𝑏 ↔ ¬ ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏) |
26 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem7 9283 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑚 ∈ dom 𝑂) → ((𝑂‘𝑚)𝑅𝑏 ∨ 𝑏 ∈ ran 𝑂)) |
27 | 26 | ord 861 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑚 ∈ dom 𝑂) → (¬ (𝑂‘𝑚)𝑅𝑏 → 𝑏 ∈ ran 𝑂)) |
28 | 27 | rexlimdva 3213 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (∃𝑚 ∈ dom 𝑂 ¬ (𝑂‘𝑚)𝑅𝑏 → 𝑏 ∈ ran 𝑂)) |
29 | 25, 28 | syl5bir 242 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (¬ ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏 → 𝑏 ∈ ran 𝑂)) |
30 | 29 | con1d 145 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (¬ 𝑏 ∈ ran 𝑂 → ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏)) |
31 | 30 | impr 455 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏) |
32 | | breq1 5077 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝑂‘𝑚) → (𝑐𝑅𝑏 ↔ (𝑂‘𝑚)𝑅𝑏)) |
33 | 32 | ralrn 6964 |
. . . . . . . . . . . . . . 15
⊢ (𝑂 Fn dom 𝑂 → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏)) |
34 | 16, 33 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏)) |
35 | 31, 34 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏) |
36 | | ssrab 4006 |
. . . . . . . . . . . . 13
⊢ (ran
𝑂 ⊆ {𝑐 ∈ 𝐴 ∣ 𝑐𝑅𝑏} ↔ (ran 𝑂 ⊆ 𝐴 ∧ ∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏)) |
37 | 24, 35, 36 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ⊆ {𝑐 ∈ 𝐴 ∣ 𝑐𝑅𝑏}) |
38 | 23, 37 | ssexd 5248 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 ∈ V) |
39 | | f1dmex 7799 |
. . . . . . . . . . 11
⊢ ((𝑂:dom 𝑂–1-1→ran 𝑂 ∧ ran 𝑂 ∈ V) → dom 𝑂 ∈ V) |
40 | 20, 38, 39 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → dom 𝑂 ∈ V) |
41 | 16, 40 | fnexd 7094 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 ∈ V) |
42 | 1, 2, 3, 4, 5, 12,
13, 41 | ordtypelem9 9285 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) |
43 | | isof1o 7194 |
. . . . . . . 8
⊢ (𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴) → 𝑂:dom 𝑂–1-1-onto→𝐴) |
44 | | f1ofo 6723 |
. . . . . . . 8
⊢ (𝑂:dom 𝑂–1-1-onto→𝐴 → 𝑂:dom 𝑂–onto→𝐴) |
45 | | forn 6691 |
. . . . . . . 8
⊢ (𝑂:dom 𝑂–onto→𝐴 → ran 𝑂 = 𝐴) |
46 | 42, 43, 44, 45 | 4syl 19 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → ran 𝑂 = 𝐴) |
47 | 11, 46 | eleqtrrd 2842 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂)) → 𝑏 ∈ ran 𝑂) |
48 | 47 | expr 457 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (¬ 𝑏 ∈ ran 𝑂 → 𝑏 ∈ ran 𝑂)) |
49 | 48 | pm2.18d 127 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → 𝑏 ∈ ran 𝑂) |
50 | 10, 49 | eqelssd 3942 |
. . 3
⊢ (𝜑 → ran 𝑂 = 𝐴) |
51 | | isoeq5 7192 |
. . 3
⊢ (ran
𝑂 = 𝐴 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))) |
52 | 50, 51 | syl 17 |
. 2
⊢ (𝜑 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))) |
53 | 8, 52 | mpbid 231 |
1
⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) |