MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oiexg Structured version   Visualization version   GIF version

Theorem oiexg 9431
Description: The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oiexg (𝐴𝑉𝐹 ∈ V)

Proof of Theorem oiexg
StepHypRef Expression
1 oicl.1 . . . . 5 𝐹 = OrdIso(𝑅, 𝐴)
21ordtype 9428 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴))
3 isof1o 7266 . . . 4 (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹:dom 𝐹1-1-onto𝐴)
4 f1of1 6770 . . . 4 (𝐹:dom 𝐹1-1-onto𝐴𝐹:dom 𝐹1-1𝐴)
52, 3, 43syl 18 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹:dom 𝐹1-1𝐴)
6 f1f 6727 . . . . 5 (𝐹:dom 𝐹1-1𝐴𝐹:dom 𝐹𝐴)
7 f1dmex 7898 . . . . 5 ((𝐹:dom 𝐹1-1𝐴𝐴𝑉) → dom 𝐹 ∈ V)
8 fex 7169 . . . . 5 ((𝐹:dom 𝐹𝐴 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V)
96, 7, 8syl2an2r 685 . . . 4 ((𝐹:dom 𝐹1-1𝐴𝐴𝑉) → 𝐹 ∈ V)
109expcom 413 . . 3 (𝐴𝑉 → (𝐹:dom 𝐹1-1𝐴𝐹 ∈ V))
115, 10syl5 34 . 2 (𝐴𝑉 → ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 ∈ V))
121oi0 9424 . . 3 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 = ∅)
13 0ex 5249 . . 3 ∅ ∈ V
1412, 13eqeltrdi 2841 . 2 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 ∈ V)
1511, 14pm2.61d1 180 1 (𝐴𝑉𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3438  c0 4284   E cep 5520   Se wse 5572   We wwe 5573  dom cdm 5621  wf 6485  1-1wf1 6486  1-1-ontowf1o 6488   Isom wiso 6490  OrdIsocoi 9405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-oi 9406
This theorem is referenced by:  oion  9432  oien  9434  cantnfval  9568  wemapwe  9597  finnisoeu  10014  cofsmo  10170
  Copyright terms: Public domain W3C validator