| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oiexg | Structured version Visualization version GIF version | ||
| Description: The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| oicl.1 | ⊢ 𝐹 = OrdIso(𝑅, 𝐴) |
| Ref | Expression |
|---|---|
| oiexg | ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oicl.1 | . . . . 5 ⊢ 𝐹 = OrdIso(𝑅, 𝐴) | |
| 2 | 1 | ordtype 9413 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
| 3 | isof1o 7252 | . . . 4 ⊢ (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹:dom 𝐹–1-1-onto→𝐴) | |
| 4 | f1of1 6758 | . . . 4 ⊢ (𝐹:dom 𝐹–1-1-onto→𝐴 → 𝐹:dom 𝐹–1-1→𝐴) | |
| 5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹:dom 𝐹–1-1→𝐴) |
| 6 | f1f 6715 | . . . . 5 ⊢ (𝐹:dom 𝐹–1-1→𝐴 → 𝐹:dom 𝐹⟶𝐴) | |
| 7 | f1dmex 7884 | . . . . 5 ⊢ ((𝐹:dom 𝐹–1-1→𝐴 ∧ 𝐴 ∈ 𝑉) → dom 𝐹 ∈ V) | |
| 8 | fex 7155 | . . . . 5 ⊢ ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
| 9 | 6, 7, 8 | syl2an2r 685 | . . . 4 ⊢ ((𝐹:dom 𝐹–1-1→𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) |
| 10 | 9 | expcom 413 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐹:dom 𝐹–1-1→𝐴 → 𝐹 ∈ V)) |
| 11 | 5, 10 | syl5 34 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 ∈ V)) |
| 12 | 1 | oi0 9409 | . . 3 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 = ∅) |
| 13 | 0ex 5243 | . . 3 ⊢ ∅ ∈ V | |
| 14 | 12, 13 | eqeltrdi 2837 | . 2 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 ∈ V) |
| 15 | 11, 14 | pm2.61d1 180 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∅c0 4281 E cep 5513 Se wse 5565 We wwe 5566 dom cdm 5614 ⟶wf 6473 –1-1→wf1 6474 –1-1-onto→wf1o 6476 Isom wiso 6478 OrdIsocoi 9390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-oi 9391 |
| This theorem is referenced by: oion 9417 oien 9419 cantnfval 9553 wemapwe 9582 finnisoeu 9996 cofsmo 10152 |
| Copyright terms: Public domain | W3C validator |