![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oiexg | Structured version Visualization version GIF version |
Description: The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
oicl.1 | ⊢ 𝐹 = OrdIso(𝑅, 𝐴) |
Ref | Expression |
---|---|
oiexg | ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oicl.1 | . . . . 5 ⊢ 𝐹 = OrdIso(𝑅, 𝐴) | |
2 | 1 | ordtype 9568 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
3 | isof1o 7327 | . . . 4 ⊢ (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹:dom 𝐹–1-1-onto→𝐴) | |
4 | f1of1 6834 | . . . 4 ⊢ (𝐹:dom 𝐹–1-1-onto→𝐴 → 𝐹:dom 𝐹–1-1→𝐴) | |
5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹:dom 𝐹–1-1→𝐴) |
6 | f1f 6790 | . . . . 5 ⊢ (𝐹:dom 𝐹–1-1→𝐴 → 𝐹:dom 𝐹⟶𝐴) | |
7 | f1dmex 7962 | . . . . 5 ⊢ ((𝐹:dom 𝐹–1-1→𝐴 ∧ 𝐴 ∈ 𝑉) → dom 𝐹 ∈ V) | |
8 | fex 7235 | . . . . 5 ⊢ ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
9 | 6, 7, 8 | syl2an2r 683 | . . . 4 ⊢ ((𝐹:dom 𝐹–1-1→𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) |
10 | 9 | expcom 412 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐹:dom 𝐹–1-1→𝐴 → 𝐹 ∈ V)) |
11 | 5, 10 | syl5 34 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 ∈ V)) |
12 | 1 | oi0 9564 | . . 3 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 = ∅) |
13 | 0ex 5304 | . . 3 ⊢ ∅ ∈ V | |
14 | 12, 13 | eqeltrdi 2834 | . 2 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 ∈ V) |
15 | 11, 14 | pm2.61d1 180 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ∅c0 4322 E cep 5577 Se wse 5627 We wwe 5628 dom cdm 5674 ⟶wf 6542 –1-1→wf1 6543 –1-1-onto→wf1o 6545 Isom wiso 6547 OrdIsocoi 9545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-oi 9546 |
This theorem is referenced by: oion 9572 oien 9574 cantnfval 9704 wemapwe 9733 finnisoeu 10149 cofsmo 10303 |
Copyright terms: Public domain | W3C validator |