![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oiexg | Structured version Visualization version GIF version |
Description: The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
oicl.1 | ⊢ 𝐹 = OrdIso(𝑅, 𝐴) |
Ref | Expression |
---|---|
oiexg | ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oicl.1 | . . . . 5 ⊢ 𝐹 = OrdIso(𝑅, 𝐴) | |
2 | 1 | ordtype 9579 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) |
3 | isof1o 7350 | . . . 4 ⊢ (𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴) → 𝐹:dom 𝐹–1-1-onto→𝐴) | |
4 | f1of1 6855 | . . . 4 ⊢ (𝐹:dom 𝐹–1-1-onto→𝐴 → 𝐹:dom 𝐹–1-1→𝐴) | |
5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹:dom 𝐹–1-1→𝐴) |
6 | f1f 6812 | . . . . 5 ⊢ (𝐹:dom 𝐹–1-1→𝐴 → 𝐹:dom 𝐹⟶𝐴) | |
7 | f1dmex 7989 | . . . . 5 ⊢ ((𝐹:dom 𝐹–1-1→𝐴 ∧ 𝐴 ∈ 𝑉) → dom 𝐹 ∈ V) | |
8 | fex 7253 | . . . . 5 ⊢ ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V) | |
9 | 6, 7, 8 | syl2an2r 685 | . . . 4 ⊢ ((𝐹:dom 𝐹–1-1→𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) |
10 | 9 | expcom 413 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐹:dom 𝐹–1-1→𝐴 → 𝐹 ∈ V)) |
11 | 5, 10 | syl5 34 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 ∈ V)) |
12 | 1 | oi0 9575 | . . 3 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 = ∅) |
13 | 0ex 5316 | . . 3 ⊢ ∅ ∈ V | |
14 | 12, 13 | eqeltrdi 2849 | . 2 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 ∈ V) |
15 | 11, 14 | pm2.61d1 180 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ∅c0 4342 E cep 5592 Se wse 5643 We wwe 5644 dom cdm 5693 ⟶wf 6565 –1-1→wf1 6566 –1-1-onto→wf1o 6568 Isom wiso 6570 OrdIsocoi 9556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-oi 9557 |
This theorem is referenced by: oion 9583 oien 9585 cantnfval 9715 wemapwe 9744 finnisoeu 10160 cofsmo 10316 |
Copyright terms: Public domain | W3C validator |