MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oicl Structured version   Visualization version   GIF version

Theorem oicl 9489
Description: The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oicl Ord dom 𝐹

Proof of Theorem oicl
Dummy variables 𝑢 𝑡 𝑣 𝑥 𝑗 𝑤 𝑧 𝑓 𝑖 𝑟 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . 5 recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) = recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)))
2 eqid 2730 . . . . 5 {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 eqid 2730 . . . . 5 ( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) = ( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
41, 2, 3ordtypecbv 9477 . . . 4 recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)))
5 eqid 2730 . . . 4 {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) “ 𝑥)𝑧𝑅𝑡} = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) “ 𝑥)𝑧𝑅𝑡}
6 oicl.1 . . . 4 𝐹 = OrdIso(𝑅, 𝐴)
7 simpl 482 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 We 𝐴)
8 simpr 484 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
94, 2, 3, 5, 6, 7, 8ordtypelem5 9482 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → (Ord dom 𝐹𝐹:dom 𝐹𝐴))
109simpld 494 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → Ord dom 𝐹)
11 ord0 6389 . . 3 Ord ∅
126oi0 9488 . . . . . 6 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 = ∅)
1312dmeqd 5872 . . . . 5 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → dom 𝐹 = dom ∅)
14 dm0 5887 . . . . 5 dom ∅ = ∅
1513, 14eqtrdi 2781 . . . 4 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → dom 𝐹 = ∅)
16 ordeq 6342 . . . 4 (dom 𝐹 = ∅ → (Ord dom 𝐹 ↔ Ord ∅))
1715, 16syl 17 . . 3 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → (Ord dom 𝐹 ↔ Ord ∅))
1811, 17mpbiri 258 . 2 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → Ord dom 𝐹)
1910, 18pm2.61i 182 1 Ord dom 𝐹
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  c0 4299   class class class wbr 5110  cmpt 5191   Se wse 5592   We wwe 5593  dom cdm 5641  ran crn 5642  cima 5644  Ord word 6334  Oncon0 6335  wf 6510  crio 7346  recscrecs 8342  OrdIsocoi 9469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-oi 9470
This theorem is referenced by:  oion  9496  oieu  9499  oismo  9500  oiid  9501  wofib  9505  cantnflt  9632  cantnfp1lem3  9640  cantnflem1b  9646  cantnflem1  9649  wemapwe  9657  cnfcomlem  9659  cnfcom  9660  cnfcom2lem  9661  infxpenlem  9973  hsmexlem1  10386  fpwwe2lem7  10597  fpwwe2lem8  10598  fpwwe2lem9  10599
  Copyright terms: Public domain W3C validator