| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oicl | Structured version Visualization version GIF version | ||
| Description: The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| oicl.1 | ⊢ 𝐹 = OrdIso(𝑅, 𝐴) |
| Ref | Expression |
|---|---|
| oicl | ⊢ Ord dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) = recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) | |
| 2 | eqid 2731 | . . . . 5 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
| 3 | eqid 2731 | . . . . 5 ⊢ (ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) = (ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) | |
| 4 | 1, 2, 3 | ordtypecbv 9403 | . . . 4 ⊢ recs((𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) |
| 5 | eqid 2731 | . . . 4 ⊢ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) “ 𝑥)𝑧𝑅𝑡} = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) “ 𝑥)𝑧𝑅𝑡} | |
| 6 | oicl.1 | . . . 4 ⊢ 𝐹 = OrdIso(𝑅, 𝐴) | |
| 7 | simpl 482 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 We 𝐴) | |
| 8 | simpr 484 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Se 𝐴) | |
| 9 | 4, 2, 3, 5, 6, 7, 8 | ordtypelem5 9408 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → (Ord dom 𝐹 ∧ 𝐹:dom 𝐹⟶𝐴)) |
| 10 | 9 | simpld 494 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → Ord dom 𝐹) |
| 11 | ord0 6360 | . . 3 ⊢ Ord ∅ | |
| 12 | 6 | oi0 9414 | . . . . . 6 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 = ∅) |
| 13 | 12 | dmeqd 5844 | . . . . 5 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → dom 𝐹 = dom ∅) |
| 14 | dm0 5859 | . . . . 5 ⊢ dom ∅ = ∅ | |
| 15 | 13, 14 | eqtrdi 2782 | . . . 4 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → dom 𝐹 = ∅) |
| 16 | ordeq 6313 | . . . 4 ⊢ (dom 𝐹 = ∅ → (Ord dom 𝐹 ↔ Ord ∅)) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → (Ord dom 𝐹 ↔ Ord ∅)) |
| 18 | 11, 17 | mpbiri 258 | . 2 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → Ord dom 𝐹) |
| 19 | 10, 18 | pm2.61i 182 | 1 ⊢ Ord dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∀wral 3047 ∃wrex 3056 {crab 3395 Vcvv 3436 ∅c0 4280 class class class wbr 5089 ↦ cmpt 5170 Se wse 5565 We wwe 5566 dom cdm 5614 ran crn 5615 “ cima 5617 Ord word 6305 Oncon0 6306 ⟶wf 6477 ℩crio 7302 recscrecs 8290 OrdIsocoi 9395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-oi 9396 |
| This theorem is referenced by: oion 9422 oieu 9425 oismo 9426 oiid 9427 wofib 9431 cantnflt 9562 cantnfp1lem3 9570 cantnflem1b 9576 cantnflem1 9579 wemapwe 9587 cnfcomlem 9589 cnfcom 9590 cnfcom2lem 9591 infxpenlem 9904 hsmexlem1 10317 fpwwe2lem7 10528 fpwwe2lem8 10529 fpwwe2lem9 10530 |
| Copyright terms: Public domain | W3C validator |