MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oicl Structured version   Visualization version   GIF version

Theorem oicl 9569
Description: The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oicl Ord dom 𝐹

Proof of Theorem oicl
Dummy variables 𝑢 𝑡 𝑣 𝑥 𝑗 𝑤 𝑧 𝑓 𝑖 𝑟 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) = recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)))
2 eqid 2737 . . . . 5 {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 eqid 2737 . . . . 5 ( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) = ( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
41, 2, 3ordtypecbv 9557 . . . 4 recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)))
5 eqid 2737 . . . 4 {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) “ 𝑥)𝑧𝑅𝑡} = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) “ 𝑥)𝑧𝑅𝑡}
6 oicl.1 . . . 4 𝐹 = OrdIso(𝑅, 𝐴)
7 simpl 482 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 We 𝐴)
8 simpr 484 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
94, 2, 3, 5, 6, 7, 8ordtypelem5 9562 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → (Ord dom 𝐹𝐹:dom 𝐹𝐴))
109simpld 494 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → Ord dom 𝐹)
11 ord0 6437 . . 3 Ord ∅
126oi0 9568 . . . . . 6 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 = ∅)
1312dmeqd 5916 . . . . 5 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → dom 𝐹 = dom ∅)
14 dm0 5931 . . . . 5 dom ∅ = ∅
1513, 14eqtrdi 2793 . . . 4 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → dom 𝐹 = ∅)
16 ordeq 6391 . . . 4 (dom 𝐹 = ∅ → (Ord dom 𝐹 ↔ Ord ∅))
1715, 16syl 17 . . 3 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → (Ord dom 𝐹 ↔ Ord ∅))
1811, 17mpbiri 258 . 2 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → Ord dom 𝐹)
1910, 18pm2.61i 182 1 Ord dom 𝐹
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  c0 4333   class class class wbr 5143  cmpt 5225   Se wse 5635   We wwe 5636  dom cdm 5685  ran crn 5686  cima 5688  Ord word 6383  Oncon0 6384  wf 6557  crio 7387  recscrecs 8410  OrdIsocoi 9549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-oi 9550
This theorem is referenced by:  oion  9576  oieu  9579  oismo  9580  oiid  9581  wofib  9585  cantnflt  9712  cantnfp1lem3  9720  cantnflem1b  9726  cantnflem1  9729  wemapwe  9737  cnfcomlem  9739  cnfcom  9740  cnfcom2lem  9741  infxpenlem  10053  hsmexlem1  10466  fpwwe2lem7  10677  fpwwe2lem8  10678  fpwwe2lem9  10679
  Copyright terms: Public domain W3C validator