| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2214. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | exlimiv 1931 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
| 3 | 2 | exlimiv 1931 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: cgsex2g 3482 cgsex4g 3483 cgsex4gOLD 3484 opabss 5153 dtruALT2 5306 exneq 5376 copsexgw 5428 copsexg 5429 elopab 5465 0nelelxp 5649 elvvuni 5691 optocl 5708 optoclOLD 5709 relopabiALT 5762 relop 5789 elreldm 5874 xpnz 6106 xpdifid 6115 dfco2a 6193 unielrel 6221 unixp0 6230 funsndifnop 7084 fmptsng 7102 oprabidw 7377 oprabid 7378 oprabv 7406 1stval2 7938 2ndval2 7939 1st2val 7949 2nd2val 7950 xp1st 7953 xp2nd 7954 frxp 8056 poxp 8058 soxp 8059 rntpos 8169 dftpos4 8175 tpostpos 8176 frrlem4 8219 tfrlem7 8302 ener 8923 domtr 8929 unen 8967 xpsnen 8974 undom 8978 sbthlem10 9009 mapen 9054 cnvfi 9085 entrfil 9094 domtrfil 9101 sbthfilem 9107 djuunxp 9814 fseqen 9918 dfac5lem4 10017 dfac5lem4OLD 10019 kmlem16 10057 axdc4lem 10346 hashfacen 14361 hashle2pr 14384 fundmge2nop0 14409 catcone0 17593 gictr 19188 dvdsrval 20279 rngqiprngimfo 21238 thlle 21634 hmphtr 23698 fsumdvdsmul 27132 griedg0ssusgr 29243 rgrusgrprc 29568 numclwwlk1lem2fo 30338 frgrregord013 30375 friendship 30379 nvss 30573 spanuni 31524 5oalem7 31640 3oalem3 31644 opabssi 32596 gsummpt2co 33028 qqhval2 33995 bnj605 34919 bnj607 34928 funen1cnv 35100 fineqvac 35139 loop1cycl 35181 satfv1 35407 sat1el2xp 35423 fmla0xp 35427 satefvfmla0 35462 mppspstlem 35615 mppsval 35616 pprodss4v 35926 sscoid 35955 colinearex 36102 copsex2b 37182 rictr 42561 pr2cv 43589 stoweidlem35 46081 funop1 47322 sprsymrelfvlem 47529 grictr 47962 uspgrsprf 48185 uspgrsprf1 48186 rrx2plordisom 48763 eloprab1st2nd 48907 |
| Copyright terms: Public domain | W3C validator |