![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2209. (Contributed by NM, 1-Aug-1995.) |
Ref | Expression |
---|---|
exlimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | exlimiv 1928 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
3 | 2 | exlimiv 1928 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: cgsex2g 3525 cgsex4g 3526 cgsex4gOLD 3527 opabss 5212 dtruALT2 5376 exneq 5446 dtruOLD 5452 copsexgw 5501 copsexg 5502 elopab 5537 elopabrOLD 5573 0nelelxp 5724 elvvuni 5765 optocl 5783 relopabiALT 5836 relop 5864 elreldm 5949 xpnz 6181 xpdifid 6190 dfco2a 6268 unielrel 6296 unixp0 6305 funsndifnop 7171 fmptsng 7188 oprabidw 7462 oprabid 7463 oprabv 7493 1stval2 8030 2ndval2 8031 1st2val 8041 2nd2val 8042 xp1st 8045 xp2nd 8046 frxp 8150 poxp 8152 soxp 8153 rntpos 8263 dftpos4 8269 tpostpos 8270 frrlem4 8313 wfrlem4OLD 8351 wfrfunOLD 8358 tfrlem7 8422 ener 9040 domtr 9046 unen 9085 xpsnen 9094 undom 9098 sbthlem10 9131 mapen 9180 cnvfi 9215 entrfil 9223 domtrfil 9230 sbthfilem 9236 djuunxp 9959 fseqen 10065 dfac5lem4 10164 dfac5lem4OLD 10166 kmlem16 10204 axdc4lem 10493 hashfacen 14490 hashle2pr 14513 fundmge2nop0 14538 catcone0 17732 gictr 19307 dvdsrval 20378 rngqiprngimfo 21329 thlle 21734 thlleOLD 21735 hmphtr 23807 fsumdvdsmul 27253 griedg0ssusgr 29297 rgrusgrprc 29622 numclwwlk1lem2fo 30387 frgrregord013 30424 friendship 30428 nvss 30622 spanuni 31573 5oalem7 31689 3oalem3 31693 opabssi 32633 gsummpt2co 33034 qqhval2 33945 bnj605 34900 bnj607 34909 funen1cnv 35081 fineqvac 35090 loop1cycl 35122 satfv1 35348 sat1el2xp 35364 fmla0xp 35368 satefvfmla0 35403 mppspstlem 35556 mppsval 35557 pprodss4v 35866 sscoid 35895 colinearex 36042 copsex2b 37123 rictr 42507 pr2cv 43538 stoweidlem35 45991 funop1 47233 sprsymrelfvlem 47415 grictr 47830 uspgrsprf 47990 uspgrsprf1 47991 rrx2plordisom 48573 |
Copyright terms: Public domain | W3C validator |