![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2212. (Contributed by NM, 1-Aug-1995.) |
Ref | Expression |
---|---|
exlimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | exlimiv 1929 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
3 | 2 | exlimiv 1929 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: cgsex2g 3537 cgsex4g 3538 cgsex4gOLD 3539 opabss 5230 dtruALT2 5388 exneq 5455 dtruOLD 5461 copsexgw 5510 copsexg 5511 elopab 5546 elopabrOLD 5582 0nelelxp 5735 elvvuni 5776 optocl 5794 relopabiALT 5847 relop 5875 elreldm 5960 xpnz 6190 xpdifid 6199 dfco2a 6277 unielrel 6305 unixp0 6314 funsndifnop 7185 fmptsng 7202 oprabidw 7479 oprabid 7480 oprabv 7510 1stval2 8047 2ndval2 8048 1st2val 8058 2nd2val 8059 xp1st 8062 xp2nd 8063 frxp 8167 poxp 8169 soxp 8170 rntpos 8280 dftpos4 8286 tpostpos 8287 frrlem4 8330 wfrlem4OLD 8368 wfrfunOLD 8375 tfrlem7 8439 ener 9061 domtr 9067 unen 9112 xpsnen 9121 undom 9125 sbthlem10 9158 mapen 9207 cnvfi 9243 entrfil 9251 domtrfil 9258 sbthfilem 9264 djuunxp 9990 fseqen 10096 dfac5lem4 10195 dfac5lem4OLD 10197 kmlem16 10235 axdc4lem 10524 hashfacen 14503 hashle2pr 14526 fundmge2nop0 14551 catcone0 17745 gictr 19316 dvdsrval 20387 rngqiprngimfo 21334 thlle 21739 thlleOLD 21740 hmphtr 23812 fsumdvdsmul 27256 griedg0ssusgr 29300 rgrusgrprc 29625 numclwwlk1lem2fo 30390 frgrregord013 30427 friendship 30431 nvss 30625 spanuni 31576 5oalem7 31692 3oalem3 31696 opabssi 32635 gsummpt2co 33031 qqhval2 33928 bnj605 34883 bnj607 34892 funen1cnv 35064 fineqvac 35073 loop1cycl 35105 satfv1 35331 sat1el2xp 35347 fmla0xp 35351 satefvfmla0 35386 mppspstlem 35539 mppsval 35540 pprodss4v 35848 sscoid 35877 colinearex 36024 copsex2b 37106 rictr 42475 pr2cv 43510 stoweidlem35 45956 funop1 47198 sprsymrelfvlem 47364 grictr 47776 uspgrsprf 47869 uspgrsprf1 47870 rrx2plordisom 48457 |
Copyright terms: Public domain | W3C validator |