| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2210. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | exlimiv 1929 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
| 3 | 2 | exlimiv 1929 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: cgsex2g 3511 cgsex4g 3512 cgsex4gOLD 3513 opabss 5189 dtruALT2 5352 exneq 5422 dtruOLD 5428 copsexgw 5477 copsexg 5478 elopab 5514 elopabrOLD 5550 0nelelxp 5702 elvvuni 5744 optocl 5762 relopabiALT 5815 relop 5843 elreldm 5928 xpnz 6161 xpdifid 6170 dfco2a 6248 unielrel 6276 unixp0 6285 funsndifnop 7152 fmptsng 7171 oprabidw 7445 oprabid 7446 oprabv 7476 1stval2 8014 2ndval2 8015 1st2val 8025 2nd2val 8026 xp1st 8029 xp2nd 8030 frxp 8134 poxp 8136 soxp 8137 rntpos 8247 dftpos4 8253 tpostpos 8254 frrlem4 8297 wfrlem4OLD 8335 wfrfunOLD 8342 tfrlem7 8406 ener 9024 domtr 9030 unen 9069 xpsnen 9078 undom 9082 sbthlem10 9115 mapen 9164 cnvfi 9199 entrfil 9208 domtrfil 9215 sbthfilem 9221 djuunxp 9944 fseqen 10050 dfac5lem4 10149 dfac5lem4OLD 10151 kmlem16 10189 axdc4lem 10478 hashfacen 14476 hashle2pr 14499 fundmge2nop0 14524 catcone0 17706 gictr 19268 dvdsrval 20334 rngqiprngimfo 21278 thlle 21683 thlleOLD 21684 hmphtr 23756 fsumdvdsmul 27193 griedg0ssusgr 29229 rgrusgrprc 29554 numclwwlk1lem2fo 30324 frgrregord013 30361 friendship 30365 nvss 30559 spanuni 31510 5oalem7 31626 3oalem3 31630 opabssi 32572 gsummpt2co 32997 qqhval2 33924 bnj605 34862 bnj607 34871 funen1cnv 35043 fineqvac 35052 loop1cycl 35083 satfv1 35309 sat1el2xp 35325 fmla0xp 35329 satefvfmla0 35364 mppspstlem 35517 mppsval 35518 pprodss4v 35826 sscoid 35855 colinearex 36002 copsex2b 37082 rictr 42475 pr2cv 43506 stoweidlem35 45995 funop1 47241 sprsymrelfvlem 47423 grictr 47838 uspgrsprf 48008 uspgrsprf1 48009 rrx2plordisom 48590 |
| Copyright terms: Public domain | W3C validator |