Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2209. (Contributed by NM, 1-Aug-1995.) |
Ref | Expression |
---|---|
exlimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | exlimiv 1931 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
3 | 2 | exlimiv 1931 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 |
This theorem depends on definitions: df-bi 210 df-ex 1782 |
This theorem is referenced by: cgsex2g 3456 cgsex4g 3457 cgsex4gOLD 3458 opabss 5100 dtru 5243 copsexgw 5353 copsexg 5354 elopab 5388 elopabr 5421 0nelelxp 5563 elvvuni 5602 optocl 5619 relopabiALT 5670 relop 5696 elreldm 5781 xpnz 5993 xpdifid 6002 dfco2a 6081 unielrel 6108 unixp0 6117 funsndifnop 6910 fmptsng 6927 oprabidw 7187 oprabid 7188 oprabv 7214 1stval2 7716 2ndval2 7717 1st2val 7727 2nd2val 7728 xp1st 7731 xp2nd 7732 frxp 7831 poxp 7833 soxp 7834 rntpos 7921 dftpos4 7927 tpostpos 7928 wfrlem4 7974 wfrfun 7981 tfrlem7 8035 ener 8587 domtr 8593 unen 8629 xpsnen 8635 sbthlem10 8671 mapen 8716 djuunxp 9396 fseqen 9500 dfac5lem4 9599 kmlem16 9638 axdc4lem 9928 hashfacen 13875 hashfacenOLD 13876 hashle2pr 13900 fundmge2nop0 13915 gictr 18495 dvdsrval 19479 thlle 20475 hmphtr 22496 griedg0ssusgr 27167 rgrusgrprc 27491 numclwwlk1lem2fo 28255 frgrregord013 28292 friendship 28296 nvss 28488 spanuni 29439 5oalem7 29555 3oalem3 29559 opabssi 30488 gsummpt2co 30846 qqhval2 31463 bnj605 32419 bnj607 32428 funen1cnv 32592 loop1cycl 32627 satfv1 32853 sat1el2xp 32869 fmla0xp 32873 satefvfmla0 32908 mppspstlem 33061 mppsval 33062 frrlem4 33400 pprodss4v 33769 sscoid 33798 colinearex 33945 bj-dtru 34569 copsex2b 34869 sn-dtru 39739 pr2cv 40655 stoweidlem35 43078 funop1 44256 sprsymrelfvlem 44424 uspgrsprf 44790 uspgrsprf1 44791 rrx2plordisom 45551 |
Copyright terms: Public domain | W3C validator |