| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2210. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | exlimiv 1929 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
| 3 | 2 | exlimiv 1929 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: cgsex2g 3510 cgsex4g 3511 cgsex4gOLD 3512 opabss 5187 dtruALT2 5350 exneq 5420 dtruOLD 5426 copsexgw 5475 copsexg 5476 elopab 5512 elopabrOLD 5548 0nelelxp 5700 elvvuni 5742 optocl 5760 relopabiALT 5813 relop 5841 elreldm 5926 xpnz 6159 xpdifid 6168 dfco2a 6246 unielrel 6274 unixp0 6283 funsndifnop 7151 fmptsng 7170 oprabidw 7444 oprabid 7445 oprabv 7475 1stval2 8013 2ndval2 8014 1st2val 8024 2nd2val 8025 xp1st 8028 xp2nd 8029 frxp 8133 poxp 8135 soxp 8136 rntpos 8246 dftpos4 8252 tpostpos 8253 frrlem4 8296 wfrlem4OLD 8334 wfrfunOLD 8341 tfrlem7 8405 ener 9023 domtr 9029 unen 9068 xpsnen 9077 undom 9081 sbthlem10 9114 mapen 9163 cnvfi 9198 entrfil 9207 domtrfil 9214 sbthfilem 9220 djuunxp 9943 fseqen 10049 dfac5lem4 10148 dfac5lem4OLD 10150 kmlem16 10188 axdc4lem 10477 hashfacen 14476 hashle2pr 14499 fundmge2nop0 14524 catcone0 17702 gictr 19264 dvdsrval 20330 rngqiprngimfo 21274 thlle 21671 thlleOLD 21672 hmphtr 23738 fsumdvdsmul 27175 griedg0ssusgr 29211 rgrusgrprc 29536 numclwwlk1lem2fo 30306 frgrregord013 30343 friendship 30347 nvss 30541 spanuni 31492 5oalem7 31608 3oalem3 31612 opabssi 32561 gsummpt2co 32995 qqhval2 33958 bnj605 34896 bnj607 34905 funen1cnv 35077 fineqvac 35086 loop1cycl 35117 satfv1 35343 sat1el2xp 35359 fmla0xp 35363 satefvfmla0 35398 mppspstlem 35551 mppsval 35552 pprodss4v 35860 sscoid 35889 colinearex 36036 copsex2b 37116 rictr 42509 pr2cv 43538 stoweidlem35 46022 funop1 47268 sprsymrelfvlem 47450 grictr 47865 uspgrsprf 48035 uspgrsprf1 48036 rrx2plordisom 48617 eloprab1st2nd 48751 |
| Copyright terms: Public domain | W3C validator |