| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2212. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | exlimiv 1930 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
| 3 | 2 | exlimiv 1930 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: cgsex2g 3511 cgsex4g 3512 cgsex4gOLD 3513 opabss 5188 dtruALT2 5345 exneq 5415 dtruOLD 5421 copsexgw 5470 copsexg 5471 elopab 5507 elopabrOLD 5543 0nelelxp 5694 elvvuni 5736 optocl 5754 relopabiALT 5807 relop 5835 elreldm 5920 xpnz 6153 xpdifid 6162 dfco2a 6240 unielrel 6268 unixp0 6277 funsndifnop 7146 fmptsng 7165 oprabidw 7441 oprabid 7442 oprabv 7472 1stval2 8010 2ndval2 8011 1st2val 8021 2nd2val 8022 xp1st 8025 xp2nd 8026 frxp 8130 poxp 8132 soxp 8133 rntpos 8243 dftpos4 8249 tpostpos 8250 frrlem4 8293 wfrlem4OLD 8331 wfrfunOLD 8338 tfrlem7 8402 ener 9020 domtr 9026 unen 9065 xpsnen 9074 undom 9078 sbthlem10 9111 mapen 9160 cnvfi 9195 entrfil 9204 domtrfil 9211 sbthfilem 9217 djuunxp 9940 fseqen 10046 dfac5lem4 10145 dfac5lem4OLD 10147 kmlem16 10185 axdc4lem 10474 hashfacen 14477 hashle2pr 14500 fundmge2nop0 14525 catcone0 17704 gictr 19264 dvdsrval 20326 rngqiprngimfo 21267 thlle 21662 hmphtr 23726 fsumdvdsmul 27162 griedg0ssusgr 29249 rgrusgrprc 29574 numclwwlk1lem2fo 30344 frgrregord013 30381 friendship 30385 nvss 30579 spanuni 31530 5oalem7 31646 3oalem3 31650 opabssi 32598 gsummpt2co 33047 qqhval2 34018 bnj605 34943 bnj607 34952 funen1cnv 35124 fineqvac 35133 loop1cycl 35164 satfv1 35390 sat1el2xp 35406 fmla0xp 35410 satefvfmla0 35445 mppspstlem 35598 mppsval 35599 pprodss4v 35907 sscoid 35936 colinearex 36083 copsex2b 37163 rictr 42518 pr2cv 43547 stoweidlem35 46044 funop1 47292 sprsymrelfvlem 47484 grictr 47916 uspgrsprf 48101 uspgrsprf1 48102 rrx2plordisom 48683 eloprab1st2nd 48823 |
| Copyright terms: Public domain | W3C validator |