![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2178. (Contributed by NM, 1-Aug-1995.) |
Ref | Expression |
---|---|
exlimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | exlimiv 1912 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
3 | 2 | exlimiv 1912 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 |
This theorem depends on definitions: df-bi 208 df-ex 1766 |
This theorem is referenced by: cgsex2g 3484 cgsex4g 3485 opabss 5032 dtru 5169 copsexg 5280 elopab 5311 elopabr 5342 epelgOLD 5362 0nelelxp 5485 elvvuni 5521 optocl 5538 relopabiALT 5588 relop 5614 elreldm 5694 xpnz 5899 xpdifid 5908 dfco2a 5981 unielrel 6007 unixp0 6016 funsndifnop 6783 fmptsng 6800 oprabid 7054 oprabv 7080 1stval2 7569 2ndval2 7570 1st2val 7580 2nd2val 7581 xp1st 7584 xp2nd 7585 frxp 7680 poxp 7682 soxp 7683 rntpos 7763 dftpos4 7769 tpostpos 7770 wfrlem4 7816 wfrlem4OLD 7817 wfrfun 7824 tfrlem7 7878 ener 8411 domtr 8417 unen 8451 xpsnen 8455 sbthlem10 8490 mapen 8535 djuunxp 9203 fseqen 9306 dfac5lem4 9405 kmlem16 9444 axdc4lem 9730 hashfacen 13664 hashle2pr 13685 fundmge2nop0 13700 gictr 18160 dvdsrval 19089 thlle 20527 hmphtr 22079 griedg0ssusgr 26734 rgrusgrprc 27058 numclwwlk1lem2fo 27825 frgrregord013 27862 friendship 27866 nvss 28057 spanuni 29008 5oalem7 29124 3oalem3 29128 opabssi 30050 gsummpt2co 30491 qqhval2 30836 bnj605 31791 bnj607 31800 funen1cnv 31967 loop1cycl 31994 satfv1 32220 sat1el2xp 32236 fmla0xp 32240 satefvfmla0 32275 mppspstlem 32428 mppsval 32429 frrlem4 32737 pprodss4v 32956 sscoid 32985 colinearex 33132 bj-dtru 33710 sn-dtru 38662 pr2cv 39413 stoweidlem35 41884 funop1 43020 sprsymrelfvlem 43156 uspgrsprf 43525 uspgrsprf1 43526 rrx2plordisom 44213 |
Copyright terms: Public domain | W3C validator |