| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2212. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | exlimiv 1930 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
| 3 | 2 | exlimiv 1930 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: cgsex2g 3493 cgsex4g 3494 cgsex4gOLD 3495 opabss 5171 dtruALT2 5325 exneq 5395 dtruOLD 5401 copsexgw 5450 copsexg 5451 elopab 5487 elopabrOLD 5523 0nelelxp 5673 elvvuni 5715 optocl 5733 relopabiALT 5786 relop 5814 elreldm 5899 xpnz 6132 xpdifid 6141 dfco2a 6219 unielrel 6247 unixp0 6256 funsndifnop 7123 fmptsng 7142 oprabidw 7418 oprabid 7419 oprabv 7449 1stval2 7985 2ndval2 7986 1st2val 7996 2nd2val 7997 xp1st 8000 xp2nd 8001 frxp 8105 poxp 8107 soxp 8108 rntpos 8218 dftpos4 8224 tpostpos 8225 frrlem4 8268 tfrlem7 8351 ener 8972 domtr 8978 unen 9017 xpsnen 9025 undom 9029 sbthlem10 9060 mapen 9105 cnvfi 9140 entrfil 9149 domtrfil 9156 sbthfilem 9162 djuunxp 9874 fseqen 9980 dfac5lem4 10079 dfac5lem4OLD 10081 kmlem16 10119 axdc4lem 10408 hashfacen 14419 hashle2pr 14442 fundmge2nop0 14467 catcone0 17648 gictr 19208 dvdsrval 20270 rngqiprngimfo 21211 thlle 21606 hmphtr 23670 fsumdvdsmul 27105 griedg0ssusgr 29192 rgrusgrprc 29517 numclwwlk1lem2fo 30287 frgrregord013 30324 friendship 30328 nvss 30522 spanuni 31473 5oalem7 31589 3oalem3 31593 opabssi 32541 gsummpt2co 32988 qqhval2 33972 bnj605 34897 bnj607 34906 funen1cnv 35078 fineqvac 35087 loop1cycl 35124 satfv1 35350 sat1el2xp 35366 fmla0xp 35370 satefvfmla0 35405 mppspstlem 35558 mppsval 35559 pprodss4v 35872 sscoid 35901 colinearex 36048 copsex2b 37128 rictr 42508 pr2cv 43537 stoweidlem35 46033 funop1 47284 sprsymrelfvlem 47491 grictr 47923 uspgrsprf 48134 uspgrsprf1 48135 rrx2plordisom 48712 eloprab1st2nd 48856 |
| Copyright terms: Public domain | W3C validator |