![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2205. (Contributed by NM, 1-Aug-1995.) |
Ref | Expression |
---|---|
exlimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | exlimiv 1934 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
3 | 2 | exlimiv 1934 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: cgsex2g 3520 cgsex4g 3521 cgsex4gOLD 3522 cgsex4gOLDOLD 3523 opabss 5213 dtruALT2 5369 exneq 5436 dtruOLD 5442 copsexgw 5491 copsexg 5492 elopab 5528 elopabrOLD 5564 0nelelxp 5712 elvvuni 5753 optocl 5771 relopabiALT 5824 relop 5851 elreldm 5935 xpnz 6159 xpdifid 6168 dfco2a 6246 unielrel 6274 unixp0 6283 funsndifnop 7149 fmptsng 7166 oprabidw 7440 oprabid 7441 oprabv 7469 1stval2 7992 2ndval2 7993 1st2val 8003 2nd2val 8004 xp1st 8007 xp2nd 8008 frxp 8112 poxp 8114 soxp 8115 rntpos 8224 dftpos4 8230 tpostpos 8231 frrlem4 8274 wfrlem4OLD 8312 wfrfunOLD 8319 tfrlem7 8383 ener 8997 domtr 9003 unen 9046 xpsnen 9055 undom 9059 sbthlem10 9092 mapen 9141 cnvfi 9180 entrfil 9188 domtrfil 9195 sbthfilem 9201 djuunxp 9916 fseqen 10022 dfac5lem4 10121 kmlem16 10160 axdc4lem 10450 hashfacen 14413 hashfacenOLD 14414 hashle2pr 14438 fundmge2nop0 14453 catcone0 17631 gictr 19149 dvdsrval 20175 thlle 21251 thlleOLD 21252 hmphtr 23287 griedg0ssusgr 28522 rgrusgrprc 28846 numclwwlk1lem2fo 29611 frgrregord013 29648 friendship 29652 nvss 29846 spanuni 30797 5oalem7 30913 3oalem3 30917 opabssi 31842 gsummpt2co 32200 qqhval2 32962 bnj605 33918 bnj607 33927 funen1cnv 34091 fineqvac 34097 loop1cycl 34128 satfv1 34354 sat1el2xp 34370 fmla0xp 34374 satefvfmla0 34409 mppspstlem 34562 mppsval 34563 pprodss4v 34856 sscoid 34885 colinearex 35032 copsex2b 36021 rictr 41095 pr2cv 42299 stoweidlem35 44751 funop1 45991 sprsymrelfvlem 46158 uspgrsprf 46524 uspgrsprf1 46525 rngqiprngimfo 46786 rrx2plordisom 47409 |
Copyright terms: Public domain | W3C validator |