Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2207. (Contributed by NM, 1-Aug-1995.) |
Ref | Expression |
---|---|
exlimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | exlimiv 1934 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
3 | 2 | exlimiv 1934 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: cgsex2g 3465 cgsex4g 3466 cgsex4gOLD 3467 opabss 5134 dtru 5288 copsexgw 5398 copsexg 5399 elopab 5433 elopabr 5466 0nelelxp 5615 elvvuni 5654 optocl 5671 relopabiALT 5722 relop 5748 elreldm 5833 xpnz 6051 xpdifid 6060 dfco2a 6139 unielrel 6166 unixp0 6175 funsndifnop 7005 fmptsng 7022 oprabidw 7286 oprabid 7287 oprabv 7313 1stval2 7821 2ndval2 7822 1st2val 7832 2nd2val 7833 xp1st 7836 xp2nd 7837 frxp 7938 poxp 7940 soxp 7941 rntpos 8026 dftpos4 8032 tpostpos 8033 frrlem4 8076 wfrlem4OLD 8114 wfrfunOLD 8121 tfrlem7 8185 ener 8742 domtr 8748 unen 8790 xpsnen 8796 sbthlem10 8832 mapen 8877 cnvfi 8924 entrfil 8931 domtrfi 8938 sbthfilem 8941 djuunxp 9610 fseqen 9714 dfac5lem4 9813 kmlem16 9852 axdc4lem 10142 hashfacen 14094 hashfacenOLD 14095 hashle2pr 14119 fundmge2nop0 14134 catcone0 17313 gictr 18806 dvdsrval 19802 thlle 20814 hmphtr 22842 griedg0ssusgr 27535 rgrusgrprc 27859 numclwwlk1lem2fo 28623 frgrregord013 28660 friendship 28664 nvss 28856 spanuni 29807 5oalem7 29923 3oalem3 29927 opabssi 30854 gsummpt2co 31210 qqhval2 31832 bnj605 32787 bnj607 32796 funen1cnv 32960 fineqvac 32966 loop1cycl 32999 satfv1 33225 sat1el2xp 33241 fmla0xp 33245 satefvfmla0 33280 mppspstlem 33433 mppsval 33434 pprodss4v 34113 sscoid 34142 colinearex 34289 bj-dtru 34926 copsex2b 35238 sn-dtru 40116 pr2cv 41044 stoweidlem35 43466 funop1 44662 sprsymrelfvlem 44830 uspgrsprf 45196 uspgrsprf1 45197 rrx2plordisom 45957 |
Copyright terms: Public domain | W3C validator |