| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2212. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | exlimiv 1930 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
| 3 | 2 | exlimiv 1930 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: cgsex2g 3490 cgsex4g 3491 cgsex4gOLD 3492 opabss 5166 dtruALT2 5320 exneq 5390 dtruOLD 5396 copsexgw 5445 copsexg 5446 elopab 5482 0nelelxp 5666 elvvuni 5708 optocl 5725 relopabiALT 5777 relop 5804 elreldm 5888 xpnz 6120 xpdifid 6129 dfco2a 6207 unielrel 6235 unixp0 6244 funsndifnop 7105 fmptsng 7124 oprabidw 7400 oprabid 7401 oprabv 7429 1stval2 7964 2ndval2 7965 1st2val 7975 2nd2val 7976 xp1st 7979 xp2nd 7980 frxp 8082 poxp 8084 soxp 8085 rntpos 8195 dftpos4 8201 tpostpos 8202 frrlem4 8245 tfrlem7 8328 ener 8949 domtr 8955 unen 8994 xpsnen 9002 undom 9006 sbthlem10 9037 mapen 9082 cnvfi 9117 entrfil 9126 domtrfil 9133 sbthfilem 9139 djuunxp 9850 fseqen 9956 dfac5lem4 10055 dfac5lem4OLD 10057 kmlem16 10095 axdc4lem 10384 hashfacen 14395 hashle2pr 14418 fundmge2nop0 14443 catcone0 17624 gictr 19184 dvdsrval 20246 rngqiprngimfo 21187 thlle 21582 hmphtr 23646 fsumdvdsmul 27081 griedg0ssusgr 29168 rgrusgrprc 29493 numclwwlk1lem2fo 30260 frgrregord013 30297 friendship 30301 nvss 30495 spanuni 31446 5oalem7 31562 3oalem3 31566 opabssi 32514 gsummpt2co 32961 qqhval2 33945 bnj605 34870 bnj607 34879 funen1cnv 35051 fineqvac 35060 loop1cycl 35097 satfv1 35323 sat1el2xp 35339 fmla0xp 35343 satefvfmla0 35378 mppspstlem 35531 mppsval 35532 pprodss4v 35845 sscoid 35874 colinearex 36021 copsex2b 37101 rictr 42481 pr2cv 43510 stoweidlem35 46006 funop1 47257 sprsymrelfvlem 47464 grictr 47896 uspgrsprf 48107 uspgrsprf1 48108 rrx2plordisom 48685 eloprab1st2nd 48829 |
| Copyright terms: Public domain | W3C validator |