| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2212. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | exlimiv 1930 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
| 3 | 2 | exlimiv 1930 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: cgsex2g 3482 cgsex4g 3483 cgsex4gOLD 3484 opabss 5156 dtruALT2 5309 exneq 5379 copsexgw 5433 copsexg 5434 elopab 5470 0nelelxp 5654 elvvuni 5696 optocl 5713 optoclOLD 5714 relopabiALT 5766 relop 5793 elreldm 5877 xpnz 6108 xpdifid 6117 dfco2a 6195 unielrel 6222 unixp0 6231 funsndifnop 7085 fmptsng 7104 oprabidw 7380 oprabid 7381 oprabv 7409 1stval2 7941 2ndval2 7942 1st2val 7952 2nd2val 7953 xp1st 7956 xp2nd 7957 frxp 8059 poxp 8061 soxp 8062 rntpos 8172 dftpos4 8178 tpostpos 8179 frrlem4 8222 tfrlem7 8305 ener 8926 domtr 8932 unen 8971 xpsnen 8978 undom 8982 sbthlem10 9013 mapen 9058 cnvfi 9090 entrfil 9099 domtrfil 9106 sbthfilem 9112 djuunxp 9817 fseqen 9921 dfac5lem4 10020 dfac5lem4OLD 10022 kmlem16 10060 axdc4lem 10349 hashfacen 14361 hashle2pr 14384 fundmge2nop0 14409 catcone0 17593 gictr 19155 dvdsrval 20246 rngqiprngimfo 21208 thlle 21604 hmphtr 23668 fsumdvdsmul 27103 griedg0ssusgr 29210 rgrusgrprc 29535 numclwwlk1lem2fo 30302 frgrregord013 30339 friendship 30343 nvss 30537 spanuni 31488 5oalem7 31604 3oalem3 31608 opabssi 32558 gsummpt2co 33001 qqhval2 33949 bnj605 34874 bnj607 34883 funen1cnv 35055 fineqvac 35072 loop1cycl 35110 satfv1 35336 sat1el2xp 35352 fmla0xp 35356 satefvfmla0 35391 mppspstlem 35544 mppsval 35545 pprodss4v 35858 sscoid 35887 colinearex 36034 copsex2b 37114 rictr 42493 pr2cv 43521 stoweidlem35 46016 funop1 47267 sprsymrelfvlem 47474 grictr 47907 uspgrsprf 48130 uspgrsprf1 48131 rrx2plordisom 48708 eloprab1st2nd 48852 |
| Copyright terms: Public domain | W3C validator |