Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimivv | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2205. (Contributed by NM, 1-Aug-1995.) |
Ref | Expression |
---|---|
exlimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | exlimiv 1934 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
3 | 2 | exlimiv 1934 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: cgsex2g 3476 cgsex4g 3477 cgsex4gOLD 3478 opabss 5139 dtruALT2 5294 dtru 5360 copsexgw 5405 copsexg 5406 elopab 5441 elopabrOLD 5477 0nelelxp 5625 elvvuni 5664 optocl 5682 relopabiALT 5735 relop 5762 elreldm 5847 xpnz 6067 xpdifid 6076 dfco2a 6154 unielrel 6181 unixp0 6190 funsndifnop 7032 fmptsng 7049 oprabidw 7315 oprabid 7316 oprabv 7344 1stval2 7857 2ndval2 7858 1st2val 7868 2nd2val 7869 xp1st 7872 xp2nd 7873 frxp 7976 poxp 7978 soxp 7979 rntpos 8064 dftpos4 8070 tpostpos 8071 frrlem4 8114 wfrlem4OLD 8152 wfrfunOLD 8159 tfrlem7 8223 ener 8796 domtr 8802 unen 8845 xpsnen 8851 undom 8855 sbthlem10 8888 mapen 8937 cnvfi 8972 entrfil 8980 domtrfil 8987 sbthfilem 8993 djuunxp 9688 fseqen 9792 dfac5lem4 9891 kmlem16 9930 axdc4lem 10220 hashfacen 14175 hashfacenOLD 14176 hashle2pr 14200 fundmge2nop0 14215 catcone0 17405 gictr 18900 dvdsrval 19896 thlle 20912 thlleOLD 20913 hmphtr 22943 griedg0ssusgr 27641 rgrusgrprc 27965 numclwwlk1lem2fo 28731 frgrregord013 28768 friendship 28772 nvss 28964 spanuni 29915 5oalem7 30031 3oalem3 30035 opabssi 30962 gsummpt2co 31317 qqhval2 31941 bnj605 32896 bnj607 32905 funen1cnv 33069 fineqvac 33075 loop1cycl 33108 satfv1 33334 sat1el2xp 33350 fmla0xp 33354 satefvfmla0 33389 mppspstlem 33542 mppsval 33543 pprodss4v 34195 sscoid 34224 colinearex 34371 bj-dtru 35008 copsex2b 35320 sn-dtru 40195 pr2cv 41162 stoweidlem35 43583 funop1 44786 sprsymrelfvlem 44953 uspgrsprf 45319 uspgrsprf1 45320 rrx2plordisom 46080 |
Copyright terms: Public domain | W3C validator |