Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabrn Structured version   Visualization version   GIF version

Theorem opabrn 32595
Description: Range of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.)
Assertion
Ref Expression
opabrn (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑})
Distinct variable group:   𝑥,𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabrn
StepHypRef Expression
1 dfrn2 5827 . 2 ran 𝑅 = {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦}
2 nfopab2 5160 . . . 4 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
32nfeq2 2912 . . 3 𝑦 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
4 nfopab1 5159 . . . . 5 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
54nfeq2 2912 . . . 4 𝑥 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
6 df-br 5090 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
7 eleq2 2820 . . . . . 6 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
8 opabidw 5462 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
97, 8bitrdi 287 . . . . 5 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅𝜑))
106, 9bitrid 283 . . . 4 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑥𝑅𝑦𝜑))
115, 10exbid 2226 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (∃𝑥 𝑥𝑅𝑦 ↔ ∃𝑥𝜑))
123, 11abbid 2799 . 2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦} = {𝑦 ∣ ∃𝑥𝜑})
131, 12eqtrid 2778 1 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2111  {cab 2709  cop 4579   class class class wbr 5089  {copab 5151  ran crn 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-cnv 5622  df-dm 5624  df-rn 5625
This theorem is referenced by:  fpwrelmapffslem  32715
  Copyright terms: Public domain W3C validator