Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabrn Structured version   Visualization version   GIF version

Theorem opabrn 30357
Description: Range of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.)
Assertion
Ref Expression
opabrn (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑})
Distinct variable group:   𝑥,𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabrn
StepHypRef Expression
1 dfrn2 5753 . 2 ran 𝑅 = {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦}
2 nfopab2 5128 . . . 4 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
32nfeq2 2995 . . 3 𝑦 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
4 nfopab1 5127 . . . . 5 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
54nfeq2 2995 . . . 4 𝑥 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
6 df-br 5059 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
7 eleq2 2901 . . . . . 6 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
8 opabidw 5404 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
97, 8syl6bb 289 . . . . 5 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅𝜑))
106, 9syl5bb 285 . . . 4 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑥𝑅𝑦𝜑))
115, 10exbid 2221 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (∃𝑥 𝑥𝑅𝑦 ↔ ∃𝑥𝜑))
123, 11abbid 2887 . 2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦} = {𝑦 ∣ ∃𝑥𝜑})
131, 12syl5eq 2868 1 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wex 1776  wcel 2110  {cab 2799  cop 4566   class class class wbr 5058  {copab 5120  ran crn 5550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-cnv 5557  df-dm 5559  df-rn 5560
This theorem is referenced by:  fpwrelmapffslem  30462
  Copyright terms: Public domain W3C validator