![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opabrn | Structured version Visualization version GIF version |
Description: Range of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.) |
Ref | Expression |
---|---|
opabrn | ⊢ (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 5888 | . 2 ⊢ ran 𝑅 = {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦} | |
2 | nfopab2 5219 | . . . 4 ⊢ Ⅎ𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
3 | 2 | nfeq2 2919 | . . 3 ⊢ Ⅎ𝑦 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
4 | nfopab1 5218 | . . . . 5 ⊢ Ⅎ𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
5 | 4 | nfeq2 2919 | . . . 4 ⊢ Ⅎ𝑥 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
6 | df-br 5149 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅) | |
7 | eleq2 2821 | . . . . . 6 ⊢ (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})) | |
8 | opabidw 5524 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑) | |
9 | 7, 8 | bitrdi 287 | . . . . 5 ⊢ (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ 𝜑)) |
10 | 6, 9 | bitrid 283 | . . . 4 ⊢ (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑥𝑅𝑦 ↔ 𝜑)) |
11 | 5, 10 | exbid 2215 | . . 3 ⊢ (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (∃𝑥 𝑥𝑅𝑦 ↔ ∃𝑥𝜑)) |
12 | 3, 11 | abbid 2802 | . 2 ⊢ (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦} = {𝑦 ∣ ∃𝑥𝜑}) |
13 | 1, 12 | eqtrid 2783 | 1 ⊢ (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2708 ⟨cop 4634 class class class wbr 5148 {copab 5210 ran crn 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: fpwrelmapffslem 32225 |
Copyright terms: Public domain | W3C validator |