| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opabrn | Structured version Visualization version GIF version | ||
| Description: Range of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.) |
| Ref | Expression |
|---|---|
| opabrn | ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrn2 5827 | . 2 ⊢ ran 𝑅 = {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦} | |
| 2 | nfopab2 5160 | . . . 4 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 2 | nfeq2 2912 | . . 3 ⊢ Ⅎ𝑦 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| 4 | nfopab1 5159 | . . . . 5 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 5 | 4 | nfeq2 2912 | . . . 4 ⊢ Ⅎ𝑥 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| 6 | df-br 5090 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
| 7 | eleq2 2820 | . . . . . 6 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (〈𝑥, 𝑦〉 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) | |
| 8 | opabidw 5462 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 9 | 7, 8 | bitrdi 287 | . . . . 5 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (〈𝑥, 𝑦〉 ∈ 𝑅 ↔ 𝜑)) |
| 10 | 6, 9 | bitrid 283 | . . . 4 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑥𝑅𝑦 ↔ 𝜑)) |
| 11 | 5, 10 | exbid 2226 | . . 3 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (∃𝑥 𝑥𝑅𝑦 ↔ ∃𝑥𝜑)) |
| 12 | 3, 11 | abbid 2799 | . 2 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦} = {𝑦 ∣ ∃𝑥𝜑}) |
| 13 | 1, 12 | eqtrid 2778 | 1 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 〈cop 4579 class class class wbr 5089 {copab 5151 ran crn 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: fpwrelmapffslem 32715 |
| Copyright terms: Public domain | W3C validator |