Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opabrn | Structured version Visualization version GIF version |
Description: Range of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.) |
Ref | Expression |
---|---|
opabrn | ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 5786 | . 2 ⊢ ran 𝑅 = {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦} | |
2 | nfopab2 5141 | . . . 4 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | 2 | nfeq2 2923 | . . 3 ⊢ Ⅎ𝑦 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
4 | nfopab1 5140 | . . . . 5 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
5 | 4 | nfeq2 2923 | . . . 4 ⊢ Ⅎ𝑥 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
6 | df-br 5071 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
7 | eleq2 2827 | . . . . . 6 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (〈𝑥, 𝑦〉 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) | |
8 | opabidw 5431 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
9 | 7, 8 | bitrdi 286 | . . . . 5 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (〈𝑥, 𝑦〉 ∈ 𝑅 ↔ 𝜑)) |
10 | 6, 9 | syl5bb 282 | . . . 4 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑥𝑅𝑦 ↔ 𝜑)) |
11 | 5, 10 | exbid 2219 | . . 3 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (∃𝑥 𝑥𝑅𝑦 ↔ ∃𝑥𝜑)) |
12 | 3, 11 | abbid 2810 | . 2 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦} = {𝑦 ∣ ∃𝑥𝜑}) |
13 | 1, 12 | syl5eq 2791 | 1 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 〈cop 4564 class class class wbr 5070 {copab 5132 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: fpwrelmapffslem 30969 |
Copyright terms: Public domain | W3C validator |