![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opabrn | Structured version Visualization version GIF version |
Description: Range of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.) |
Ref | Expression |
---|---|
opabrn | ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 5652 | . 2 ⊢ ran 𝑅 = {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦} | |
2 | nfopab2 5038 | . . . 4 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | 2 | nfeq2 2966 | . . 3 ⊢ Ⅎ𝑦 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
4 | nfopab1 5037 | . . . . 5 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
5 | 4 | nfeq2 2966 | . . . 4 ⊢ Ⅎ𝑥 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
6 | df-br 4969 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
7 | eleq2 2873 | . . . . . 6 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (〈𝑥, 𝑦〉 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) | |
8 | opabid 5310 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
9 | 7, 8 | syl6bb 288 | . . . . 5 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (〈𝑥, 𝑦〉 ∈ 𝑅 ↔ 𝜑)) |
10 | 6, 9 | syl5bb 284 | . . . 4 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑥𝑅𝑦 ↔ 𝜑)) |
11 | 5, 10 | exbid 2192 | . . 3 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (∃𝑥 𝑥𝑅𝑦 ↔ ∃𝑥𝜑)) |
12 | 3, 11 | abbid 2864 | . 2 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦} = {𝑦 ∣ ∃𝑥𝜑}) |
13 | 1, 12 | syl5eq 2845 | 1 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 ∃wex 1765 ∈ wcel 2083 {cab 2777 〈cop 4484 class class class wbr 4968 {copab 5030 ran crn 5451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-br 4969 df-opab 5031 df-cnv 5458 df-dm 5460 df-rn 5461 |
This theorem is referenced by: fpwrelmapffslem 30152 |
Copyright terms: Public domain | W3C validator |