Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabrn Structured version   Visualization version   GIF version

Theorem opabrn 30625
Description: Range of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.)
Assertion
Ref Expression
opabrn (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑})
Distinct variable group:   𝑥,𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabrn
StepHypRef Expression
1 dfrn2 5742 . 2 ran 𝑅 = {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦}
2 nfopab2 5109 . . . 4 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
32nfeq2 2914 . . 3 𝑦 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
4 nfopab1 5108 . . . . 5 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
54nfeq2 2914 . . . 4 𝑥 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
6 df-br 5040 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
7 eleq2 2819 . . . . . 6 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
8 opabidw 5391 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
97, 8bitrdi 290 . . . . 5 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅𝜑))
106, 9syl5bb 286 . . . 4 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑥𝑅𝑦𝜑))
115, 10exbid 2223 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (∃𝑥 𝑥𝑅𝑦 ↔ ∃𝑥𝜑))
123, 11abbid 2802 . 2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → {𝑦 ∣ ∃𝑥 𝑥𝑅𝑦} = {𝑦 ∣ ∃𝑥𝜑})
131, 12syl5eq 2783 1 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ran 𝑅 = {𝑦 ∣ ∃𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wex 1787  wcel 2112  {cab 2714  cop 4533   class class class wbr 5039  {copab 5101  ran crn 5537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-cnv 5544  df-dm 5546  df-rn 5547
This theorem is referenced by:  fpwrelmapffslem  30741
  Copyright terms: Public domain W3C validator