Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impel | Structured version Visualization version GIF version |
Description: An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019.) (Proof shortened by Wolf Lammen, 2-Sep-2020.) |
Ref | Expression |
---|---|
impel.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
impel.2 | ⊢ (𝜃 → 𝜓) |
Ref | Expression |
---|---|
impel | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impel.2 | . . 3 ⊢ (𝜃 → 𝜓) | |
2 | impel.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5 34 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
Copyright terms: Public domain | W3C validator |