|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > opthpr | Structured version Visualization version GIF version | ||
| Description: An unordered pair has the ordered pair property (compare opth 5480) under certain conditions. (Contributed by NM, 27-Mar-2007.) | 
| Ref | Expression | 
|---|---|
| preqr1.a | ⊢ 𝐴 ∈ V | 
| preqr1.b | ⊢ 𝐵 ∈ V | 
| preq12b.c | ⊢ 𝐶 ∈ V | 
| preq12b.d | ⊢ 𝐷 ∈ V | 
| Ref | Expression | 
|---|---|
| opthpr | ⊢ (𝐴 ≠ 𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | preqr1.a | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | preqr1.b | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | preq12b.c | . . 3 ⊢ 𝐶 ∈ V | |
| 4 | preq12b.d | . . 3 ⊢ 𝐷 ∈ V | |
| 5 | 1, 2, 3, 4 | preq12b 4849 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) | 
| 6 | idd 24 | . . . 4 ⊢ (𝐴 ≠ 𝐷 → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
| 7 | df-ne 2940 | . . . . . 6 ⊢ (𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷) | |
| 8 | pm2.21 123 | . . . . . 6 ⊢ (¬ 𝐴 = 𝐷 → (𝐴 = 𝐷 → (𝐵 = 𝐶 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) | |
| 9 | 7, 8 | sylbi 217 | . . . . 5 ⊢ (𝐴 ≠ 𝐷 → (𝐴 = 𝐷 → (𝐵 = 𝐶 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) | 
| 10 | 9 | impd 410 | . . . 4 ⊢ (𝐴 ≠ 𝐷 → ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 11 | 6, 10 | jaod 859 | . . 3 ⊢ (𝐴 ≠ 𝐷 → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 12 | orc 867 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) | |
| 13 | 11, 12 | impbid1 225 | . 2 ⊢ (𝐴 ≠ 𝐷 → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 14 | 5, 13 | bitrid 283 | 1 ⊢ (𝐴 ≠ 𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 Vcvv 3479 {cpr 4627 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-v 3481 df-un 3955 df-sn 4626 df-pr 4628 | 
| This theorem is referenced by: brdom7disj 10572 brdom6disj 10573 | 
| Copyright terms: Public domain | W3C validator |