MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth Structured version   Visualization version   GIF version

Theorem opth 5414
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that 𝐶 and 𝐷 are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion
Ref Expression
opth (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem opth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . . 4 𝐴 ∈ V
2 opth1.2 . . . 4 𝐵 ∈ V
31, 2opth1 5413 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)
41, 2opi1 5406 . . . . . . 7 {𝐴} ∈ ⟨𝐴, 𝐵
5 id 22 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
64, 5eleqtrid 2837 . . . . . 6 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩)
7 oprcl 4848 . . . . . 6 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
86, 7syl 17 . . . . 5 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
98simprd 495 . . . 4 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐷 ∈ V)
103opeq1d 4828 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐵⟩)
1110, 5eqtr3d 2768 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐶, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
128simpld 494 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐶 ∈ V)
13 dfopg 4820 . . . . . . . 8 ((𝐶 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐶, 𝐵⟩ = {{𝐶}, {𝐶, 𝐵}})
1412, 2, 13sylancl 586 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐶, 𝐵⟩ = {{𝐶}, {𝐶, 𝐵}})
1511, 14eqtr3d 2768 . . . . . 6 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐵}})
16 dfopg 4820 . . . . . . 7 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
178, 16syl 17 . . . . . 6 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
1815, 17eqtr3d 2768 . . . . 5 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {{𝐶}, {𝐶, 𝐵}} = {{𝐶}, {𝐶, 𝐷}})
19 prex 5373 . . . . . 6 {𝐶, 𝐵} ∈ V
20 prex 5373 . . . . . 6 {𝐶, 𝐷} ∈ V
2119, 20preqr2 4798 . . . . 5 ({{𝐶}, {𝐶, 𝐵}} = {{𝐶}, {𝐶, 𝐷}} → {𝐶, 𝐵} = {𝐶, 𝐷})
2218, 21syl 17 . . . 4 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐶, 𝐵} = {𝐶, 𝐷})
23 preq2 4684 . . . . . . 7 (𝑥 = 𝐷 → {𝐶, 𝑥} = {𝐶, 𝐷})
2423eqeq2d 2742 . . . . . 6 (𝑥 = 𝐷 → ({𝐶, 𝐵} = {𝐶, 𝑥} ↔ {𝐶, 𝐵} = {𝐶, 𝐷}))
25 eqeq2 2743 . . . . . 6 (𝑥 = 𝐷 → (𝐵 = 𝑥𝐵 = 𝐷))
2624, 25imbi12d 344 . . . . 5 (𝑥 = 𝐷 → (({𝐶, 𝐵} = {𝐶, 𝑥} → 𝐵 = 𝑥) ↔ ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)))
27 vex 3440 . . . . . 6 𝑥 ∈ V
282, 27preqr2 4798 . . . . 5 ({𝐶, 𝐵} = {𝐶, 𝑥} → 𝐵 = 𝑥)
2926, 28vtoclg 3507 . . . 4 (𝐷 ∈ V → ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷))
309, 22, 29sylc 65 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐵 = 𝐷)
313, 30jca 511 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (𝐴 = 𝐶𝐵 = 𝐷))
32 opeq12 4824 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
3331, 32impbii 209 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4573  {cpr 4575  cop 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580
This theorem is referenced by:  opthg  5415  otth2  5421  copsexgw  5428  copsexg  5429  copsex2g  5431  copsex4g  5433  opcom  5439  moop2  5440  propssopi  5446  brtp  5461  vopelopabsb  5467  ralxpf  5785  cnvopab  6083  cnvcnvsn  6166  opreu2reurex  6241  funopg  6515  funsndifnop  7084  tpres  7135  f1opr  7402  oprabv  7406  xpopth  7962  eqop  7963  opiota  7991  soxp  8059  fnwelem  8061  xpdom2  8985  xpf1o  9052  unxpdomlem2  9141  unxpdomlem3  9142  xpwdomg  9471  djulf1o  9805  djurf1o  9806  fseqenlem1  9915  iundom2g  10431  eqresr  11028  cnref1o  12883  hashfun  14344  fsumcom2  15681  fprodcom2  15891  qredeu  16569  qnumdenbi  16655  crth  16689  prmreclem3  16830  imasaddfnlem  17432  fnpr2ob  17462  dprd2da  19956  dprd2d2  19958  rngqiprngimf1  21237  ucnima  24195  numclwwlk1lem2f1  30337  brab2d  32588  br8d  32591  xppreima2  32633  aciunf1lem  32644  ofpreima  32647  erdszelem9  35243  goeleq12bg  35393  gonanegoal  35396  gonan0  35436  goaln0  35437  gonarlem  35438  gonar  35439  goalrlem  35440  goalr  35441  fmla0disjsuc  35442  fmlasucdisj  35443  satffunlem  35445  satffunlem1lem1  35446  satffunlem2lem1  35448  msubff1  35600  mvhf1  35603  br8  35800  br6  35801  br4  35802  brsegle  36152  copsex2b  37184  poimirlem4  37674  poimirlem9  37679  dib1dim  41274  diclspsn  41303  dihopelvalcpre  41357  dihmeetlem4preN  41415  dihmeetlem13N  41428  dih1dimatlem  41438  dihatlat  41443  pellexlem3  42934  pellex  42938  snhesn  43889  opelopab4  44654  ichnreuop  47582  ichreuopeq  47583  gpgedg2ov  48176  gpgedg2iv  48177  pgnioedg1  48218  pgnioedg2  48219  pgnioedg3  48220  pgnioedg4  48221  pgnioedg5  48222  pgnbgreunbgrlem2lem1  48224  pgnbgreunbgrlem2lem2  48225  pgnbgreunbgrlem2lem3  48226  pgnbgreunbgrlem5lem1  48230  pgnbgreunbgrlem5lem2  48231  pgnbgreunbgrlem5lem3  48232  rrx2xpref1o  48829  brab2dd  48938  idfudiag1  49636
  Copyright terms: Public domain W3C validator