![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opth | Structured version Visualization version GIF version |
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that 𝐶 and 𝐷 are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opth1.1 | ⊢ 𝐴 ∈ V |
opth1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opth | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | opth1.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opth1 5495 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) |
4 | 1, 2 | opi1 5488 | . . . . . . 7 ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
5 | id 22 | . . . . . . 7 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | |
6 | 4, 5 | eleqtrid 2850 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {𝐴} ∈ 〈𝐶, 𝐷〉) |
7 | oprcl 4923 | . . . . . 6 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
9 | 8 | simprd 495 | . . . 4 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐷 ∈ V) |
10 | 3 | opeq1d 4903 | . . . . . . . 8 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) |
11 | 10, 5 | eqtr3d 2782 | . . . . . . 7 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) |
12 | 8 | simpld 494 | . . . . . . . 8 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐶 ∈ V) |
13 | dfopg 4895 | . . . . . . . 8 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ V) → 〈𝐶, 𝐵〉 = {{𝐶}, {𝐶, 𝐵}}) | |
14 | 12, 2, 13 | sylancl 585 | . . . . . . 7 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐵〉 = {{𝐶}, {𝐶, 𝐵}}) |
15 | 11, 14 | eqtr3d 2782 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐵}}) |
16 | dfopg 4895 | . . . . . . 7 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) | |
17 | 8, 16 | syl 17 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) |
18 | 15, 17 | eqtr3d 2782 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {{𝐶}, {𝐶, 𝐵}} = {{𝐶}, {𝐶, 𝐷}}) |
19 | prex 5452 | . . . . . 6 ⊢ {𝐶, 𝐵} ∈ V | |
20 | prex 5452 | . . . . . 6 ⊢ {𝐶, 𝐷} ∈ V | |
21 | 19, 20 | preqr2 4874 | . . . . 5 ⊢ ({{𝐶}, {𝐶, 𝐵}} = {{𝐶}, {𝐶, 𝐷}} → {𝐶, 𝐵} = {𝐶, 𝐷}) |
22 | 18, 21 | syl 17 | . . . 4 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {𝐶, 𝐵} = {𝐶, 𝐷}) |
23 | preq2 4759 | . . . . . . 7 ⊢ (𝑥 = 𝐷 → {𝐶, 𝑥} = {𝐶, 𝐷}) | |
24 | 23 | eqeq2d 2751 | . . . . . 6 ⊢ (𝑥 = 𝐷 → ({𝐶, 𝐵} = {𝐶, 𝑥} ↔ {𝐶, 𝐵} = {𝐶, 𝐷})) |
25 | eqeq2 2752 | . . . . . 6 ⊢ (𝑥 = 𝐷 → (𝐵 = 𝑥 ↔ 𝐵 = 𝐷)) | |
26 | 24, 25 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐷 → (({𝐶, 𝐵} = {𝐶, 𝑥} → 𝐵 = 𝑥) ↔ ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷))) |
27 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
28 | 2, 27 | preqr2 4874 | . . . . 5 ⊢ ({𝐶, 𝐵} = {𝐶, 𝑥} → 𝐵 = 𝑥) |
29 | 26, 28 | vtoclg 3566 | . . . 4 ⊢ (𝐷 ∈ V → ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)) |
30 | 9, 22, 29 | sylc 65 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐵 = 𝐷) |
31 | 3, 30 | jca 511 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
32 | opeq12 4899 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | |
33 | 31, 32 | impbii 209 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 {cpr 4650 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: opthg 5497 otth2 5503 copsexgw 5510 copsexg 5511 copsex2g 5513 copsex4g 5514 opcom 5520 moop2 5521 propssopi 5527 brtp 5542 vopelopabsb 5548 ralxpf 5866 cnvopab 6164 cnvcnvsn 6245 opreu2reurex 6320 funopg 6607 funsndifnop 7180 tpres 7233 f1opr 7500 oprabv 7504 xpopth 8065 eqop 8066 opiota 8094 soxp 8164 fnwelem 8166 xpdom2 9127 xpf1o 9199 unxpdomlem2 9308 unxpdomlem3 9309 xpwdomg 9648 djulf1o 9975 djurf1o 9976 fseqenlem1 10087 iundom2g 10603 eqresr 11200 cnref1o 13044 hashfun 14480 fsumcom2 15816 fprodcom2 16026 qredeu 16699 qnumdenbi 16785 crth 16819 prmreclem3 16959 imasaddfnlem 17582 fnpr2ob 17612 dprd2da 20080 dprd2d2 20082 rngqiprngimf1 21327 ucnima 24303 numclwwlk1lem2f1 30381 brab2d 32621 br8d 32624 xppreima2 32661 aciunf1lem 32672 ofpreima 32675 erdszelem9 35159 goeleq12bg 35309 gonanegoal 35312 gonan0 35352 goaln0 35353 gonarlem 35354 gonar 35355 goalrlem 35356 goalr 35357 fmla0disjsuc 35358 fmlasucdisj 35359 satffunlem 35361 satffunlem1lem1 35362 satffunlem2lem1 35364 msubff1 35516 mvhf1 35519 br8 35710 br6 35711 br4 35712 brsegle 36064 copsex2b 37098 poimirlem4 37576 poimirlem9 37581 dib1dim 41114 diclspsn 41143 dihopelvalcpre 41197 dihmeetlem4preN 41255 dihmeetlem13N 41268 dih1dimatlem 41278 dihatlat 41283 pellexlem3 42779 pellex 42783 snhesn 43743 opelopab4 44517 ichnreuop 47335 ichreuopeq 47336 rrx2xpref1o 48441 |
Copyright terms: Public domain | W3C validator |