| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opth | Structured version Visualization version GIF version | ||
| Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that 𝐶 and 𝐷 are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opth1.1 | ⊢ 𝐴 ∈ V |
| opth1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opth | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | opth1.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | opth1 5460 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) |
| 4 | 1, 2 | opi1 5453 | . . . . . . 7 ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
| 5 | id 22 | . . . . . . 7 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 6 | 4, 5 | eleqtrid 2839 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {𝐴} ∈ 〈𝐶, 𝐷〉) |
| 7 | oprcl 4879 | . . . . . 6 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
| 9 | 8 | simprd 495 | . . . 4 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐷 ∈ V) |
| 10 | 3 | opeq1d 4859 | . . . . . . . 8 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) |
| 11 | 10, 5 | eqtr3d 2771 | . . . . . . 7 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) |
| 12 | 8 | simpld 494 | . . . . . . . 8 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐶 ∈ V) |
| 13 | dfopg 4851 | . . . . . . . 8 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ V) → 〈𝐶, 𝐵〉 = {{𝐶}, {𝐶, 𝐵}}) | |
| 14 | 12, 2, 13 | sylancl 586 | . . . . . . 7 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐵〉 = {{𝐶}, {𝐶, 𝐵}}) |
| 15 | 11, 14 | eqtr3d 2771 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐵}}) |
| 16 | dfopg 4851 | . . . . . . 7 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) | |
| 17 | 8, 16 | syl 17 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) |
| 18 | 15, 17 | eqtr3d 2771 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {{𝐶}, {𝐶, 𝐵}} = {{𝐶}, {𝐶, 𝐷}}) |
| 19 | prex 5417 | . . . . . 6 ⊢ {𝐶, 𝐵} ∈ V | |
| 20 | prex 5417 | . . . . . 6 ⊢ {𝐶, 𝐷} ∈ V | |
| 21 | 19, 20 | preqr2 4829 | . . . . 5 ⊢ ({{𝐶}, {𝐶, 𝐵}} = {{𝐶}, {𝐶, 𝐷}} → {𝐶, 𝐵} = {𝐶, 𝐷}) |
| 22 | 18, 21 | syl 17 | . . . 4 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {𝐶, 𝐵} = {𝐶, 𝐷}) |
| 23 | preq2 4714 | . . . . . . 7 ⊢ (𝑥 = 𝐷 → {𝐶, 𝑥} = {𝐶, 𝐷}) | |
| 24 | 23 | eqeq2d 2745 | . . . . . 6 ⊢ (𝑥 = 𝐷 → ({𝐶, 𝐵} = {𝐶, 𝑥} ↔ {𝐶, 𝐵} = {𝐶, 𝐷})) |
| 25 | eqeq2 2746 | . . . . . 6 ⊢ (𝑥 = 𝐷 → (𝐵 = 𝑥 ↔ 𝐵 = 𝐷)) | |
| 26 | 24, 25 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐷 → (({𝐶, 𝐵} = {𝐶, 𝑥} → 𝐵 = 𝑥) ↔ ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷))) |
| 27 | vex 3467 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 28 | 2, 27 | preqr2 4829 | . . . . 5 ⊢ ({𝐶, 𝐵} = {𝐶, 𝑥} → 𝐵 = 𝑥) |
| 29 | 26, 28 | vtoclg 3537 | . . . 4 ⊢ (𝐷 ∈ V → ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)) |
| 30 | 9, 22, 29 | sylc 65 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐵 = 𝐷) |
| 31 | 3, 30 | jca 511 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| 32 | opeq12 4855 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 33 | 31, 32 | impbii 209 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 {csn 4606 {cpr 4608 〈cop 4612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 |
| This theorem is referenced by: opthg 5462 otth2 5468 copsexgw 5475 copsexg 5476 copsex2g 5478 copsex4g 5480 opcom 5486 moop2 5487 propssopi 5493 brtp 5508 vopelopabsb 5514 ralxpf 5837 cnvopab 6137 cnvcnvsn 6219 opreu2reurex 6294 funopg 6580 funsndifnop 7151 tpres 7203 f1opr 7471 oprabv 7475 xpopth 8037 eqop 8038 opiota 8066 soxp 8136 fnwelem 8138 xpdom2 9089 xpf1o 9161 unxpdomlem2 9269 unxpdomlem3 9270 xpwdomg 9607 djulf1o 9934 djurf1o 9935 fseqenlem1 10046 iundom2g 10562 eqresr 11159 cnref1o 13009 hashfun 14459 fsumcom2 15793 fprodcom2 16003 qredeu 16678 qnumdenbi 16764 crth 16798 prmreclem3 16939 imasaddfnlem 17545 fnpr2ob 17575 dprd2da 20031 dprd2d2 20033 rngqiprngimf1 21273 ucnima 24236 numclwwlk1lem2f1 30305 brab2d 32555 br8d 32558 xppreima2 32597 aciunf1lem 32608 ofpreima 32611 erdszelem9 35179 goeleq12bg 35329 gonanegoal 35332 gonan0 35372 goaln0 35373 gonarlem 35374 gonar 35375 goalrlem 35376 goalr 35377 fmla0disjsuc 35378 fmlasucdisj 35379 satffunlem 35381 satffunlem1lem1 35382 satffunlem2lem1 35384 msubff1 35536 mvhf1 35539 br8 35731 br6 35732 br4 35733 brsegle 36084 copsex2b 37116 poimirlem4 37606 poimirlem9 37611 dib1dim 41142 diclspsn 41171 dihopelvalcpre 41225 dihmeetlem4preN 41283 dihmeetlem13N 41296 dih1dimatlem 41306 dihatlat 41311 pellexlem3 42820 pellex 42824 snhesn 43776 opelopab4 44543 ichnreuop 47432 ichreuopeq 47433 rrx2xpref1o 48612 brab2dd 48715 idfudiag1 49223 |
| Copyright terms: Public domain | W3C validator |