Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opth | Structured version Visualization version GIF version |
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that 𝐶 and 𝐷 are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opth1.1 | ⊢ 𝐴 ∈ V |
opth1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opth | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | opth1.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opth1 5384 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) |
4 | 1, 2 | opi1 5377 | . . . . . . 7 ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
5 | id 22 | . . . . . . 7 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | |
6 | 4, 5 | eleqtrid 2845 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {𝐴} ∈ 〈𝐶, 𝐷〉) |
7 | oprcl 4827 | . . . . . 6 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
9 | 8 | simprd 495 | . . . 4 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐷 ∈ V) |
10 | 3 | opeq1d 4807 | . . . . . . . 8 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) |
11 | 10, 5 | eqtr3d 2780 | . . . . . . 7 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) |
12 | 8 | simpld 494 | . . . . . . . 8 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐶 ∈ V) |
13 | dfopg 4799 | . . . . . . . 8 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ V) → 〈𝐶, 𝐵〉 = {{𝐶}, {𝐶, 𝐵}}) | |
14 | 12, 2, 13 | sylancl 585 | . . . . . . 7 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐵〉 = {{𝐶}, {𝐶, 𝐵}}) |
15 | 11, 14 | eqtr3d 2780 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐵}}) |
16 | dfopg 4799 | . . . . . . 7 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) | |
17 | 8, 16 | syl 17 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) |
18 | 15, 17 | eqtr3d 2780 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {{𝐶}, {𝐶, 𝐵}} = {{𝐶}, {𝐶, 𝐷}}) |
19 | prex 5350 | . . . . . 6 ⊢ {𝐶, 𝐵} ∈ V | |
20 | prex 5350 | . . . . . 6 ⊢ {𝐶, 𝐷} ∈ V | |
21 | 19, 20 | preqr2 4777 | . . . . 5 ⊢ ({{𝐶}, {𝐶, 𝐵}} = {{𝐶}, {𝐶, 𝐷}} → {𝐶, 𝐵} = {𝐶, 𝐷}) |
22 | 18, 21 | syl 17 | . . . 4 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {𝐶, 𝐵} = {𝐶, 𝐷}) |
23 | preq2 4667 | . . . . . . 7 ⊢ (𝑥 = 𝐷 → {𝐶, 𝑥} = {𝐶, 𝐷}) | |
24 | 23 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑥 = 𝐷 → ({𝐶, 𝐵} = {𝐶, 𝑥} ↔ {𝐶, 𝐵} = {𝐶, 𝐷})) |
25 | eqeq2 2750 | . . . . . 6 ⊢ (𝑥 = 𝐷 → (𝐵 = 𝑥 ↔ 𝐵 = 𝐷)) | |
26 | 24, 25 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐷 → (({𝐶, 𝐵} = {𝐶, 𝑥} → 𝐵 = 𝑥) ↔ ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷))) |
27 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
28 | 2, 27 | preqr2 4777 | . . . . 5 ⊢ ({𝐶, 𝐵} = {𝐶, 𝑥} → 𝐵 = 𝑥) |
29 | 26, 28 | vtoclg 3495 | . . . 4 ⊢ (𝐷 ∈ V → ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)) |
30 | 9, 22, 29 | sylc 65 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐵 = 𝐷) |
31 | 3, 30 | jca 511 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
32 | opeq12 4803 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | |
33 | 31, 32 | impbii 208 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 {cpr 4560 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: opthg 5386 otth2 5392 copsexgw 5398 copsexg 5399 copsex2g 5401 copsex4g 5403 opcom 5409 moop2 5410 propssopi 5416 vopelopabsb 5435 ralxpf 5744 cnvcnvsn 6111 opreu2reurex 6186 funopg 6452 funsndifnop 7005 tpres 7058 f1opr 7309 oprabv 7313 xpopth 7845 eqop 7846 opiota 7872 soxp 7941 fnwelem 7943 xpdom2 8807 xpf1o 8875 unxpdomlem2 8957 unxpdomlem3 8958 xpwdomg 9274 djulf1o 9601 djurf1o 9602 fseqenlem1 9711 iundom2g 10227 eqresr 10824 cnref1o 12654 hashfun 14080 fsumcom2 15414 fprodcom2 15622 qredeu 16291 qnumdenbi 16376 crth 16407 prmreclem3 16547 imasaddfnlem 17156 fnpr2ob 17186 dprd2da 19560 dprd2d2 19562 ucnima 23341 numclwwlk1lem2f1 28622 br8d 30851 xppreima2 30889 aciunf1lem 30901 ofpreima 30904 erdszelem9 33061 goeleq12bg 33211 gonanegoal 33214 gonan0 33254 goaln0 33255 gonarlem 33256 gonar 33257 goalrlem 33258 goalr 33259 fmla0disjsuc 33260 fmlasucdisj 33261 satffunlem 33263 satffunlem1lem1 33264 satffunlem2lem1 33266 msubff1 33418 mvhf1 33421 brtp 33623 br8 33629 br6 33630 br4 33631 brsegle 34337 copsex2b 35238 poimirlem4 35708 poimirlem9 35713 dib1dim 39106 diclspsn 39135 dihopelvalcpre 39189 dihmeetlem4preN 39247 dihmeetlem13N 39260 dih1dimatlem 39270 dihatlat 39275 pellexlem3 40569 pellex 40573 snhesn 41283 opelopab4 42060 ichnreuop 44812 ichreuopeq 44813 rrx2xpref1o 45952 |
Copyright terms: Public domain | W3C validator |