Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opth | Structured version Visualization version GIF version |
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that 𝐶 and 𝐷 are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opth1.1 | ⊢ 𝐴 ∈ V |
opth1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opth | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | opth1.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opth1 5392 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) |
4 | 1, 2 | opi1 5385 | . . . . . . 7 ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
5 | id 22 | . . . . . . 7 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | |
6 | 4, 5 | eleqtrid 2846 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {𝐴} ∈ 〈𝐶, 𝐷〉) |
7 | oprcl 4835 | . . . . . 6 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
9 | 8 | simprd 495 | . . . 4 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐷 ∈ V) |
10 | 3 | opeq1d 4815 | . . . . . . . 8 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) |
11 | 10, 5 | eqtr3d 2781 | . . . . . . 7 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) |
12 | 8 | simpld 494 | . . . . . . . 8 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐶 ∈ V) |
13 | dfopg 4807 | . . . . . . . 8 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ V) → 〈𝐶, 𝐵〉 = {{𝐶}, {𝐶, 𝐵}}) | |
14 | 12, 2, 13 | sylancl 585 | . . . . . . 7 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐵〉 = {{𝐶}, {𝐶, 𝐵}}) |
15 | 11, 14 | eqtr3d 2781 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐵}}) |
16 | dfopg 4807 | . . . . . . 7 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) | |
17 | 8, 16 | syl 17 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) |
18 | 15, 17 | eqtr3d 2781 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {{𝐶}, {𝐶, 𝐵}} = {{𝐶}, {𝐶, 𝐷}}) |
19 | prex 5358 | . . . . . 6 ⊢ {𝐶, 𝐵} ∈ V | |
20 | prex 5358 | . . . . . 6 ⊢ {𝐶, 𝐷} ∈ V | |
21 | 19, 20 | preqr2 4785 | . . . . 5 ⊢ ({{𝐶}, {𝐶, 𝐵}} = {{𝐶}, {𝐶, 𝐷}} → {𝐶, 𝐵} = {𝐶, 𝐷}) |
22 | 18, 21 | syl 17 | . . . 4 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {𝐶, 𝐵} = {𝐶, 𝐷}) |
23 | preq2 4675 | . . . . . . 7 ⊢ (𝑥 = 𝐷 → {𝐶, 𝑥} = {𝐶, 𝐷}) | |
24 | 23 | eqeq2d 2750 | . . . . . 6 ⊢ (𝑥 = 𝐷 → ({𝐶, 𝐵} = {𝐶, 𝑥} ↔ {𝐶, 𝐵} = {𝐶, 𝐷})) |
25 | eqeq2 2751 | . . . . . 6 ⊢ (𝑥 = 𝐷 → (𝐵 = 𝑥 ↔ 𝐵 = 𝐷)) | |
26 | 24, 25 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐷 → (({𝐶, 𝐵} = {𝐶, 𝑥} → 𝐵 = 𝑥) ↔ ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷))) |
27 | vex 3434 | . . . . . 6 ⊢ 𝑥 ∈ V | |
28 | 2, 27 | preqr2 4785 | . . . . 5 ⊢ ({𝐶, 𝐵} = {𝐶, 𝑥} → 𝐵 = 𝑥) |
29 | 26, 28 | vtoclg 3503 | . . . 4 ⊢ (𝐷 ∈ V → ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)) |
30 | 9, 22, 29 | sylc 65 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐵 = 𝐷) |
31 | 3, 30 | jca 511 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
32 | opeq12 4811 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | |
33 | 31, 32 | impbii 208 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 {csn 4566 {cpr 4568 〈cop 4572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 |
This theorem is referenced by: opthg 5394 otth2 5400 copsexgw 5406 copsexg 5407 copsex2g 5409 copsex4g 5411 opcom 5417 moop2 5418 propssopi 5424 vopelopabsb 5443 ralxpf 5752 cnvcnvsn 6119 opreu2reurex 6194 funopg 6464 funsndifnop 7017 tpres 7070 f1opr 7322 oprabv 7326 xpopth 7858 eqop 7859 opiota 7885 soxp 7954 fnwelem 7956 xpdom2 8823 xpf1o 8891 unxpdomlem2 8989 unxpdomlem3 8990 xpwdomg 9305 djulf1o 9654 djurf1o 9655 fseqenlem1 9764 iundom2g 10280 eqresr 10877 cnref1o 12707 hashfun 14133 fsumcom2 15467 fprodcom2 15675 qredeu 16344 qnumdenbi 16429 crth 16460 prmreclem3 16600 imasaddfnlem 17220 fnpr2ob 17250 dprd2da 19626 dprd2d2 19628 ucnima 23414 numclwwlk1lem2f1 28700 br8d 30929 xppreima2 30967 aciunf1lem 30978 ofpreima 30981 erdszelem9 33140 goeleq12bg 33290 gonanegoal 33293 gonan0 33333 goaln0 33334 gonarlem 33335 gonar 33336 goalrlem 33337 goalr 33338 fmla0disjsuc 33339 fmlasucdisj 33340 satffunlem 33342 satffunlem1lem1 33343 satffunlem2lem1 33345 msubff1 33497 mvhf1 33500 brtp 33696 br8 33702 br6 33703 br4 33704 brsegle 34389 copsex2b 35290 poimirlem4 35760 poimirlem9 35765 dib1dim 39158 diclspsn 39187 dihopelvalcpre 39241 dihmeetlem4preN 39299 dihmeetlem13N 39312 dih1dimatlem 39322 dihatlat 39327 pellexlem3 40633 pellex 40637 snhesn 41347 opelopab4 42124 ichnreuop 44876 ichreuopeq 44877 rrx2xpref1o 46016 |
Copyright terms: Public domain | W3C validator |