Proof of Theorem preq12b
Step | Hyp | Ref
| Expression |
1 | | preqr1.a |
. . . . . 6
⊢ 𝐴 ∈ V |
2 | 1 | prid1 4698 |
. . . . 5
⊢ 𝐴 ∈ {𝐴, 𝐵} |
3 | | eleq2 2827 |
. . . . 5
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 ∈ {𝐴, 𝐵} ↔ 𝐴 ∈ {𝐶, 𝐷})) |
4 | 2, 3 | mpbii 232 |
. . . 4
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐴 ∈ {𝐶, 𝐷}) |
5 | 1 | elpr 4584 |
. . . 4
⊢ (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
6 | 4, 5 | sylib 217 |
. . 3
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
7 | | preq1 4669 |
. . . . . . . 8
⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) |
8 | 7 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐶, 𝐵} = {𝐶, 𝐷})) |
9 | | preqr1.b |
. . . . . . . 8
⊢ 𝐵 ∈ V |
10 | | preq12b.d |
. . . . . . . 8
⊢ 𝐷 ∈ V |
11 | 9, 10 | preqr2 4780 |
. . . . . . 7
⊢ ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷) |
12 | 8, 11 | syl6bi 252 |
. . . . . 6
⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)) |
13 | 12 | com12 32 |
. . . . 5
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 → 𝐵 = 𝐷)) |
14 | 13 | ancld 551 |
. . . 4
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
15 | | prcom 4668 |
. . . . . . 7
⊢ {𝐶, 𝐷} = {𝐷, 𝐶} |
16 | 15 | eqeq2i 2751 |
. . . . . 6
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐷, 𝐶}) |
17 | | preq1 4669 |
. . . . . . . . 9
⊢ (𝐴 = 𝐷 → {𝐴, 𝐵} = {𝐷, 𝐵}) |
18 | 17 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝐴 = 𝐷 → ({𝐴, 𝐵} = {𝐷, 𝐶} ↔ {𝐷, 𝐵} = {𝐷, 𝐶})) |
19 | | preq12b.c |
. . . . . . . . 9
⊢ 𝐶 ∈ V |
20 | 9, 19 | preqr2 4780 |
. . . . . . . 8
⊢ ({𝐷, 𝐵} = {𝐷, 𝐶} → 𝐵 = 𝐶) |
21 | 18, 20 | syl6bi 252 |
. . . . . . 7
⊢ (𝐴 = 𝐷 → ({𝐴, 𝐵} = {𝐷, 𝐶} → 𝐵 = 𝐶)) |
22 | 21 | com12 32 |
. . . . . 6
⊢ ({𝐴, 𝐵} = {𝐷, 𝐶} → (𝐴 = 𝐷 → 𝐵 = 𝐶)) |
23 | 16, 22 | sylbi 216 |
. . . . 5
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐷 → 𝐵 = 𝐶)) |
24 | 23 | ancld 551 |
. . . 4
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐷 → (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
25 | 14, 24 | orim12d 962 |
. . 3
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
26 | 6, 25 | mpd 15 |
. 2
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
27 | | preq12 4671 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
28 | | preq12 4671 |
. . . 4
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐷, 𝐶}) |
29 | | prcom 4668 |
. . . 4
⊢ {𝐷, 𝐶} = {𝐶, 𝐷} |
30 | 28, 29 | eqtrdi 2794 |
. . 3
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
31 | 27, 30 | jaoi 854 |
. 2
⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
32 | 26, 31 | impbii 208 |
1
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |