Proof of Theorem preq12b
| Step | Hyp | Ref
| Expression |
| 1 | | preqr1.a |
. . . . . 6
⊢ 𝐴 ∈ V |
| 2 | 1 | prid1 4743 |
. . . . 5
⊢ 𝐴 ∈ {𝐴, 𝐵} |
| 3 | | eleq2 2824 |
. . . . 5
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 ∈ {𝐴, 𝐵} ↔ 𝐴 ∈ {𝐶, 𝐷})) |
| 4 | 2, 3 | mpbii 233 |
. . . 4
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐴 ∈ {𝐶, 𝐷}) |
| 5 | 1 | elpr 4631 |
. . . 4
⊢ (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| 6 | 4, 5 | sylib 218 |
. . 3
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| 7 | | preq1 4714 |
. . . . . . . 8
⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) |
| 8 | 7 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐶, 𝐵} = {𝐶, 𝐷})) |
| 9 | | preqr1.b |
. . . . . . . 8
⊢ 𝐵 ∈ V |
| 10 | | preq12b.d |
. . . . . . . 8
⊢ 𝐷 ∈ V |
| 11 | 9, 10 | preqr2 4830 |
. . . . . . 7
⊢ ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷) |
| 12 | 8, 11 | biimtrdi 253 |
. . . . . 6
⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)) |
| 13 | 12 | com12 32 |
. . . . 5
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 → 𝐵 = 𝐷)) |
| 14 | 13 | ancld 550 |
. . . 4
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 15 | | prcom 4713 |
. . . . . . 7
⊢ {𝐶, 𝐷} = {𝐷, 𝐶} |
| 16 | 15 | eqeq2i 2749 |
. . . . . 6
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐷, 𝐶}) |
| 17 | | preq1 4714 |
. . . . . . . . 9
⊢ (𝐴 = 𝐷 → {𝐴, 𝐵} = {𝐷, 𝐵}) |
| 18 | 17 | eqeq1d 2738 |
. . . . . . . 8
⊢ (𝐴 = 𝐷 → ({𝐴, 𝐵} = {𝐷, 𝐶} ↔ {𝐷, 𝐵} = {𝐷, 𝐶})) |
| 19 | | preq12b.c |
. . . . . . . . 9
⊢ 𝐶 ∈ V |
| 20 | 9, 19 | preqr2 4830 |
. . . . . . . 8
⊢ ({𝐷, 𝐵} = {𝐷, 𝐶} → 𝐵 = 𝐶) |
| 21 | 18, 20 | biimtrdi 253 |
. . . . . . 7
⊢ (𝐴 = 𝐷 → ({𝐴, 𝐵} = {𝐷, 𝐶} → 𝐵 = 𝐶)) |
| 22 | 21 | com12 32 |
. . . . . 6
⊢ ({𝐴, 𝐵} = {𝐷, 𝐶} → (𝐴 = 𝐷 → 𝐵 = 𝐶)) |
| 23 | 16, 22 | sylbi 217 |
. . . . 5
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐷 → 𝐵 = 𝐶)) |
| 24 | 23 | ancld 550 |
. . . 4
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐷 → (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
| 25 | 14, 24 | orim12d 966 |
. . 3
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
| 26 | 6, 25 | mpd 15 |
. 2
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
| 27 | | preq12 4716 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| 28 | | preq12 4716 |
. . . 4
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐷, 𝐶}) |
| 29 | | prcom 4713 |
. . . 4
⊢ {𝐷, 𝐶} = {𝐶, 𝐷} |
| 30 | 28, 29 | eqtrdi 2787 |
. . 3
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| 31 | 27, 30 | jaoi 857 |
. 2
⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
| 32 | 26, 31 | impbii 209 |
1
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |