MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqr1g Structured version   Visualization version   GIF version

Theorem preqr1g 4799
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 4795. (Contributed by AV, 29-Jan-2021.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
preqr1g ((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵))

Proof of Theorem preqr1g
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
2 simpr 484 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
31, 2preq1b 4793 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵))
43biimpd 229 1 ((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cpr 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4572  df-pr 4574
This theorem is referenced by:  umgr2adedgspth  29921
  Copyright terms: Public domain W3C validator