Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orcomd | Structured version Visualization version GIF version |
Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.) |
Ref | Expression |
---|---|
orcomd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcomd | ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | orcom 867 | . 2 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: olcd 871 orcnd 876 19.33b 1889 r19.30OLD 3270 swopo 5515 fr2nr 5568 ordtri1 6303 ordequn 6370 ssonprc 7646 ordunpr 7682 ordunisuc2 7700 2oconcl 8342 erdisj 8559 ordtypelem7 9292 ackbij1lem18 10002 fin23lem19 10101 gchi 10389 inar1 10540 inatsk 10543 avgle 12224 nnm1nn0 12283 zle0orge1 12345 uzsplit 13337 fzospliti 13428 fzouzsplit 13431 znsqcld 13889 fz1f1o 15431 fnpr2ob 17278 odcl 19153 gexcl 19194 lssvs0or 20381 lspdisj 20396 lspsncv0 20417 mdetralt 21766 filconn 23043 limccnp 25064 dgrlt 25436 logreclem 25921 atans2 26090 basellem3 26241 sqff1o 26340 tgcgrsub2 26965 legov3 26968 colline 27019 tglowdim2ln 27021 mirbtwnhl 27050 colmid 27058 symquadlem 27059 midexlem 27062 ragperp 27087 colperp 27099 midex 27107 oppperpex 27123 hlpasch 27126 colopp 27139 lmieu 27154 lmicom 27158 lmimid 27164 lmiisolem 27166 trgcopy 27174 cgracgr 27188 cgraswap 27190 cgracol 27198 hashecclwwlkn1 28450 xlt2addrd 31090 fprodex01 31148 ssmxidl 31651 lvecdim0 31699 zarclssn 31832 esumcvgre 32068 nosep2o 33894 ordtoplem 34633 ordcmp 34645 onsucuni3 35547 dvasin 35870 eqvreldisj 36734 lkrshp4 37129 2at0mat0 37546 trlator0 38192 dia2dimlem2 39086 dia2dimlem3 39087 dochkrshp 39407 dochkrshp4 39410 lcfl6 39521 lclkrlem2k 39538 hdmap14lem6 39894 hgmapval0 39913 sticksstones12a 40120 sticksstones13 40122 acongneg2 40806 unxpwdom3 40927 mnuprdlem1 41897 mnurndlem1 41906 elunnel2 42589 disjinfi 42738 xrssre 42894 icccncfext 43435 wallispilem3 43615 fourierdlem93 43747 fourierdlem101 43755 nneop 45883 itsclinecirc0 46130 itsclinecirc0b 46131 itsclinecirc0in 46132 inlinecirc02plem 46143 inlinecirc02p 46144 |
Copyright terms: Public domain | W3C validator |