![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orcomd | Structured version Visualization version GIF version |
Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.) |
Ref | Expression |
---|---|
orcomd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcomd | ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | orcom 869 | . 2 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: olcd 873 orcnd 877 19.33b 1881 r19.30OLD 3116 elunnel2 4146 swopo 5595 fr2nr 5650 ordtri1 6396 ordequn 6466 ssonprc 7784 ordunpr 7823 ordunisuc2 7842 2oconcl 8517 erdisj 8771 ordtypelem7 9539 ackbij1lem18 10252 fin23lem19 10351 gchi 10639 inar1 10790 inatsk 10793 avgle 12476 nnm1nn0 12535 zle0orge1 12597 uzsplit 13597 fzospliti 13688 fzouzsplit 13691 znsqcld 14150 fz1f1o 15680 fnpr2ob 17531 odcl 19482 gexcl 19526 lssvs0or 20987 lspdisj 21002 lspsncv0 21023 mdetralt 22497 filconn 23774 limccnp 25807 dgrlt 26188 logreclem 26681 atans2 26850 basellem3 27002 sqff1o 27101 nosep2o 27602 elnns2 28196 tgcgrsub2 28386 legov3 28389 colline 28440 tglowdim2ln 28442 mirbtwnhl 28471 colmid 28479 symquadlem 28480 midexlem 28483 ragperp 28508 colperp 28520 midex 28528 oppperpex 28544 hlpasch 28547 colopp 28560 lmieu 28575 lmicom 28579 lmimid 28585 lmiisolem 28587 trgcopy 28595 cgracgr 28609 cgraswap 28611 cgracol 28619 hashecclwwlkn1 29874 xlt2addrd 32512 fprodex01 32570 ssmxidl 33123 lvecdim0 33236 minplyirred 33317 irredminply 33320 zarclssn 33410 esumcvgre 33646 ordtoplem 35855 ordcmp 35867 onsucuni3 36782 dvasin 37112 eqvreldisj 38023 lkrshp4 38517 2at0mat0 38935 trlator0 39581 dia2dimlem2 40475 dia2dimlem3 40476 dochkrshp 40796 dochkrshp4 40799 lcfl6 40910 lclkrlem2k 40927 hdmap14lem6 41283 hgmapval0 41302 sticksstones12a 41561 sticksstones13 41563 acongneg2 42320 unxpwdom3 42441 dflim5 42681 mnuprdlem1 43632 mnurndlem1 43641 disjinfi 44488 xrssre 44653 icccncfext 45198 wallispilem3 45378 fourierdlem93 45510 fourierdlem101 45518 nneop 47522 itsclinecirc0 47769 itsclinecirc0b 47770 itsclinecirc0in 47771 inlinecirc02plem 47782 inlinecirc02p 47783 |
Copyright terms: Public domain | W3C validator |