![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orcomd | Structured version Visualization version GIF version |
Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.) |
Ref | Expression |
---|---|
orcomd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcomd | ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | orcom 866 | . 2 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: olcd 870 orcnd 875 19.33b 1886 r19.30OLD 3119 elunnel2 4151 swopo 5600 fr2nr 5655 ordtri1 6398 ordequn 6468 ssonprc 7779 ordunpr 7818 ordunisuc2 7837 2oconcl 8507 erdisj 8759 ordtypelem7 9523 ackbij1lem18 10236 fin23lem19 10335 gchi 10623 inar1 10774 inatsk 10777 avgle 12460 nnm1nn0 12519 zle0orge1 12581 uzsplit 13579 fzospliti 13670 fzouzsplit 13673 znsqcld 14133 fz1f1o 15662 fnpr2ob 17510 odcl 19447 gexcl 19491 lssvs0or 20870 lspdisj 20885 lspsncv0 20906 mdetralt 22332 filconn 23609 limccnp 25642 dgrlt 26014 logreclem 26501 atans2 26670 basellem3 26821 sqff1o 26920 nosep2o 27419 tgcgrsub2 28111 legov3 28114 colline 28165 tglowdim2ln 28167 mirbtwnhl 28196 colmid 28204 symquadlem 28205 midexlem 28208 ragperp 28233 colperp 28245 midex 28253 oppperpex 28269 hlpasch 28272 colopp 28285 lmieu 28300 lmicom 28304 lmimid 28310 lmiisolem 28312 trgcopy 28320 cgracgr 28334 cgraswap 28336 cgracol 28344 hashecclwwlkn1 29595 xlt2addrd 32236 fprodex01 32296 ssmxidl 32862 lvecdim0 32977 minplyirred 33057 zarclssn 33149 esumcvgre 33385 ordtoplem 35625 ordcmp 35637 onsucuni3 36553 dvasin 36877 eqvreldisj 37789 lkrshp4 38283 2at0mat0 38701 trlator0 39347 dia2dimlem2 40241 dia2dimlem3 40242 dochkrshp 40562 dochkrshp4 40565 lcfl6 40676 lclkrlem2k 40693 hdmap14lem6 41049 hgmapval0 41068 sticksstones12a 41281 sticksstones13 41283 acongneg2 42020 unxpwdom3 42141 dflim5 42383 mnuprdlem1 43335 mnurndlem1 43344 disjinfi 44191 xrssre 44358 icccncfext 44903 wallispilem3 45083 fourierdlem93 45215 fourierdlem101 45223 nneop 47301 itsclinecirc0 47548 itsclinecirc0b 47549 itsclinecirc0in 47550 inlinecirc02plem 47561 inlinecirc02p 47562 |
Copyright terms: Public domain | W3C validator |