Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orcomd | Structured version Visualization version GIF version |
Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.) |
Ref | Expression |
---|---|
orcomd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcomd | ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | orcom 868 | . 2 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylib 221 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 846 |
This theorem is referenced by: olcd 872 orcnd 877 19.33b 1887 r19.30 3259 swopo 5454 fr2nr 5503 ordtri1 6203 ordequn 6270 ssonprc 7507 ordunpr 7541 ordunisuc2 7559 2oconcl 8139 erdisj 8352 ordtypelem7 9014 ackbij1lem18 9690 fin23lem19 9789 gchi 10077 inar1 10228 inatsk 10231 avgle 11909 nnm1nn0 11968 zle0orge1 12030 uzsplit 13021 fzospliti 13111 fzouzsplit 13114 znsqcld 13569 fz1f1o 15108 fnpr2ob 16882 odcl 18724 gexcl 18765 lssvs0or 19943 lspdisj 19958 lspsncv0 19979 mdetralt 21301 filconn 22576 limccnp 24583 dgrlt 24955 logreclem 25440 atans2 25609 basellem3 25760 sqff1o 25859 tgcgrsub2 26481 legov3 26484 colline 26535 tglowdim2ln 26537 mirbtwnhl 26566 colmid 26574 symquadlem 26575 midexlem 26578 ragperp 26603 colperp 26615 midex 26623 oppperpex 26639 hlpasch 26642 colopp 26655 lmieu 26670 lmicom 26674 lmimid 26680 lmiisolem 26682 trgcopy 26690 cgracgr 26704 cgraswap 26706 cgracol 26714 hashecclwwlkn1 27954 xlt2addrd 30598 fprodex01 30656 ssmxidl 31156 lvecdim0 31204 zarclssn 31337 esumcvgre 31571 nosep2o 33443 ordtoplem 34166 ordcmp 34178 onsucuni3 35057 dvasin 35414 eqvreldisj 36282 lkrshp4 36677 2at0mat0 37094 trlator0 37740 dia2dimlem2 38634 dia2dimlem3 38635 dochkrshp 38955 dochkrshp4 38958 lcfl6 39069 lclkrlem2k 39086 hdmap14lem6 39442 hgmapval0 39461 acongneg2 40284 unxpwdom3 40405 mnuprdlem1 41346 mnurndlem1 41355 elunnel2 42034 disjinfi 42183 xrssre 42341 icccncfext 42888 wallispilem3 43068 fourierdlem93 43200 fourierdlem101 43208 nneop 45298 itsclinecirc0 45545 itsclinecirc0b 45546 itsclinecirc0in 45547 inlinecirc02plem 45558 inlinecirc02p 45559 |
Copyright terms: Public domain | W3C validator |