![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orcomd | Structured version Visualization version GIF version |
Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.) |
Ref | Expression |
---|---|
orcomd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcomd | ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | orcom 869 | . 2 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: olcd 873 orcnd 877 19.33b 1884 r19.30OLD 3127 elunnel2 4178 swopo 5619 fr2nr 5677 ordtri1 6428 ordequn 6498 ssonprc 7823 ordunpr 7862 ordunisuc2 7881 2oconcl 8559 erdisj 8817 ordtypelem7 9593 ackbij1lem18 10305 fin23lem19 10405 gchi 10693 inar1 10844 inatsk 10847 avgle 12535 nnm1nn0 12594 zle0orge1 12656 uzsplit 13656 fzospliti 13748 fzouzsplit 13751 znsqcld 14212 fz1f1o 15758 fnpr2ob 17618 odcl 19578 gexcl 19622 lssvs0or 21135 lspdisj 21150 lspsncv0 21171 mdetralt 22635 filconn 23912 limccnp 25946 dgrlt 26326 logreclem 26823 atans2 26992 basellem3 27144 sqff1o 27243 nosep2o 27745 elnns2 28362 n0seo 28423 tgcgrsub2 28621 legov3 28624 colline 28675 tglowdim2ln 28677 mirbtwnhl 28706 colmid 28714 symquadlem 28715 midexlem 28718 ragperp 28743 colperp 28755 midex 28763 oppperpex 28779 hlpasch 28782 colopp 28795 lmieu 28810 lmicom 28814 lmimid 28820 lmiisolem 28822 trgcopy 28830 cgracgr 28844 cgraswap 28846 cgracol 28854 hashecclwwlkn1 30109 xlt2addrd 32765 fprodex01 32829 ssmxidl 33467 drngmxidlr 33471 lvecdim0 33619 minplyirred 33704 irredminply 33707 zarclssn 33819 esumcvgre 34055 ordtoplem 36401 ordcmp 36413 onsucuni3 37333 dvasin 37664 eqvreldisj 38570 lkrshp4 39064 2at0mat0 39482 trlator0 40128 dia2dimlem2 41022 dia2dimlem3 41023 dochkrshp 41343 dochkrshp4 41346 lcfl6 41457 lclkrlem2k 41474 hdmap14lem6 41830 hgmapval0 41849 sticksstones12a 42114 sticksstones13 42116 acongneg2 42934 unxpwdom3 43052 dflim5 43291 mnuprdlem1 44241 mnurndlem1 44250 disjinfi 45099 xrssre 45263 icccncfext 45808 wallispilem3 45988 fourierdlem93 46120 fourierdlem101 46128 nneop 48260 itsclinecirc0 48507 itsclinecirc0b 48508 itsclinecirc0in 48509 inlinecirc02plem 48520 inlinecirc02p 48521 |
Copyright terms: Public domain | W3C validator |