![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orcomd | Structured version Visualization version GIF version |
Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.) |
Ref | Expression |
---|---|
orcomd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcomd | ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | orcom 868 | . 2 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 |
This theorem is referenced by: olcd 872 orcnd 876 19.33b 1880 r19.30OLD 3111 elunnel2 4148 swopo 5600 fr2nr 5655 ordtri1 6402 ordequn 6472 ssonprc 7789 ordunpr 7828 ordunisuc2 7847 2oconcl 8522 erdisj 8776 ordtypelem7 9547 ackbij1lem18 10260 fin23lem19 10359 gchi 10647 inar1 10798 inatsk 10801 avgle 12484 nnm1nn0 12543 zle0orge1 12605 uzsplit 13605 fzospliti 13696 fzouzsplit 13699 znsqcld 14158 fz1f1o 15688 fnpr2ob 17539 odcl 19495 gexcl 19539 lssvs0or 21002 lspdisj 21017 lspsncv0 21038 mdetralt 22540 filconn 23817 limccnp 25850 dgrlt 26231 logreclem 26724 atans2 26893 basellem3 27045 sqff1o 27144 nosep2o 27645 elnns2 28245 tgcgrsub2 28455 legov3 28458 colline 28509 tglowdim2ln 28511 mirbtwnhl 28540 colmid 28548 symquadlem 28549 midexlem 28552 ragperp 28577 colperp 28589 midex 28597 oppperpex 28613 hlpasch 28616 colopp 28629 lmieu 28644 lmicom 28648 lmimid 28654 lmiisolem 28656 trgcopy 28664 cgracgr 28678 cgraswap 28680 cgracol 28688 hashecclwwlkn1 29943 xlt2addrd 32585 fprodex01 32645 ssmxidl 33249 lvecdim0 33374 minplyirred 33451 irredminply 33454 zarclssn 33544 esumcvgre 33780 ordtoplem 35989 ordcmp 36001 onsucuni3 36916 dvasin 37247 eqvreldisj 38155 lkrshp4 38649 2at0mat0 39067 trlator0 39713 dia2dimlem2 40607 dia2dimlem3 40608 dochkrshp 40928 dochkrshp4 40931 lcfl6 41042 lclkrlem2k 41059 hdmap14lem6 41415 hgmapval0 41434 sticksstones12a 41698 sticksstones13 41700 acongneg2 42463 unxpwdom3 42584 dflim5 42823 mnuprdlem1 43774 mnurndlem1 43783 disjinfi 44629 xrssre 44793 icccncfext 45338 wallispilem3 45518 fourierdlem93 45650 fourierdlem101 45658 nneop 47711 itsclinecirc0 47958 itsclinecirc0b 47959 itsclinecirc0in 47960 inlinecirc02plem 47971 inlinecirc02p 47972 |
Copyright terms: Public domain | W3C validator |