Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orcomd | Structured version Visualization version GIF version |
Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.) |
Ref | Expression |
---|---|
orcomd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcomd | ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | orcom 866 | . 2 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: olcd 870 orcnd 875 19.33b 1889 r19.30OLD 3266 swopo 5505 fr2nr 5558 ordtri1 6284 ordequn 6351 ssonprc 7614 ordunpr 7648 ordunisuc2 7666 2oconcl 8295 erdisj 8508 ordtypelem7 9213 ackbij1lem18 9924 fin23lem19 10023 gchi 10311 inar1 10462 inatsk 10465 avgle 12145 nnm1nn0 12204 zle0orge1 12266 uzsplit 13257 fzospliti 13347 fzouzsplit 13350 znsqcld 13808 fz1f1o 15350 fnpr2ob 17186 odcl 19059 gexcl 19100 lssvs0or 20287 lspdisj 20302 lspsncv0 20323 mdetralt 21665 filconn 22942 limccnp 24960 dgrlt 25332 logreclem 25817 atans2 25986 basellem3 26137 sqff1o 26236 tgcgrsub2 26860 legov3 26863 colline 26914 tglowdim2ln 26916 mirbtwnhl 26945 colmid 26953 symquadlem 26954 midexlem 26957 ragperp 26982 colperp 26994 midex 27002 oppperpex 27018 hlpasch 27021 colopp 27034 lmieu 27049 lmicom 27053 lmimid 27059 lmiisolem 27061 trgcopy 27069 cgracgr 27083 cgraswap 27085 cgracol 27093 hashecclwwlkn1 28342 xlt2addrd 30983 fprodex01 31041 ssmxidl 31544 lvecdim0 31592 zarclssn 31725 esumcvgre 31959 nosep2o 33812 ordtoplem 34551 ordcmp 34563 onsucuni3 35465 dvasin 35788 eqvreldisj 36654 lkrshp4 37049 2at0mat0 37466 trlator0 38112 dia2dimlem2 39006 dia2dimlem3 39007 dochkrshp 39327 dochkrshp4 39330 lcfl6 39441 lclkrlem2k 39458 hdmap14lem6 39814 hgmapval0 39833 sticksstones12a 40041 sticksstones13 40043 acongneg2 40715 unxpwdom3 40836 mnuprdlem1 41779 mnurndlem1 41788 elunnel2 42471 disjinfi 42620 xrssre 42777 icccncfext 43318 wallispilem3 43498 fourierdlem93 43630 fourierdlem101 43638 nneop 45760 itsclinecirc0 46007 itsclinecirc0b 46008 itsclinecirc0in 46009 inlinecirc02plem 46020 inlinecirc02p 46021 |
Copyright terms: Public domain | W3C validator |