![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orcomd | Structured version Visualization version GIF version |
Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.) |
Ref | Expression |
---|---|
orcomd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcomd | ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | orcom 869 | . 2 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: olcd 873 orcnd 878 19.33b 1889 r19.30OLD 3122 elunnel2 4151 swopo 5600 fr2nr 5655 ordtri1 6398 ordequn 6468 ssonprc 7775 ordunpr 7814 ordunisuc2 7833 2oconcl 8503 erdisj 8755 ordtypelem7 9519 ackbij1lem18 10232 fin23lem19 10331 gchi 10619 inar1 10770 inatsk 10773 avgle 12454 nnm1nn0 12513 zle0orge1 12575 uzsplit 13573 fzospliti 13664 fzouzsplit 13667 znsqcld 14127 fz1f1o 15656 fnpr2ob 17504 odcl 19404 gexcl 19448 lssvs0or 20723 lspdisj 20738 lspsncv0 20759 mdetralt 22110 filconn 23387 limccnp 25408 dgrlt 25780 logreclem 26267 atans2 26436 basellem3 26587 sqff1o 26686 nosep2o 27185 tgcgrsub2 27877 legov3 27880 colline 27931 tglowdim2ln 27933 mirbtwnhl 27962 colmid 27970 symquadlem 27971 midexlem 27974 ragperp 27999 colperp 28011 midex 28019 oppperpex 28035 hlpasch 28038 colopp 28051 lmieu 28066 lmicom 28070 lmimid 28076 lmiisolem 28078 trgcopy 28086 cgracgr 28100 cgraswap 28102 cgracol 28110 hashecclwwlkn1 29361 xlt2addrd 32002 fprodex01 32062 ssmxidl 32621 lvecdim0 32722 minplyirred 32801 zarclssn 32884 esumcvgre 33120 ordtoplem 35368 ordcmp 35380 onsucuni3 36296 dvasin 36620 eqvreldisj 37532 lkrshp4 38026 2at0mat0 38444 trlator0 39090 dia2dimlem2 39984 dia2dimlem3 39985 dochkrshp 40305 dochkrshp4 40308 lcfl6 40419 lclkrlem2k 40436 hdmap14lem6 40792 hgmapval0 40811 sticksstones12a 41021 sticksstones13 41023 acongneg2 41764 unxpwdom3 41885 dflim5 42127 mnuprdlem1 43079 mnurndlem1 43088 disjinfi 43939 xrssre 44106 icccncfext 44651 wallispilem3 44831 fourierdlem93 44963 fourierdlem101 44971 nneop 47260 itsclinecirc0 47507 itsclinecirc0b 47508 itsclinecirc0in 47509 inlinecirc02plem 47520 inlinecirc02p 47521 |
Copyright terms: Public domain | W3C validator |