MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem12 Structured version   Visualization version   GIF version

Theorem fpwwe2lem12 10329
Description: Lemma for fpwwe2 10330. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe2lem12 (𝜑 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem12
Dummy variables 𝑎 𝑏 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun2 4103 . . . 4 {(𝑋𝐹(𝑊𝑋))} ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})
2 fpwwe2.1 . . . . . . . . . . . . . 14 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
3 fpwwe2.2 . . . . . . . . . . . . . . 15 (𝜑𝐴𝑉)
43adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝐴𝑉)
5 fpwwe2.3 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
65adantlr 711 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
7 fpwwe2.4 . . . . . . . . . . . . . 14 𝑋 = dom 𝑊
82, 4, 6, 7fpwwe2lem11 10328 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑋 ∈ dom 𝑊)
92, 4, 6, 7fpwwe2lem10 10327 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
10 ffun 6587 . . . . . . . . . . . . . 14 (𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋) → Fun 𝑊)
11 funfvbrb 6910 . . . . . . . . . . . . . 14 (Fun 𝑊 → (𝑋 ∈ dom 𝑊𝑋𝑊(𝑊𝑋)))
129, 10, 113syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∈ dom 𝑊𝑋𝑊(𝑊𝑋)))
138, 12mpbid 231 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑋𝑊(𝑊𝑋))
142, 4fpwwe2lem2 10319 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝑊(𝑊𝑋) ↔ ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))))
1513, 14mpbid 231 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)))
1615simpld 494 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)))
1716simpld 494 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑋𝐴)
1816simprd 495 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
1915simprd 495 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))
2019simpld 494 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) We 𝑋)
2117, 18, 203jca 1126 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋) ∧ (𝑊𝑋) We 𝑋))
222, 3, 5fpwwe2lem4 10321 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋) ∧ (𝑊𝑋) We 𝑋)) → (𝑋𝐹(𝑊𝑋)) ∈ 𝐴)
2321, 22syldan 590 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝐹(𝑊𝑋)) ∈ 𝐴)
2423snssd 4739 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → {(𝑋𝐹(𝑊𝑋))} ⊆ 𝐴)
2517, 24unssd 4116 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝐴)
26 ssun1 4102 . . . . . . . . . . 11 𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})
27 xpss12 5595 . . . . . . . . . . 11 ((𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) → (𝑋 × 𝑋) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
2826, 26, 27mp2an 688 . . . . . . . . . 10 (𝑋 × 𝑋) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
2918, 28sstrdi 3929 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
30 xpss12 5595 . . . . . . . . . . 11 ((𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ {(𝑋𝐹(𝑊𝑋))} ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) → (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
3126, 1, 30mp2an 688 . . . . . . . . . 10 (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
3231a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
3329, 32unssd 4116 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
3425, 33jca 511 . . . . . . 7 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝐴 ∧ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))))
35 ssdif0 4294 . . . . . . . . . . . . . 14 (𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))} ↔ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) = ∅)
36 simpllr 772 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
3718ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
3837ssbrd 5113 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) → (𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)(𝑋𝐹(𝑊𝑋))))
39 brxp 5627 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)(𝑋𝐹(𝑊𝑋)) ↔ ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋 ∧ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
4039simplbi 497 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)(𝑋𝐹(𝑊𝑋)) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
4138, 40syl6 35 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
4236, 41mtod 197 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)))
43 brxp 5627 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)) ↔ ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋 ∧ (𝑋𝐹(𝑊𝑋)) ∈ {(𝑋𝐹(𝑊𝑋))}))
4443simplbi 497 . . . . . . . . . . . . . . . . . 18 ((𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
4536, 44nsyl 140 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)))
46 ovex 7288 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐹(𝑊𝑋)) ∈ V
47 breq2 5074 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑋𝐹(𝑊𝑋)) → ((𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))(𝑋𝐹(𝑊𝑋))))
48 brun 5121 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))(𝑋𝐹(𝑊𝑋)) ↔ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))))
4947, 48bitrdi 286 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑋𝐹(𝑊𝑋)) → ((𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)))))
5049notbid 317 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑋𝐹(𝑊𝑋)) → (¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)))))
5146, 50rexsn 4615 . . . . . . . . . . . . . . . . . 18 (∃𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))))
52 ioran 980 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))) ↔ (¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∧ ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))))
5351, 52bitri 274 . . . . . . . . . . . . . . . . 17 (∃𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∧ ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))))
5442, 45, 53sylanbrc 582 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ∃𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
55 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))})
56 sssn 4756 . . . . . . . . . . . . . . . . . . 19 (𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))} ↔ (𝑥 = ∅ ∨ 𝑥 = {(𝑋𝐹(𝑊𝑋))}))
5755, 56sylib 217 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (𝑥 = ∅ ∨ 𝑥 = {(𝑋𝐹(𝑊𝑋))}))
58 simplrr 774 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → 𝑥 ≠ ∅)
5958neneqd 2947 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ¬ 𝑥 = ∅)
6057, 59orcnd 875 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → 𝑥 = {(𝑋𝐹(𝑊𝑋))})
6160raleqdv 3339 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
62 breq1 5073 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑋𝐹(𝑊𝑋)) → (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6362notbid 317 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑋𝐹(𝑊𝑋)) → (¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6446, 63ralsn 4614 . . . . . . . . . . . . . . . . . 18 (∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
6561, 64bitrdi 286 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6660, 65rexeqbidv 3328 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ∃𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6754, 66mpbird 256 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
6867ex 412 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) → (𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6935, 68syl5bir 242 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) → ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) = ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
70 vex 3426 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
71 difexg 5246 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∈ V)
7270, 71mp1i 13 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∈ V)
73 wefr 5570 . . . . . . . . . . . . . . . . . 18 ((𝑊𝑋) We 𝑋 → (𝑊𝑋) Fr 𝑋)
7420, 73syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) Fr 𝑋)
7574ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (𝑊𝑋) Fr 𝑋)
76 simplrl 773 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → 𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
77 uncom 4083 . . . . . . . . . . . . . . . . . 18 (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} ∪ 𝑋)
7876, 77sseqtrdi 3967 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → 𝑥 ⊆ ({(𝑋𝐹(𝑊𝑋))} ∪ 𝑋))
79 ssundif 4415 . . . . . . . . . . . . . . . . 17 (𝑥 ⊆ ({(𝑋𝐹(𝑊𝑋))} ∪ 𝑋) ↔ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝑋)
8078, 79sylib 217 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝑋)
81 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅)
82 fri 5540 . . . . . . . . . . . . . . . 16 ((((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∈ V ∧ (𝑊𝑋) Fr 𝑋) ∧ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝑋 ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅)) → ∃𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦)
8372, 75, 80, 81, 82syl22anc 835 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → ∃𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦)
84 brun 5121 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (𝑧(𝑊𝑋)𝑦𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
85 idd 24 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑧(𝑊𝑋)𝑦𝑧(𝑊𝑋)𝑦))
86 brxp 5627 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦 ↔ (𝑧𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
8786simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})
88 eldifn 4058 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) → ¬ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})
8988adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ¬ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})
9089pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} → 𝑧(𝑊𝑋)𝑦))
9187, 90syl5 34 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦))
9285, 91jaod 855 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ((𝑧(𝑊𝑋)𝑦𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦) → 𝑧(𝑊𝑋)𝑦))
9384, 92syl5bi 241 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑧(𝑊𝑋)𝑦))
9493con3d 152 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (¬ 𝑧(𝑊𝑋)𝑦 → ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
9594ralimdv 3103 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → ∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
96 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
9796ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
9818ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
9998ssbrd 5113 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 → (𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)𝑦))
100 brxp 5627 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)𝑦 ↔ ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋𝑦𝑋))
101100simplbi 497 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)𝑦 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
10299, 101syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
10397, 102mtod 197 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦)
104 brxp 5627 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦 ↔ ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
105104simprbi 496 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})
10689, 105nsyl 140 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)
107 brun 5121 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
10862, 107bitrdi 286 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (𝑋𝐹(𝑊𝑋)) → (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)))
109108notbid 317 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑋𝐹(𝑊𝑋)) → (¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)))
11046, 109ralsn 4614 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
111 ioran 980 . . . . . . . . . . . . . . . . . . . . . 22 (¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦) ↔ (¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∧ ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
112110, 111bitri 274 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∧ ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
113103, 106, 112sylanbrc 582 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
11495, 113jctird 526 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ∧ ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)))
115 ssun1 4102 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ⊆ (𝑥 ∪ {(𝑋𝐹(𝑊𝑋))})
116 undif1 4406 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))}) = (𝑥 ∪ {(𝑋𝐹(𝑊𝑋))})
117115, 116sseqtrri 3954 . . . . . . . . . . . . . . . . . . . 20 𝑥 ⊆ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))})
118 ralun 4122 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ∧ ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦) → ∀𝑧 ∈ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
119 ssralv 3983 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ⊆ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))}) → (∀𝑧 ∈ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 → ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
120117, 118, 119mpsyl 68 . . . . . . . . . . . . . . . . . . 19 ((∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ∧ ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦) → ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
121114, 120syl6 35 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
122 eldifi 4057 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) → 𝑦𝑥)
123122adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → 𝑦𝑥)
124121, 123jctild 525 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → (𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)))
125124expimpd 453 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → ((𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦) → (𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)))
126125reximdv2 3198 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (∃𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
12783, 126mpd 15 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
128127ex 412 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) → ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
12969, 128pm2.61dne 3030 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
130129ex 412 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
131130alrimiv 1931 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ∀𝑥((𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
132 df-fr 5535 . . . . . . . . . 10 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) Fr (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ↔ ∀𝑥((𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
133131, 132sylibr 233 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) Fr (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
134 elun 4079 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ↔ (𝑥𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}))
135 elun 4079 . . . . . . . . . . . 12 (𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ↔ (𝑦𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
136134, 135anbi12i 626 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) ↔ ((𝑥𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ (𝑦𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})))
137 weso 5571 . . . . . . . . . . . . . . . 16 ((𝑊𝑋) We 𝑋 → (𝑊𝑋) Or 𝑋)
13820, 137syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) Or 𝑋)
139 solin 5519 . . . . . . . . . . . . . . 15 (((𝑊𝑋) Or 𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝑊𝑋)𝑦𝑥 = 𝑦𝑦(𝑊𝑋)𝑥))
140138, 139sylan 579 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝑊𝑋)𝑦𝑥 = 𝑦𝑦(𝑊𝑋)𝑥))
141 ssun1 4102 . . . . . . . . . . . . . . . . 17 (𝑊𝑋) ⊆ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))
142141a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑊𝑋) ⊆ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})))
143142ssbrd 5113 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝑊𝑋)𝑦𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
144 idd 24 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦𝑥 = 𝑦))
145142ssbrd 5113 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦(𝑊𝑋)𝑥𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
146143, 144, 1453orim123d 1442 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(𝑊𝑋)𝑦𝑥 = 𝑦𝑦(𝑊𝑋)𝑥) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
147140, 146mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
148147ex 412 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥𝑋𝑦𝑋) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
149 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋)) → (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋))
150149ancomd 461 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋)) → (𝑦𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}))
151 brxp 5627 . . . . . . . . . . . . . . 15 (𝑦(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑥 ↔ (𝑦𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}))
152150, 151sylibr 233 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋)) → 𝑦(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑥)
153 ssun2 4103 . . . . . . . . . . . . . . 15 (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ⊆ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))
154153ssbri 5115 . . . . . . . . . . . . . 14 (𝑦(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑥𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)
155 3mix3 1330 . . . . . . . . . . . . . 14 (𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥 → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
156152, 154, 1553syl 18 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋)) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
157156ex 412 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
158 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
159 brxp 5627 . . . . . . . . . . . . . . 15 (𝑥(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦 ↔ (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
160158, 159sylibr 233 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → 𝑥(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)
161153ssbri 5115 . . . . . . . . . . . . . 14 (𝑥(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
162 3mix1 1328 . . . . . . . . . . . . . 14 (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
163160, 161, 1623syl 18 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
164163ex 412 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
165 elsni 4575 . . . . . . . . . . . . . . 15 (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} → 𝑥 = (𝑋𝐹(𝑊𝑋)))
166 elsni 4575 . . . . . . . . . . . . . . 15 (𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} → 𝑦 = (𝑋𝐹(𝑊𝑋)))
167 eqtr3 2764 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑋𝐹(𝑊𝑋)) ∧ 𝑦 = (𝑋𝐹(𝑊𝑋))) → 𝑥 = 𝑦)
168165, 166, 167syl2an 595 . . . . . . . . . . . . . 14 ((𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → 𝑥 = 𝑦)
1691683mix2d 1335 . . . . . . . . . . . . 13 ((𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
170169a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
171148, 157, 164, 170ccased 1035 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (((𝑥𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ (𝑦𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
172136, 171syl5bi 241 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
173172ralrimivv 3113 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ∀𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})(𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
174 dfwe2 7602 . . . . . . . . 9 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ↔ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) Fr (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})(𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
175133, 173, 174sylanbrc 582 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
1762fpwwe2cbv 10317 . . . . . . . . . . . . 13 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑏](𝑏𝐹(𝑠 ∩ (𝑏 × 𝑏))) = 𝑧))}
177176, 4, 13fpwwe2lem3 10320 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) “ {𝑦})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))) = 𝑦)
178 cnvimass 5978 . . . . . . . . . . . . . . 15 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ⊆ dom ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))
179 fvex 6769 . . . . . . . . . . . . . . . . 17 (𝑊𝑋) ∈ V
180 snex 5349 . . . . . . . . . . . . . . . . . 18 {(𝑋𝐹(𝑊𝑋))} ∈ V
181 xpexg 7578 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ dom 𝑊 ∧ {(𝑋𝐹(𝑊𝑋))} ∈ V) → (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∈ V)
1828, 180, 181sylancl 585 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∈ V)
183 unexg 7577 . . . . . . . . . . . . . . . . 17 (((𝑊𝑋) ∈ V ∧ (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∈ V) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∈ V)
184179, 182, 183sylancr 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∈ V)
185184dmexd 7726 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → dom ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∈ V)
186 ssexg 5242 . . . . . . . . . . . . . . 15 (((((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ⊆ dom ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∧ dom ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∈ V) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ∈ V)
187178, 185, 186sylancr 586 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ∈ V)
188187adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ∈ V)
189 id 22 . . . . . . . . . . . . . . . 16 (𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) → 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}))
190 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
191 simplr 765 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
192 nelne2 3041 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑋 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑦 ≠ (𝑋𝐹(𝑊𝑋)))
193190, 191, 192syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → 𝑦 ≠ (𝑋𝐹(𝑊𝑋)))
19487, 166syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑦 = (𝑋𝐹(𝑊𝑋)))
195194necon3ai 2967 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ≠ (𝑋𝐹(𝑊𝑋)) → ¬ 𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)
196 biorf 933 . . . . . . . . . . . . . . . . . . . 20 𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦 → (𝑧(𝑊𝑋)𝑦 ↔ (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦)))
197193, 195, 1963syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (𝑧(𝑊𝑋)𝑦 ↔ (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦)))
198 orcom 866 . . . . . . . . . . . . . . . . . . . 20 ((𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦) ↔ (𝑧(𝑊𝑋)𝑦𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
199198, 84bitr4i 277 . . . . . . . . . . . . . . . . . . 19 ((𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦) ↔ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
200197, 199bitr2di 287 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑧(𝑊𝑋)𝑦))
201 vex 3426 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
202201eliniseg 5991 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ V → (𝑧 ∈ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ↔ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
203202elv 3428 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ↔ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
204201eliniseg 5991 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ V → (𝑧 ∈ ((𝑊𝑋) “ {𝑦}) ↔ 𝑧(𝑊𝑋)𝑦))
205204elv 3428 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝑊𝑋) “ {𝑦}) ↔ 𝑧(𝑊𝑋)𝑦)
206200, 203, 2053bitr4g 313 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (𝑧 ∈ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ↔ 𝑧 ∈ ((𝑊𝑋) “ {𝑦})))
207206eqrdv 2736 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = ((𝑊𝑋) “ {𝑦}))
208189, 207sylan9eqr 2801 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → 𝑢 = ((𝑊𝑋) “ {𝑦}))
209208sqxpeqd 5612 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (𝑢 × 𝑢) = (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))
210209ineq2d 4143 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢)) = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
211 indir 4206 . . . . . . . . . . . . . . . . . . 19 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
212 inxp 5730 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦})))
213 incom 4131 . . . . . . . . . . . . . . . . . . . . . . . 24 ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦})) = (((𝑊𝑋) “ {𝑦}) ∩ {(𝑋𝐹(𝑊𝑋))})
214 cnvimass 5978 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑊𝑋) “ {𝑦}) ⊆ dom (𝑊𝑋)
21518adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
216 dmss 5800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊𝑋) ⊆ (𝑋 × 𝑋) → dom (𝑊𝑋) ⊆ dom (𝑋 × 𝑋))
217215, 216syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → dom (𝑊𝑋) ⊆ dom (𝑋 × 𝑋))
218 dmxpid 5828 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 dom (𝑋 × 𝑋) = 𝑋
219217, 218sseqtrdi 3967 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → dom (𝑊𝑋) ⊆ 𝑋)
220214, 219sstrid 3928 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ((𝑊𝑋) “ {𝑦}) ⊆ 𝑋)
221220, 191ssneldd 3920 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ ((𝑊𝑋) “ {𝑦}))
222 disjsn 4644 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑊𝑋) “ {𝑦}) ∩ {(𝑋𝐹(𝑊𝑋))}) = ∅ ↔ ¬ (𝑋𝐹(𝑊𝑋)) ∈ ((𝑊𝑋) “ {𝑦}))
223221, 222sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) “ {𝑦}) ∩ {(𝑋𝐹(𝑊𝑋))}) = ∅)
224213, 223eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦})) = ∅)
225224xpeq2d 5610 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦}))) = ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ∅))
226 xp0 6050 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ∅) = ∅
227225, 226eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦}))) = ∅)
228212, 227eqtrid 2790 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = ∅)
229228uneq2d 4093 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))) = (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ∅))
230211, 229eqtrid 2790 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ∅))
231 un0 4321 . . . . . . . . . . . . . . . . . 18 (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ∅) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))
232230, 231eqtrdi 2795 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
233232adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
234210, 233eqtrd 2778 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢)) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
235208, 234oveq12d 7273 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = (((𝑊𝑋) “ {𝑦})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))))
236235eqeq1d 2740 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → ((𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (((𝑊𝑋) “ {𝑦})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))) = 𝑦))
237188, 236sbcied 3756 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ([(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (((𝑊𝑋) “ {𝑦})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))) = 𝑦))
238177, 237mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → [(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
239166adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → 𝑦 = (𝑋𝐹(𝑊𝑋)))
240239eqcomd 2744 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑋𝐹(𝑊𝑋)) = 𝑦)
241187adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ∈ V)
242 simplr 765 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
243239eleq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑦 ∈ dom (𝑊𝑋) ↔ (𝑋𝐹(𝑊𝑋)) ∈ dom (𝑊𝑋)))
24418adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
245 rnss 5837 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊𝑋) ⊆ (𝑋 × 𝑋) → ran (𝑊𝑋) ⊆ ran (𝑋 × 𝑋))
246244, 245syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ran (𝑊𝑋) ⊆ ran (𝑋 × 𝑋))
247 df-rn 5591 . . . . . . . . . . . . . . . . . . . . . . 23 ran (𝑊𝑋) = dom (𝑊𝑋)
248 rnxpid 6065 . . . . . . . . . . . . . . . . . . . . . . 23 ran (𝑋 × 𝑋) = 𝑋
249246, 247, 2483sstr3g 3961 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → dom (𝑊𝑋) ⊆ 𝑋)
250249sseld 3916 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋𝐹(𝑊𝑋)) ∈ dom (𝑊𝑋) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
251243, 250sylbid 239 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑦 ∈ dom (𝑊𝑋) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
252242, 251mtod 197 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ¬ 𝑦 ∈ dom (𝑊𝑋))
253 ndmima 6000 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ dom (𝑊𝑋) → ((𝑊𝑋) “ {𝑦}) = ∅)
254252, 253syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑊𝑋) “ {𝑦}) = ∅)
255239sneqd 4570 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → {𝑦} = {(𝑋𝐹(𝑊𝑋))})
256255imaeq2d 5958 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦}) = ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {(𝑋𝐹(𝑊𝑋))}))
257 df-ima 5593 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {(𝑋𝐹(𝑊𝑋))}) = ran ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))})
258 cnvxp 6049 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 × {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} × 𝑋)
259258reseq1i 5876 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))}) = (({(𝑋𝐹(𝑊𝑋))} × 𝑋) ↾ {(𝑋𝐹(𝑊𝑋))})
260 ssid 3939 . . . . . . . . . . . . . . . . . . . . . . . 24 {(𝑋𝐹(𝑊𝑋))} ⊆ {(𝑋𝐹(𝑊𝑋))}
261 xpssres 5917 . . . . . . . . . . . . . . . . . . . . . . . 24 ({(𝑋𝐹(𝑊𝑋))} ⊆ {(𝑋𝐹(𝑊𝑋))} → (({(𝑋𝐹(𝑊𝑋))} × 𝑋) ↾ {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} × 𝑋))
262260, 261ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (({(𝑋𝐹(𝑊𝑋))} × 𝑋) ↾ {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} × 𝑋)
263259, 262eqtri 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} × 𝑋)
264263rneqi 5835 . . . . . . . . . . . . . . . . . . . . 21 ran ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))}) = ran ({(𝑋𝐹(𝑊𝑋))} × 𝑋)
26546snnz 4709 . . . . . . . . . . . . . . . . . . . . . 22 {(𝑋𝐹(𝑊𝑋))} ≠ ∅
266 rnxp 6062 . . . . . . . . . . . . . . . . . . . . . 22 ({(𝑋𝐹(𝑊𝑋))} ≠ ∅ → ran ({(𝑋𝐹(𝑊𝑋))} × 𝑋) = 𝑋)
267265, 266ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ran ({(𝑋𝐹(𝑊𝑋))} × 𝑋) = 𝑋
268264, 267eqtri 2766 . . . . . . . . . . . . . . . . . . . 20 ran ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))}) = 𝑋
269257, 268eqtri 2766 . . . . . . . . . . . . . . . . . . 19 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {(𝑋𝐹(𝑊𝑋))}) = 𝑋
270256, 269eqtrdi 2795 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦}) = 𝑋)
271254, 270uneq12d 4094 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) “ {𝑦}) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦})) = (∅ ∪ 𝑋))
272 cnvun 6035 . . . . . . . . . . . . . . . . . . 19 ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) = ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))
273272imaeq1i 5955 . . . . . . . . . . . . . . . . . 18 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})
274 imaundir 6043 . . . . . . . . . . . . . . . . . 18 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = (((𝑊𝑋) “ {𝑦}) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦}))
275273, 274eqtri 2766 . . . . . . . . . . . . . . . . 17 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = (((𝑊𝑋) “ {𝑦}) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦}))
276 un0 4321 . . . . . . . . . . . . . . . . . 18 (𝑋 ∪ ∅) = 𝑋
277 uncom 4083 . . . . . . . . . . . . . . . . . 18 (𝑋 ∪ ∅) = (∅ ∪ 𝑋)
278276, 277eqtr3i 2768 . . . . . . . . . . . . . . . . 17 𝑋 = (∅ ∪ 𝑋)
279271, 275, 2783eqtr4g 2804 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = 𝑋)
280189, 279sylan9eqr 2801 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → 𝑢 = 𝑋)
281280sqxpeqd 5612 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (𝑢 × 𝑢) = (𝑋 × 𝑋))
282281ineq2d 4143 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢)) = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)))
283 indir 4206 . . . . . . . . . . . . . . . . . . 19 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)) = (((𝑊𝑋) ∩ (𝑋 × 𝑋)) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (𝑋 × 𝑋)))
284 df-ss 3900 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊𝑋) ⊆ (𝑋 × 𝑋) ↔ ((𝑊𝑋) ∩ (𝑋 × 𝑋)) = (𝑊𝑋))
285244, 284sylib 217 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑊𝑋) ∩ (𝑋 × 𝑋)) = (𝑊𝑋))
286 incom 4131 . . . . . . . . . . . . . . . . . . . . . . 23 ({(𝑋𝐹(𝑊𝑋))} ∩ 𝑋) = (𝑋 ∩ {(𝑋𝐹(𝑊𝑋))})
287 disjsn 4644 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 ∩ {(𝑋𝐹(𝑊𝑋))}) = ∅ ↔ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
288242, 287sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑋 ∩ {(𝑋𝐹(𝑊𝑋))}) = ∅)
289286, 288eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ({(𝑋𝐹(𝑊𝑋))} ∩ 𝑋) = ∅)
290289xpeq2d 5610 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑋 × ({(𝑋𝐹(𝑊𝑋))} ∩ 𝑋)) = (𝑋 × ∅))
291 xpindi 5731 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 × ({(𝑋𝐹(𝑊𝑋))} ∩ 𝑋)) = ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (𝑋 × 𝑋))
292 xp0 6050 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 × ∅) = ∅
293290, 291, 2923eqtr3g 2802 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (𝑋 × 𝑋)) = ∅)
294285, 293uneq12d 4094 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∩ (𝑋 × 𝑋)) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (𝑋 × 𝑋))) = ((𝑊𝑋) ∪ ∅))
295283, 294eqtrid 2790 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)) = ((𝑊𝑋) ∪ ∅))
296 un0 4321 . . . . . . . . . . . . . . . . . 18 ((𝑊𝑋) ∪ ∅) = (𝑊𝑋)
297295, 296eqtrdi 2795 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)) = (𝑊𝑋))
298297adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)) = (𝑊𝑋))
299282, 298eqtrd 2778 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢)) = (𝑊𝑋))
300280, 299oveq12d 7273 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = (𝑋𝐹(𝑊𝑋)))
301300eqeq1d 2740 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → ((𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑋𝐹(𝑊𝑋)) = 𝑦))
302241, 301sbcied 3756 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ([(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑋𝐹(𝑊𝑋)) = 𝑦))
303240, 302mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → [(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
304238, 303jaodan 954 . . . . . . . . . 10 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑦𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → [(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
305135, 304sylan2b 593 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) → [(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
306305ralrimiva 3107 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})[(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
307175, 306jca 511 . . . . . . 7 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})[(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦))
3082, 3fpwwe2lem2 10319 . . . . . . . 8 (𝜑 → ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})𝑊((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ↔ (((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝐴 ∧ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))) ∧ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})[(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦))))
309308adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})𝑊((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ↔ (((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝐴 ∧ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))) ∧ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})[(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦))))
31034, 307, 309mpbir2and 709 . . . . . 6 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})𝑊((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})))
3112relopabiv 5719 . . . . . . 7 Rel 𝑊
312311releldmi 5846 . . . . . 6 ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})𝑊((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∈ dom 𝑊)
313 elssuni 4868 . . . . . 6 ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∈ dom 𝑊 → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ dom 𝑊)
314310, 312, 3133syl 18 . . . . 5 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ dom 𝑊)
315314, 7sseqtrrdi 3968 . . . 4 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝑋)
3161, 315sstrid 3928 . . 3 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → {(𝑋𝐹(𝑊𝑋))} ⊆ 𝑋)
31746snss 4716 . . 3 ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋 ↔ {(𝑋𝐹(𝑊𝑋))} ⊆ 𝑋)
318316, 317sylibr 233 . 2 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
319318pm2.18da 796 1 (𝜑 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  [wsbc 3711  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836   class class class wbr 5070  {copab 5132   Or wor 5493   Fr wfr 5532   We wwe 5534   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-oi 9199
This theorem is referenced by:  fpwwe2  10330
  Copyright terms: Public domain W3C validator