MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem12 Structured version   Visualization version   GIF version

Theorem fpwwe2lem12 10398
Description: Lemma for fpwwe2 10399. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe2lem12 (𝜑 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem12
Dummy variables 𝑎 𝑏 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun2 4107 . . . 4 {(𝑋𝐹(𝑊𝑋))} ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})
2 fpwwe2.1 . . . . . . . . . . . . . 14 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
3 fpwwe2.2 . . . . . . . . . . . . . . 15 (𝜑𝐴𝑉)
43adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝐴𝑉)
5 fpwwe2.3 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
65adantlr 712 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
7 fpwwe2.4 . . . . . . . . . . . . . 14 𝑋 = dom 𝑊
82, 4, 6, 7fpwwe2lem11 10397 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑋 ∈ dom 𝑊)
92, 4, 6, 7fpwwe2lem10 10396 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
10 ffun 6603 . . . . . . . . . . . . . 14 (𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋) → Fun 𝑊)
11 funfvbrb 6928 . . . . . . . . . . . . . 14 (Fun 𝑊 → (𝑋 ∈ dom 𝑊𝑋𝑊(𝑊𝑋)))
129, 10, 113syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∈ dom 𝑊𝑋𝑊(𝑊𝑋)))
138, 12mpbid 231 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑋𝑊(𝑊𝑋))
142, 4fpwwe2lem2 10388 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝑊(𝑊𝑋) ↔ ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))))
1513, 14mpbid 231 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)))
1615simpld 495 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)))
1716simpld 495 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑋𝐴)
1816simprd 496 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
1915simprd 496 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))
2019simpld 495 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) We 𝑋)
2117, 18, 203jca 1127 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋) ∧ (𝑊𝑋) We 𝑋))
222, 3, 5fpwwe2lem4 10390 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋) ∧ (𝑊𝑋) We 𝑋)) → (𝑋𝐹(𝑊𝑋)) ∈ 𝐴)
2321, 22syldan 591 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝐹(𝑊𝑋)) ∈ 𝐴)
2423snssd 4742 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → {(𝑋𝐹(𝑊𝑋))} ⊆ 𝐴)
2517, 24unssd 4120 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝐴)
26 ssun1 4106 . . . . . . . . . . 11 𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})
27 xpss12 5604 . . . . . . . . . . 11 ((𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) → (𝑋 × 𝑋) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
2826, 26, 27mp2an 689 . . . . . . . . . 10 (𝑋 × 𝑋) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
2918, 28sstrdi 3933 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
30 xpss12 5604 . . . . . . . . . . 11 ((𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ {(𝑋𝐹(𝑊𝑋))} ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) → (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
3126, 1, 30mp2an 689 . . . . . . . . . 10 (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
3231a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
3329, 32unssd 4120 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
3425, 33jca 512 . . . . . . 7 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝐴 ∧ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))))
35 ssdif0 4297 . . . . . . . . . . . . . 14 (𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))} ↔ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) = ∅)
36 simpllr 773 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
3718ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
3837ssbrd 5117 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) → (𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)(𝑋𝐹(𝑊𝑋))))
39 brxp 5636 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)(𝑋𝐹(𝑊𝑋)) ↔ ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋 ∧ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
4039simplbi 498 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)(𝑋𝐹(𝑊𝑋)) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
4138, 40syl6 35 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
4236, 41mtod 197 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)))
43 brxp 5636 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)) ↔ ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋 ∧ (𝑋𝐹(𝑊𝑋)) ∈ {(𝑋𝐹(𝑊𝑋))}))
4443simplbi 498 . . . . . . . . . . . . . . . . . 18 ((𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
4536, 44nsyl 140 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)))
46 ovex 7308 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐹(𝑊𝑋)) ∈ V
47 breq2 5078 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑋𝐹(𝑊𝑋)) → ((𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))(𝑋𝐹(𝑊𝑋))))
48 brun 5125 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))(𝑋𝐹(𝑊𝑋)) ↔ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))))
4947, 48bitrdi 287 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑋𝐹(𝑊𝑋)) → ((𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)))))
5049notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑋𝐹(𝑊𝑋)) → (¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)))))
5146, 50rexsn 4618 . . . . . . . . . . . . . . . . . 18 (∃𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))))
52 ioran 981 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))) ↔ (¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∧ ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))))
5351, 52bitri 274 . . . . . . . . . . . . . . . . 17 (∃𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∧ ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))))
5442, 45, 53sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ∃𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
55 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))})
56 sssn 4759 . . . . . . . . . . . . . . . . . . 19 (𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))} ↔ (𝑥 = ∅ ∨ 𝑥 = {(𝑋𝐹(𝑊𝑋))}))
5755, 56sylib 217 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (𝑥 = ∅ ∨ 𝑥 = {(𝑋𝐹(𝑊𝑋))}))
58 simplrr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → 𝑥 ≠ ∅)
5958neneqd 2948 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ¬ 𝑥 = ∅)
6057, 59orcnd 876 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → 𝑥 = {(𝑋𝐹(𝑊𝑋))})
6160raleqdv 3348 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
62 breq1 5077 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑋𝐹(𝑊𝑋)) → (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6362notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑋𝐹(𝑊𝑋)) → (¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6446, 63ralsn 4617 . . . . . . . . . . . . . . . . . 18 (∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
6561, 64bitrdi 287 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6660, 65rexeqbidv 3337 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ∃𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6754, 66mpbird 256 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
6867ex 413 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) → (𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6935, 68syl5bir 242 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) → ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) = ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
70 vex 3436 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
71 difexg 5251 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∈ V)
7270, 71mp1i 13 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∈ V)
73 wefr 5579 . . . . . . . . . . . . . . . . . 18 ((𝑊𝑋) We 𝑋 → (𝑊𝑋) Fr 𝑋)
7420, 73syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) Fr 𝑋)
7574ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (𝑊𝑋) Fr 𝑋)
76 simplrl 774 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → 𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
77 uncom 4087 . . . . . . . . . . . . . . . . . 18 (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} ∪ 𝑋)
7876, 77sseqtrdi 3971 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → 𝑥 ⊆ ({(𝑋𝐹(𝑊𝑋))} ∪ 𝑋))
79 ssundif 4418 . . . . . . . . . . . . . . . . 17 (𝑥 ⊆ ({(𝑋𝐹(𝑊𝑋))} ∪ 𝑋) ↔ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝑋)
8078, 79sylib 217 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝑋)
81 simpr 485 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅)
82 fri 5549 . . . . . . . . . . . . . . . 16 ((((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∈ V ∧ (𝑊𝑋) Fr 𝑋) ∧ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝑋 ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅)) → ∃𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦)
8372, 75, 80, 81, 82syl22anc 836 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → ∃𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦)
84 brun 5125 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (𝑧(𝑊𝑋)𝑦𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
85 idd 24 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑧(𝑊𝑋)𝑦𝑧(𝑊𝑋)𝑦))
86 brxp 5636 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦 ↔ (𝑧𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
8786simprbi 497 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})
88 eldifn 4062 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) → ¬ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})
8988adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ¬ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})
9089pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} → 𝑧(𝑊𝑋)𝑦))
9187, 90syl5 34 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦))
9285, 91jaod 856 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ((𝑧(𝑊𝑋)𝑦𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦) → 𝑧(𝑊𝑋)𝑦))
9384, 92syl5bi 241 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑧(𝑊𝑋)𝑦))
9493con3d 152 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (¬ 𝑧(𝑊𝑋)𝑦 → ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
9594ralimdv 3109 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → ∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
96 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
9796ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
9818ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
9998ssbrd 5117 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 → (𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)𝑦))
100 brxp 5636 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)𝑦 ↔ ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋𝑦𝑋))
101100simplbi 498 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)𝑦 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
10299, 101syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
10397, 102mtod 197 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦)
104 brxp 5636 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦 ↔ ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
105104simprbi 497 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})
10689, 105nsyl 140 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)
107 brun 5125 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
10862, 107bitrdi 287 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (𝑋𝐹(𝑊𝑋)) → (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)))
109108notbid 318 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑋𝐹(𝑊𝑋)) → (¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)))
11046, 109ralsn 4617 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
111 ioran 981 . . . . . . . . . . . . . . . . . . . . . 22 (¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦) ↔ (¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∧ ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
112110, 111bitri 274 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∧ ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
113103, 106, 112sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
11495, 113jctird 527 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ∧ ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)))
115 ssun1 4106 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ⊆ (𝑥 ∪ {(𝑋𝐹(𝑊𝑋))})
116 undif1 4409 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))}) = (𝑥 ∪ {(𝑋𝐹(𝑊𝑋))})
117115, 116sseqtrri 3958 . . . . . . . . . . . . . . . . . . . 20 𝑥 ⊆ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))})
118 ralun 4126 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ∧ ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦) → ∀𝑧 ∈ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
119 ssralv 3987 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ⊆ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))}) → (∀𝑧 ∈ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 → ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
120117, 118, 119mpsyl 68 . . . . . . . . . . . . . . . . . . 19 ((∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ∧ ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦) → ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
121114, 120syl6 35 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
122 eldifi 4061 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) → 𝑦𝑥)
123122adantl 482 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → 𝑦𝑥)
124121, 123jctild 526 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → (𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)))
125124expimpd 454 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → ((𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦) → (𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)))
126125reximdv2 3199 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (∃𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
12783, 126mpd 15 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
128127ex 413 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) → ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
12969, 128pm2.61dne 3031 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
130129ex 413 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
131130alrimiv 1930 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ∀𝑥((𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
132 df-fr 5544 . . . . . . . . . 10 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) Fr (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ↔ ∀𝑥((𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
133131, 132sylibr 233 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) Fr (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
134 elun 4083 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ↔ (𝑥𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}))
135 elun 4083 . . . . . . . . . . . 12 (𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ↔ (𝑦𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
136134, 135anbi12i 627 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) ↔ ((𝑥𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ (𝑦𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})))
137 weso 5580 . . . . . . . . . . . . . . . 16 ((𝑊𝑋) We 𝑋 → (𝑊𝑋) Or 𝑋)
13820, 137syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) Or 𝑋)
139 solin 5528 . . . . . . . . . . . . . . 15 (((𝑊𝑋) Or 𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝑊𝑋)𝑦𝑥 = 𝑦𝑦(𝑊𝑋)𝑥))
140138, 139sylan 580 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝑊𝑋)𝑦𝑥 = 𝑦𝑦(𝑊𝑋)𝑥))
141 ssun1 4106 . . . . . . . . . . . . . . . . 17 (𝑊𝑋) ⊆ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))
142141a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑊𝑋) ⊆ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})))
143142ssbrd 5117 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝑊𝑋)𝑦𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
144 idd 24 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦𝑥 = 𝑦))
145142ssbrd 5117 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦(𝑊𝑋)𝑥𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
146143, 144, 1453orim123d 1443 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(𝑊𝑋)𝑦𝑥 = 𝑦𝑦(𝑊𝑋)𝑥) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
147140, 146mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
148147ex 413 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥𝑋𝑦𝑋) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
149 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋)) → (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋))
150149ancomd 462 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋)) → (𝑦𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}))
151 brxp 5636 . . . . . . . . . . . . . . 15 (𝑦(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑥 ↔ (𝑦𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}))
152150, 151sylibr 233 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋)) → 𝑦(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑥)
153 ssun2 4107 . . . . . . . . . . . . . . 15 (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ⊆ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))
154153ssbri 5119 . . . . . . . . . . . . . 14 (𝑦(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑥𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)
155 3mix3 1331 . . . . . . . . . . . . . 14 (𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥 → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
156152, 154, 1553syl 18 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋)) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
157156ex 413 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
158 simpr 485 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
159 brxp 5636 . . . . . . . . . . . . . . 15 (𝑥(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦 ↔ (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
160158, 159sylibr 233 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → 𝑥(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)
161153ssbri 5119 . . . . . . . . . . . . . 14 (𝑥(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
162 3mix1 1329 . . . . . . . . . . . . . 14 (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
163160, 161, 1623syl 18 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
164163ex 413 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
165 elsni 4578 . . . . . . . . . . . . . . 15 (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} → 𝑥 = (𝑋𝐹(𝑊𝑋)))
166 elsni 4578 . . . . . . . . . . . . . . 15 (𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} → 𝑦 = (𝑋𝐹(𝑊𝑋)))
167 eqtr3 2764 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑋𝐹(𝑊𝑋)) ∧ 𝑦 = (𝑋𝐹(𝑊𝑋))) → 𝑥 = 𝑦)
168165, 166, 167syl2an 596 . . . . . . . . . . . . . 14 ((𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → 𝑥 = 𝑦)
1691683mix2d 1336 . . . . . . . . . . . . 13 ((𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
170169a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
171148, 157, 164, 170ccased 1036 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (((𝑥𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ (𝑦𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
172136, 171syl5bi 241 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
173172ralrimivv 3122 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ∀𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})(𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
174 dfwe2 7624 . . . . . . . . 9 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ↔ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) Fr (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})(𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
175133, 173, 174sylanbrc 583 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
1762fpwwe2cbv 10386 . . . . . . . . . . . . 13 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑏](𝑏𝐹(𝑠 ∩ (𝑏 × 𝑏))) = 𝑧))}
177176, 4, 13fpwwe2lem3 10389 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) “ {𝑦})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))) = 𝑦)
178 cnvimass 5989 . . . . . . . . . . . . . . 15 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ⊆ dom ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))
179 fvex 6787 . . . . . . . . . . . . . . . . 17 (𝑊𝑋) ∈ V
180 snex 5354 . . . . . . . . . . . . . . . . . 18 {(𝑋𝐹(𝑊𝑋))} ∈ V
181 xpexg 7600 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ dom 𝑊 ∧ {(𝑋𝐹(𝑊𝑋))} ∈ V) → (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∈ V)
1828, 180, 181sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∈ V)
183 unexg 7599 . . . . . . . . . . . . . . . . 17 (((𝑊𝑋) ∈ V ∧ (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∈ V) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∈ V)
184179, 182, 183sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∈ V)
185184dmexd 7752 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → dom ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∈ V)
186 ssexg 5247 . . . . . . . . . . . . . . 15 (((((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ⊆ dom ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∧ dom ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∈ V) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ∈ V)
187178, 185, 186sylancr 587 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ∈ V)
188187adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ∈ V)
189 id 22 . . . . . . . . . . . . . . . 16 (𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) → 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}))
190 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
191 simplr 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
192 nelne2 3042 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑋 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑦 ≠ (𝑋𝐹(𝑊𝑋)))
193190, 191, 192syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → 𝑦 ≠ (𝑋𝐹(𝑊𝑋)))
19487, 166syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑦 = (𝑋𝐹(𝑊𝑋)))
195194necon3ai 2968 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ≠ (𝑋𝐹(𝑊𝑋)) → ¬ 𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)
196 biorf 934 . . . . . . . . . . . . . . . . . . . 20 𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦 → (𝑧(𝑊𝑋)𝑦 ↔ (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦)))
197193, 195, 1963syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (𝑧(𝑊𝑋)𝑦 ↔ (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦)))
198 orcom 867 . . . . . . . . . . . . . . . . . . . 20 ((𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦) ↔ (𝑧(𝑊𝑋)𝑦𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
199198, 84bitr4i 277 . . . . . . . . . . . . . . . . . . 19 ((𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦) ↔ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
200197, 199bitr2di 288 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑧(𝑊𝑋)𝑦))
201 vex 3436 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
202201eliniseg 6002 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ V → (𝑧 ∈ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ↔ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
203202elv 3438 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ↔ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
204201eliniseg 6002 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ V → (𝑧 ∈ ((𝑊𝑋) “ {𝑦}) ↔ 𝑧(𝑊𝑋)𝑦))
205204elv 3438 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝑊𝑋) “ {𝑦}) ↔ 𝑧(𝑊𝑋)𝑦)
206200, 203, 2053bitr4g 314 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (𝑧 ∈ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ↔ 𝑧 ∈ ((𝑊𝑋) “ {𝑦})))
207206eqrdv 2736 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = ((𝑊𝑋) “ {𝑦}))
208189, 207sylan9eqr 2800 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → 𝑢 = ((𝑊𝑋) “ {𝑦}))
209208sqxpeqd 5621 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (𝑢 × 𝑢) = (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))
210209ineq2d 4146 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢)) = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
211 indir 4209 . . . . . . . . . . . . . . . . . . 19 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
212 inxp 5741 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦})))
213 incom 4135 . . . . . . . . . . . . . . . . . . . . . . . 24 ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦})) = (((𝑊𝑋) “ {𝑦}) ∩ {(𝑋𝐹(𝑊𝑋))})
214 cnvimass 5989 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑊𝑋) “ {𝑦}) ⊆ dom (𝑊𝑋)
21518adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
216 dmss 5811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊𝑋) ⊆ (𝑋 × 𝑋) → dom (𝑊𝑋) ⊆ dom (𝑋 × 𝑋))
217215, 216syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → dom (𝑊𝑋) ⊆ dom (𝑋 × 𝑋))
218 dmxpid 5839 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 dom (𝑋 × 𝑋) = 𝑋
219217, 218sseqtrdi 3971 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → dom (𝑊𝑋) ⊆ 𝑋)
220214, 219sstrid 3932 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ((𝑊𝑋) “ {𝑦}) ⊆ 𝑋)
221220, 191ssneldd 3924 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ ((𝑊𝑋) “ {𝑦}))
222 disjsn 4647 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑊𝑋) “ {𝑦}) ∩ {(𝑋𝐹(𝑊𝑋))}) = ∅ ↔ ¬ (𝑋𝐹(𝑊𝑋)) ∈ ((𝑊𝑋) “ {𝑦}))
223221, 222sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) “ {𝑦}) ∩ {(𝑋𝐹(𝑊𝑋))}) = ∅)
224213, 223eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦})) = ∅)
225224xpeq2d 5619 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦}))) = ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ∅))
226 xp0 6061 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ∅) = ∅
227225, 226eqtrdi 2794 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦}))) = ∅)
228212, 227eqtrid 2790 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = ∅)
229228uneq2d 4097 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))) = (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ∅))
230211, 229eqtrid 2790 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ∅))
231 un0 4324 . . . . . . . . . . . . . . . . . 18 (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ∅) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))
232230, 231eqtrdi 2794 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
233232adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
234210, 233eqtrd 2778 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢)) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
235208, 234oveq12d 7293 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = (((𝑊𝑋) “ {𝑦})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))))
236235eqeq1d 2740 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → ((𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (((𝑊𝑋) “ {𝑦})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))) = 𝑦))
237188, 236sbcied 3761 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ([(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (((𝑊𝑋) “ {𝑦})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))) = 𝑦))
238177, 237mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → [(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
239166adantl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → 𝑦 = (𝑋𝐹(𝑊𝑋)))
240239eqcomd 2744 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑋𝐹(𝑊𝑋)) = 𝑦)
241187adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ∈ V)
242 simplr 766 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
243239eleq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑦 ∈ dom (𝑊𝑋) ↔ (𝑋𝐹(𝑊𝑋)) ∈ dom (𝑊𝑋)))
24418adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
245 rnss 5848 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊𝑋) ⊆ (𝑋 × 𝑋) → ran (𝑊𝑋) ⊆ ran (𝑋 × 𝑋))
246244, 245syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ran (𝑊𝑋) ⊆ ran (𝑋 × 𝑋))
247 df-rn 5600 . . . . . . . . . . . . . . . . . . . . . . 23 ran (𝑊𝑋) = dom (𝑊𝑋)
248 rnxpid 6076 . . . . . . . . . . . . . . . . . . . . . . 23 ran (𝑋 × 𝑋) = 𝑋
249246, 247, 2483sstr3g 3965 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → dom (𝑊𝑋) ⊆ 𝑋)
250249sseld 3920 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋𝐹(𝑊𝑋)) ∈ dom (𝑊𝑋) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
251243, 250sylbid 239 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑦 ∈ dom (𝑊𝑋) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
252242, 251mtod 197 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ¬ 𝑦 ∈ dom (𝑊𝑋))
253 ndmima 6011 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ dom (𝑊𝑋) → ((𝑊𝑋) “ {𝑦}) = ∅)
254252, 253syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑊𝑋) “ {𝑦}) = ∅)
255239sneqd 4573 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → {𝑦} = {(𝑋𝐹(𝑊𝑋))})
256255imaeq2d 5969 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦}) = ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {(𝑋𝐹(𝑊𝑋))}))
257 df-ima 5602 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {(𝑋𝐹(𝑊𝑋))}) = ran ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))})
258 cnvxp 6060 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 × {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} × 𝑋)
259258reseq1i 5887 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))}) = (({(𝑋𝐹(𝑊𝑋))} × 𝑋) ↾ {(𝑋𝐹(𝑊𝑋))})
260 ssid 3943 . . . . . . . . . . . . . . . . . . . . . . . 24 {(𝑋𝐹(𝑊𝑋))} ⊆ {(𝑋𝐹(𝑊𝑋))}
261 xpssres 5928 . . . . . . . . . . . . . . . . . . . . . . . 24 ({(𝑋𝐹(𝑊𝑋))} ⊆ {(𝑋𝐹(𝑊𝑋))} → (({(𝑋𝐹(𝑊𝑋))} × 𝑋) ↾ {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} × 𝑋))
262260, 261ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (({(𝑋𝐹(𝑊𝑋))} × 𝑋) ↾ {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} × 𝑋)
263259, 262eqtri 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} × 𝑋)
264263rneqi 5846 . . . . . . . . . . . . . . . . . . . . 21 ran ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))}) = ran ({(𝑋𝐹(𝑊𝑋))} × 𝑋)
26546snnz 4712 . . . . . . . . . . . . . . . . . . . . . 22 {(𝑋𝐹(𝑊𝑋))} ≠ ∅
266 rnxp 6073 . . . . . . . . . . . . . . . . . . . . . 22 ({(𝑋𝐹(𝑊𝑋))} ≠ ∅ → ran ({(𝑋𝐹(𝑊𝑋))} × 𝑋) = 𝑋)
267265, 266ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ran ({(𝑋𝐹(𝑊𝑋))} × 𝑋) = 𝑋
268264, 267eqtri 2766 . . . . . . . . . . . . . . . . . . . 20 ran ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))}) = 𝑋
269257, 268eqtri 2766 . . . . . . . . . . . . . . . . . . 19 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {(𝑋𝐹(𝑊𝑋))}) = 𝑋
270256, 269eqtrdi 2794 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦}) = 𝑋)
271254, 270uneq12d 4098 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) “ {𝑦}) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦})) = (∅ ∪ 𝑋))
272 cnvun 6046 . . . . . . . . . . . . . . . . . . 19 ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) = ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))
273272imaeq1i 5966 . . . . . . . . . . . . . . . . . 18 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})
274 imaundir 6054 . . . . . . . . . . . . . . . . . 18 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = (((𝑊𝑋) “ {𝑦}) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦}))
275273, 274eqtri 2766 . . . . . . . . . . . . . . . . 17 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = (((𝑊𝑋) “ {𝑦}) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦}))
276 un0 4324 . . . . . . . . . . . . . . . . . 18 (𝑋 ∪ ∅) = 𝑋
277 uncom 4087 . . . . . . . . . . . . . . . . . 18 (𝑋 ∪ ∅) = (∅ ∪ 𝑋)
278276, 277eqtr3i 2768 . . . . . . . . . . . . . . . . 17 𝑋 = (∅ ∪ 𝑋)
279271, 275, 2783eqtr4g 2803 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = 𝑋)
280189, 279sylan9eqr 2800 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → 𝑢 = 𝑋)
281280sqxpeqd 5621 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (𝑢 × 𝑢) = (𝑋 × 𝑋))
282281ineq2d 4146 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢)) = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)))
283 indir 4209 . . . . . . . . . . . . . . . . . . 19 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)) = (((𝑊𝑋) ∩ (𝑋 × 𝑋)) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (𝑋 × 𝑋)))
284 df-ss 3904 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊𝑋) ⊆ (𝑋 × 𝑋) ↔ ((𝑊𝑋) ∩ (𝑋 × 𝑋)) = (𝑊𝑋))
285244, 284sylib 217 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑊𝑋) ∩ (𝑋 × 𝑋)) = (𝑊𝑋))
286 incom 4135 . . . . . . . . . . . . . . . . . . . . . . 23 ({(𝑋𝐹(𝑊𝑋))} ∩ 𝑋) = (𝑋 ∩ {(𝑋𝐹(𝑊𝑋))})
287 disjsn 4647 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 ∩ {(𝑋𝐹(𝑊𝑋))}) = ∅ ↔ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
288242, 287sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑋 ∩ {(𝑋𝐹(𝑊𝑋))}) = ∅)
289286, 288eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ({(𝑋𝐹(𝑊𝑋))} ∩ 𝑋) = ∅)
290289xpeq2d 5619 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑋 × ({(𝑋𝐹(𝑊𝑋))} ∩ 𝑋)) = (𝑋 × ∅))
291 xpindi 5742 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 × ({(𝑋𝐹(𝑊𝑋))} ∩ 𝑋)) = ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (𝑋 × 𝑋))
292 xp0 6061 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 × ∅) = ∅
293290, 291, 2923eqtr3g 2801 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (𝑋 × 𝑋)) = ∅)
294285, 293uneq12d 4098 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∩ (𝑋 × 𝑋)) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (𝑋 × 𝑋))) = ((𝑊𝑋) ∪ ∅))
295283, 294eqtrid 2790 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)) = ((𝑊𝑋) ∪ ∅))
296 un0 4324 . . . . . . . . . . . . . . . . . 18 ((𝑊𝑋) ∪ ∅) = (𝑊𝑋)
297295, 296eqtrdi 2794 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)) = (𝑊𝑋))
298297adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)) = (𝑊𝑋))
299282, 298eqtrd 2778 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢)) = (𝑊𝑋))
300280, 299oveq12d 7293 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = (𝑋𝐹(𝑊𝑋)))
301300eqeq1d 2740 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → ((𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑋𝐹(𝑊𝑋)) = 𝑦))
302241, 301sbcied 3761 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ([(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑋𝐹(𝑊𝑋)) = 𝑦))
303240, 302mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → [(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
304238, 303jaodan 955 . . . . . . . . . 10 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑦𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → [(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
305135, 304sylan2b 594 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) → [(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
306305ralrimiva 3103 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})[(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
307175, 306jca 512 . . . . . . 7 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})[(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦))
3082, 3fpwwe2lem2 10388 . . . . . . . 8 (𝜑 → ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})𝑊((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ↔ (((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝐴 ∧ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))) ∧ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})[(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦))))
309308adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})𝑊((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ↔ (((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝐴 ∧ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))) ∧ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})[(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦))))
31034, 307, 309mpbir2and 710 . . . . . 6 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})𝑊((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})))
3112relopabiv 5730 . . . . . . 7 Rel 𝑊
312311releldmi 5857 . . . . . 6 ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})𝑊((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∈ dom 𝑊)
313 elssuni 4871 . . . . . 6 ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∈ dom 𝑊 → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ dom 𝑊)
314310, 312, 3133syl 18 . . . . 5 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ dom 𝑊)
315314, 7sseqtrrdi 3972 . . . 4 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝑋)
3161, 315sstrid 3932 . . 3 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → {(𝑋𝐹(𝑊𝑋))} ⊆ 𝑋)
31746snss 4719 . . 3 ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋 ↔ {(𝑋𝐹(𝑊𝑋))} ⊆ 𝑋)
318316, 317sylibr 233 . 2 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
319318pm2.18da 797 1 (𝜑 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086  wal 1537   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  [wsbc 3716  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839   class class class wbr 5074  {copab 5136   Or wor 5502   Fr wfr 5541   We wwe 5543   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-oi 9269
This theorem is referenced by:  fpwwe2  10399
  Copyright terms: Public domain W3C validator