| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ssun2 4179 | . . . 4
⊢ {(𝑋𝐹(𝑊‘𝑋))} ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 2 |  | fpwwe2.1 | . . . . . . . . . . . . . 14
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} | 
| 3 |  | fpwwe2.2 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 4 | 3 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → 𝐴 ∈ 𝑉) | 
| 5 |  | fpwwe2.3 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) | 
| 6 | 5 | adantlr 715 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) | 
| 7 |  | fpwwe2.4 | . . . . . . . . . . . . . 14
⊢ 𝑋 = ∪
dom 𝑊 | 
| 8 | 2, 4, 6, 7 | fpwwe2lem11 10681 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → 𝑋 ∈ dom 𝑊) | 
| 9 | 2, 4, 6, 7 | fpwwe2lem10 10680 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → 𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋)) | 
| 10 |  | ffun 6739 | . . . . . . . . . . . . . 14
⊢ (𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋) → Fun 𝑊) | 
| 11 |  | funfvbrb 7071 | . . . . . . . . . . . . . 14
⊢ (Fun
𝑊 → (𝑋 ∈ dom 𝑊 ↔ 𝑋𝑊(𝑊‘𝑋))) | 
| 12 | 9, 10, 11 | 3syl 18 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑋 ∈ dom 𝑊 ↔ 𝑋𝑊(𝑊‘𝑋))) | 
| 13 | 8, 12 | mpbid 232 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → 𝑋𝑊(𝑊‘𝑋)) | 
| 14 | 2, 4 | fpwwe2lem2 10672 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑋𝑊(𝑊‘𝑋) ↔ ((𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)))) | 
| 15 | 13, 14 | mpbid 232 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))) | 
| 16 | 15 | simpld 494 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋))) | 
| 17 | 16 | simpld 494 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → 𝑋 ⊆ 𝐴) | 
| 18 | 16 | simprd 495 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) | 
| 19 | 15 | simprd 495 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)) | 
| 20 | 19 | simpld 494 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑊‘𝑋) We 𝑋) | 
| 21 | 17, 18, 20 | 3jca 1129 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋) ∧ (𝑊‘𝑋) We 𝑋)) | 
| 22 | 2, 3, 5 | fpwwe2lem4 10674 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋) ∧ (𝑊‘𝑋) We 𝑋)) → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝐴) | 
| 23 | 21, 22 | syldan 591 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝐴) | 
| 24 | 23 | snssd 4809 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → {(𝑋𝐹(𝑊‘𝑋))} ⊆ 𝐴) | 
| 25 | 17, 24 | unssd 4192 | . . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ⊆ 𝐴) | 
| 26 |  | ssun1 4178 | . . . . . . . . . . 11
⊢ 𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 27 |  | xpss12 5700 | . . . . . . . . . . 11
⊢ ((𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})) → (𝑋 × 𝑋) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}))) | 
| 28 | 26, 26, 27 | mp2an 692 | . . . . . . . . . 10
⊢ (𝑋 × 𝑋) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 29 | 18, 28 | sstrdi 3996 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑊‘𝑋) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}))) | 
| 30 |  | xpss12 5700 | . . . . . . . . . . 11
⊢ ((𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ {(𝑋𝐹(𝑊‘𝑋))} ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})) → (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}))) | 
| 31 | 26, 1, 30 | mp2an 692 | . . . . . . . . . 10
⊢ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 32 | 31 | a1i 11 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}))) | 
| 33 | 29, 32 | unssd 4192 | . . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}))) | 
| 34 | 25, 33 | jca 511 | . . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ⊆ 𝐴 ∧ ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})))) | 
| 35 |  | ssdif0 4366 | . . . . . . . . . . . . . 14
⊢ (𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))} ↔ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) = ∅) | 
| 36 |  | simpllr 776 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) | 
| 37 | 18 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) | 
| 38 | 37 | ssbrd 5186 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → ((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)(𝑋𝐹(𝑊‘𝑋)) → (𝑋𝐹(𝑊‘𝑋))(𝑋 × 𝑋)(𝑋𝐹(𝑊‘𝑋)))) | 
| 39 |  | brxp 5734 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑋𝐹(𝑊‘𝑋))(𝑋 × 𝑋)(𝑋𝐹(𝑊‘𝑋)) ↔ ((𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋 ∧ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋)) | 
| 40 | 39 | simplbi 497 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋𝐹(𝑊‘𝑋))(𝑋 × 𝑋)(𝑋𝐹(𝑊‘𝑋)) → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) | 
| 41 | 38, 40 | syl6 35 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → ((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)(𝑋𝐹(𝑊‘𝑋)) → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋)) | 
| 42 | 36, 41 | mtod 198 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → ¬ (𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)(𝑋𝐹(𝑊‘𝑋))) | 
| 43 |  | brxp 5734 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})(𝑋𝐹(𝑊‘𝑋)) ↔ ((𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋 ∧ (𝑋𝐹(𝑊‘𝑋)) ∈ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 44 | 43 | simplbi 497 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})(𝑋𝐹(𝑊‘𝑋)) → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) | 
| 45 | 36, 44 | nsyl 140 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → ¬ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})(𝑋𝐹(𝑊‘𝑋))) | 
| 46 |  | ovex 7464 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑋𝐹(𝑊‘𝑋)) ∈ V | 
| 47 |  | breq2 5147 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (𝑋𝐹(𝑊‘𝑋)) → ((𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ (𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))(𝑋𝐹(𝑊‘𝑋)))) | 
| 48 |  | brun 5194 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))(𝑋𝐹(𝑊‘𝑋)) ↔ ((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)(𝑋𝐹(𝑊‘𝑋)) ∨ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})(𝑋𝐹(𝑊‘𝑋)))) | 
| 49 | 47, 48 | bitrdi 287 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑋𝐹(𝑊‘𝑋)) → ((𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ ((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)(𝑋𝐹(𝑊‘𝑋)) ∨ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})(𝑋𝐹(𝑊‘𝑋))))) | 
| 50 | 49 | notbid 318 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑋𝐹(𝑊‘𝑋)) → (¬ (𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)(𝑋𝐹(𝑊‘𝑋)) ∨ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})(𝑋𝐹(𝑊‘𝑋))))) | 
| 51 | 46, 50 | rexsn 4682 | . . . . . . . . . . . . . . . . . 18
⊢
(∃𝑦 ∈
{(𝑋𝐹(𝑊‘𝑋))} ¬ (𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)(𝑋𝐹(𝑊‘𝑋)) ∨ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})(𝑋𝐹(𝑊‘𝑋)))) | 
| 52 |  | ioran 986 | . . . . . . . . . . . . . . . . . 18
⊢ (¬
((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)(𝑋𝐹(𝑊‘𝑋)) ∨ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})(𝑋𝐹(𝑊‘𝑋))) ↔ (¬ (𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)(𝑋𝐹(𝑊‘𝑋)) ∧ ¬ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})(𝑋𝐹(𝑊‘𝑋)))) | 
| 53 | 51, 52 | bitri 275 | . . . . . . . . . . . . . . . . 17
⊢
(∃𝑦 ∈
{(𝑋𝐹(𝑊‘𝑋))} ¬ (𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ (¬ (𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)(𝑋𝐹(𝑊‘𝑋)) ∧ ¬ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})(𝑋𝐹(𝑊‘𝑋)))) | 
| 54 | 42, 45, 53 | sylanbrc 583 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → ∃𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))} ¬ (𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦) | 
| 55 |  | simpr 484 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 56 |  | sssn 4826 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))} ↔ (𝑥 = ∅ ∨ 𝑥 = {(𝑋𝐹(𝑊‘𝑋))})) | 
| 57 | 55, 56 | sylib 218 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → (𝑥 = ∅ ∨ 𝑥 = {(𝑋𝐹(𝑊‘𝑋))})) | 
| 58 |  | simplrr 778 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → 𝑥 ≠ ∅) | 
| 59 | 58 | neneqd 2945 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → ¬ 𝑥 = ∅) | 
| 60 | 57, 59 | orcnd 879 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → 𝑥 = {(𝑋𝐹(𝑊‘𝑋))}) | 
| 61 | 60 | raleqdv 3326 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → (∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ ∀𝑧 ∈ {(𝑋𝐹(𝑊‘𝑋))} ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 62 |  | breq1 5146 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑋𝐹(𝑊‘𝑋)) → (𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ (𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 63 | 62 | notbid 318 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑋𝐹(𝑊‘𝑋)) → (¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ ¬ (𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 64 | 46, 63 | ralsn 4681 | . . . . . . . . . . . . . . . . . 18
⊢
(∀𝑧 ∈
{(𝑋𝐹(𝑊‘𝑋))} ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ ¬ (𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦) | 
| 65 | 61, 64 | bitrdi 287 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → (∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ ¬ (𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 66 | 60, 65 | rexeqbidv 3347 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → (∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ ∃𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))} ¬ (𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 67 | 54, 66 | mpbird 257 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))}) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦) | 
| 68 | 67 | ex 412 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) → (𝑥 ⊆ {(𝑋𝐹(𝑊‘𝑋))} → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 69 | 35, 68 | biimtrrid 243 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) → ((𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) = ∅ → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 70 |  | vex 3484 | . . . . . . . . . . . . . . . . 17
⊢ 𝑥 ∈ V | 
| 71 |  | difexg 5329 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ V → (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ∈ V) | 
| 72 | 70, 71 | mp1i 13 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) → (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ∈ V) | 
| 73 |  | wefr 5675 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑊‘𝑋) We 𝑋 → (𝑊‘𝑋) Fr 𝑋) | 
| 74 | 20, 73 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑊‘𝑋) Fr 𝑋) | 
| 75 | 74 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) → (𝑊‘𝑋) Fr 𝑋) | 
| 76 |  | simplrl 777 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) → 𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 77 |  | uncom 4158 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) = ({(𝑋𝐹(𝑊‘𝑋))} ∪ 𝑋) | 
| 78 | 76, 77 | sseqtrdi 4024 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) → 𝑥 ⊆ ({(𝑋𝐹(𝑊‘𝑋))} ∪ 𝑋)) | 
| 79 |  | ssundif 4488 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 ⊆ ({(𝑋𝐹(𝑊‘𝑋))} ∪ 𝑋) ↔ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ⊆ 𝑋) | 
| 80 | 78, 79 | sylib 218 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) → (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ⊆ 𝑋) | 
| 81 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) → (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) | 
| 82 |  | fri 5642 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ∈ V ∧ (𝑊‘𝑋) Fr 𝑋) ∧ ((𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ⊆ 𝑋 ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅)) → ∃𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧(𝑊‘𝑋)𝑦) | 
| 83 | 72, 75, 80, 81, 82 | syl22anc 839 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) → ∃𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧(𝑊‘𝑋)𝑦) | 
| 84 |  | brun 5194 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ (𝑧(𝑊‘𝑋)𝑦 ∨ 𝑧(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦)) | 
| 85 |  | idd 24 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → (𝑧(𝑊‘𝑋)𝑦 → 𝑧(𝑊‘𝑋)𝑦)) | 
| 86 |  | brxp 5734 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦 ↔ (𝑧 ∈ 𝑋 ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 87 | 86 | simprbi 496 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦 → 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 88 |  | eldifn 4132 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) → ¬ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 89 | 88 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → ¬ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 90 | 89 | pm2.21d 121 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → (𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))} → 𝑧(𝑊‘𝑋)𝑦)) | 
| 91 | 87, 90 | syl5 34 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → (𝑧(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦 → 𝑧(𝑊‘𝑋)𝑦)) | 
| 92 | 85, 91 | jaod 860 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → ((𝑧(𝑊‘𝑋)𝑦 ∨ 𝑧(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦) → 𝑧(𝑊‘𝑋)𝑦)) | 
| 93 | 84, 92 | biimtrid 242 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → (𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 → 𝑧(𝑊‘𝑋)𝑦)) | 
| 94 | 93 | con3d 152 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → (¬ 𝑧(𝑊‘𝑋)𝑦 → ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 95 | 94 | ralimdv 3169 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧(𝑊‘𝑋)𝑦 → ∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 96 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) | 
| 97 | 96 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) | 
| 98 | 18 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) | 
| 99 | 98 | ssbrd 5186 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → ((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)𝑦 → (𝑋𝐹(𝑊‘𝑋))(𝑋 × 𝑋)𝑦)) | 
| 100 |  | brxp 5734 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑋𝐹(𝑊‘𝑋))(𝑋 × 𝑋)𝑦 ↔ ((𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) | 
| 101 | 100 | simplbi 497 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑋𝐹(𝑊‘𝑋))(𝑋 × 𝑋)𝑦 → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) | 
| 102 | 99, 101 | syl6 35 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → ((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)𝑦 → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋)) | 
| 103 | 97, 102 | mtod 198 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → ¬ (𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)𝑦) | 
| 104 |  | brxp 5734 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦 ↔ ((𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋 ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 105 | 104 | simprbi 496 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦 → 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 106 | 89, 105 | nsyl 140 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → ¬ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦) | 
| 107 |  | brun 5194 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑋𝐹(𝑊‘𝑋))((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ ((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)𝑦 ∨ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦)) | 
| 108 | 62, 107 | bitrdi 287 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = (𝑋𝐹(𝑊‘𝑋)) → (𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ ((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)𝑦 ∨ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦))) | 
| 109 | 108 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = (𝑋𝐹(𝑊‘𝑋)) → (¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)𝑦 ∨ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦))) | 
| 110 | 46, 109 | ralsn 4681 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑧 ∈
{(𝑋𝐹(𝑊‘𝑋))} ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)𝑦 ∨ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦)) | 
| 111 |  | ioran 986 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
((𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)𝑦 ∨ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦) ↔ (¬ (𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)𝑦 ∧ ¬ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦)) | 
| 112 | 110, 111 | bitri 275 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑧 ∈
{(𝑋𝐹(𝑊‘𝑋))} ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ (¬ (𝑋𝐹(𝑊‘𝑋))(𝑊‘𝑋)𝑦 ∧ ¬ (𝑋𝐹(𝑊‘𝑋))(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦)) | 
| 113 | 103, 106,
112 | sylanbrc 583 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → ∀𝑧 ∈ {(𝑋𝐹(𝑊‘𝑋))} ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦) | 
| 114 | 95, 113 | jctird 526 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧(𝑊‘𝑋)𝑦 → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∧ ∀𝑧 ∈ {(𝑋𝐹(𝑊‘𝑋))} ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦))) | 
| 115 |  | ssun1 4178 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑥 ⊆ (𝑥 ∪ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 116 |  | undif1 4476 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ∪ {(𝑋𝐹(𝑊‘𝑋))}) = (𝑥 ∪ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 117 | 115, 116 | sseqtrri 4033 | . . . . . . . . . . . . . . . . . . . 20
⊢ 𝑥 ⊆ ((𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ∪ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 118 |  | ralun 4198 | . . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑧 ∈
(𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∧ ∀𝑧 ∈ {(𝑋𝐹(𝑊‘𝑋))} ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦) → ∀𝑧 ∈ ((𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ∪ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦) | 
| 119 |  | ssralv 4052 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ⊆ ((𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ∪ {(𝑋𝐹(𝑊‘𝑋))}) → (∀𝑧 ∈ ((𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ∪ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 → ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 120 | 117, 118,
119 | mpsyl 68 | . . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑧 ∈
(𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∧ ∀𝑧 ∈ {(𝑋𝐹(𝑊‘𝑋))} ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦) → ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦) | 
| 121 | 114, 120 | syl6 35 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧(𝑊‘𝑋)𝑦 → ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 122 |  | eldifi 4131 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) → 𝑦 ∈ 𝑥) | 
| 123 | 122 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → 𝑦 ∈ 𝑥) | 
| 124 | 121, 123 | jctild 525 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ ¬
(𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧(𝑊‘𝑋)𝑦 → (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦))) | 
| 125 | 124 | expimpd 453 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) → ((𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ∧ ∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧(𝑊‘𝑋)𝑦) → (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦))) | 
| 126 | 125 | reximdv2 3164 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) → (∃𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))})∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ¬ 𝑧(𝑊‘𝑋)𝑦 → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 127 | 83, 126 | mpd 15 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦) | 
| 128 | 127 | ex 412 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) → ((𝑥 ∖ {(𝑋𝐹(𝑊‘𝑋))}) ≠ ∅ → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 129 | 69, 128 | pm2.61dne 3028 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅)) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦) | 
| 130 | 129 | ex 412 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 131 | 130 | alrimiv 1927 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ∀𝑥((𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 132 |  | df-fr 5637 | . . . . . . . . . 10
⊢ (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) Fr (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ↔ ∀𝑥((𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 133 | 131, 132 | sylibr 234 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) Fr (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 134 |  | elun 4153 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ↔ (𝑥 ∈ 𝑋 ∨ 𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 135 |  | elun 4153 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ↔ (𝑦 ∈ 𝑋 ∨ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 136 | 134, 135 | anbi12i 628 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})) ↔ ((𝑥 ∈ 𝑋 ∨ 𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))}) ∧ (𝑦 ∈ 𝑋 ∨ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}))) | 
| 137 |  | weso 5676 | . . . . . . . . . . . . . . . 16
⊢ ((𝑊‘𝑋) We 𝑋 → (𝑊‘𝑋) Or 𝑋) | 
| 138 | 20, 137 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑊‘𝑋) Or 𝑋) | 
| 139 |  | solin 5619 | . . . . . . . . . . . . . . 15
⊢ (((𝑊‘𝑋) Or 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(𝑊‘𝑋)𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦(𝑊‘𝑋)𝑥)) | 
| 140 | 138, 139 | sylan 580 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(𝑊‘𝑋)𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦(𝑊‘𝑋)𝑥)) | 
| 141 |  | ssun1 4178 | . . . . . . . . . . . . . . . . 17
⊢ (𝑊‘𝑋) ⊆ ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) | 
| 142 | 141 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑊‘𝑋) ⊆ ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))) | 
| 143 | 142 | ssbrd 5186 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(𝑊‘𝑋)𝑦 → 𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 144 |  | idd 24 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 = 𝑦 → 𝑥 = 𝑦)) | 
| 145 | 142 | ssbrd 5186 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑦(𝑊‘𝑋)𝑥 → 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥)) | 
| 146 | 143, 144,
145 | 3orim123d 1446 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥(𝑊‘𝑋)𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦(𝑊‘𝑋)𝑥) → (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥))) | 
| 147 | 140, 146 | mpd 15 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥)) | 
| 148 | 147 | ex 412 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥))) | 
| 149 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))} ∧ 𝑦 ∈ 𝑋)) → (𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))} ∧ 𝑦 ∈ 𝑋)) | 
| 150 | 149 | ancomd 461 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))} ∧ 𝑦 ∈ 𝑋)) → (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 151 |  | brxp 5734 | . . . . . . . . . . . . . . 15
⊢ (𝑦(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑥 ↔ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 152 | 150, 151 | sylibr 234 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))} ∧ 𝑦 ∈ 𝑋)) → 𝑦(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑥) | 
| 153 |  | ssun2 4179 | . . . . . . . . . . . . . . 15
⊢ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ⊆ ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) | 
| 154 | 153 | ssbri 5188 | . . . . . . . . . . . . . 14
⊢ (𝑦(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑥 → 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥) | 
| 155 |  | 3mix3 1333 | . . . . . . . . . . . . . 14
⊢ (𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥 → (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥)) | 
| 156 | 152, 154,
155 | 3syl 18 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))} ∧ 𝑦 ∈ 𝑋)) → (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥)) | 
| 157 | 156 | ex 412 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))} ∧ 𝑦 ∈ 𝑋) → (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥))) | 
| 158 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))})) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 159 |  | brxp 5734 | . . . . . . . . . . . . . . 15
⊢ (𝑥(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦 ↔ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 160 | 158, 159 | sylibr 234 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))})) → 𝑥(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦) | 
| 161 | 153 | ssbri 5188 | . . . . . . . . . . . . . 14
⊢ (𝑥(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦 → 𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦) | 
| 162 |  | 3mix1 1331 | . . . . . . . . . . . . . 14
⊢ (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 → (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥)) | 
| 163 | 160, 161,
162 | 3syl 18 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))})) → (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥)) | 
| 164 | 163 | ex 412 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥))) | 
| 165 |  | elsni 4643 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))} → 𝑥 = (𝑋𝐹(𝑊‘𝑋))) | 
| 166 |  | elsni 4643 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))} → 𝑦 = (𝑋𝐹(𝑊‘𝑋))) | 
| 167 |  | eqtr3 2763 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 = (𝑋𝐹(𝑊‘𝑋)) ∧ 𝑦 = (𝑋𝐹(𝑊‘𝑋))) → 𝑥 = 𝑦) | 
| 168 | 165, 166,
167 | syl2an 596 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))} ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → 𝑥 = 𝑦) | 
| 169 | 168 | 3mix2d 1338 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))} ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥)) | 
| 170 | 169 | a1i 11 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))} ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥))) | 
| 171 | 148, 157,
164, 170 | ccased 1039 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (((𝑥 ∈ 𝑋 ∨ 𝑥 ∈ {(𝑋𝐹(𝑊‘𝑋))}) ∧ (𝑦 ∈ 𝑋 ∨ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))})) → (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥))) | 
| 172 | 136, 171 | biimtrid 242 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})) → (𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥))) | 
| 173 | 172 | ralrimivv 3200 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ∀𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})(𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥)) | 
| 174 |  | dfwe2 7794 | . . . . . . . . 9
⊢ (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ↔ (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) Fr (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ ∀𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})(𝑥((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑥))) | 
| 175 | 133, 173,
174 | sylanbrc 583 | . . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 176 | 2 | fpwwe2cbv 10670 | . . . . . . . . . . . . 13
⊢ 𝑊 = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑏](𝑏𝐹(𝑠 ∩ (𝑏 × 𝑏))) = 𝑧))} | 
| 177 | 176, 4, 13 | fpwwe2lem3 10673 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((◡(𝑊‘𝑋) “ {𝑦})𝐹((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦})))) = 𝑦) | 
| 178 |  | cnvimass 6100 | . . . . . . . . . . . . . . 15
⊢ (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) ⊆ dom ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) | 
| 179 |  | fvex 6919 | . . . . . . . . . . . . . . . . 17
⊢ (𝑊‘𝑋) ∈ V | 
| 180 |  | snex 5436 | . . . . . . . . . . . . . . . . . 18
⊢ {(𝑋𝐹(𝑊‘𝑋))} ∈ V | 
| 181 |  | xpexg 7770 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∈ dom 𝑊 ∧ {(𝑋𝐹(𝑊‘𝑋))} ∈ V) → (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ∈ V) | 
| 182 | 8, 180, 181 | sylancl 586 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ∈ V) | 
| 183 |  | unexg 7763 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑊‘𝑋) ∈ V ∧ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ∈ V) → ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∈ V) | 
| 184 | 179, 182,
183 | sylancr 587 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∈ V) | 
| 185 | 184 | dmexd 7925 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → dom ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∈ V) | 
| 186 |  | ssexg 5323 | . . . . . . . . . . . . . . 15
⊢ (((◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) ⊆ dom ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∧ dom ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∈ V) → (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) ∈ V) | 
| 187 | 178, 185,
186 | sylancr 587 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) ∈ V) | 
| 188 | 187 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) ∈ V) | 
| 189 |  | id 22 | . . . . . . . . . . . . . . . 16
⊢ (𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) → 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) | 
| 190 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) | 
| 191 |  | simplr 769 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) | 
| 192 |  | nelne2 3040 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ 𝑋 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → 𝑦 ≠ (𝑋𝐹(𝑊‘𝑋))) | 
| 193 | 190, 191,
192 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ≠ (𝑋𝐹(𝑊‘𝑋))) | 
| 194 | 87, 166 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦 → 𝑦 = (𝑋𝐹(𝑊‘𝑋))) | 
| 195 | 194 | necon3ai 2965 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ≠ (𝑋𝐹(𝑊‘𝑋)) → ¬ 𝑧(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦) | 
| 196 |  | biorf 937 | . . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑧(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦 → (𝑧(𝑊‘𝑋)𝑦 ↔ (𝑧(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦 ∨ 𝑧(𝑊‘𝑋)𝑦))) | 
| 197 | 193, 195,
196 | 3syl 18 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑧(𝑊‘𝑋)𝑦 ↔ (𝑧(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦 ∨ 𝑧(𝑊‘𝑋)𝑦))) | 
| 198 |  | orcom 871 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦 ∨ 𝑧(𝑊‘𝑋)𝑦) ↔ (𝑧(𝑊‘𝑋)𝑦 ∨ 𝑧(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦)) | 
| 199 | 198, 84 | bitr4i 278 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})𝑦 ∨ 𝑧(𝑊‘𝑋)𝑦) ↔ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦) | 
| 200 | 197, 199 | bitr2di 288 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦 ↔ 𝑧(𝑊‘𝑋)𝑦)) | 
| 201 |  | vex 3484 | . . . . . . . . . . . . . . . . . . . 20
⊢ 𝑧 ∈ V | 
| 202 | 201 | eliniseg 6112 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ V → (𝑧 ∈ (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) ↔ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦)) | 
| 203 | 202 | elv 3485 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) ↔ 𝑧((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))𝑦) | 
| 204 | 201 | eliniseg 6112 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ V → (𝑧 ∈ (◡(𝑊‘𝑋) “ {𝑦}) ↔ 𝑧(𝑊‘𝑋)𝑦)) | 
| 205 | 204 | elv 3485 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ (◡(𝑊‘𝑋) “ {𝑦}) ↔ 𝑧(𝑊‘𝑋)𝑦) | 
| 206 | 200, 203,
205 | 3bitr4g 314 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑧 ∈ (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) ↔ 𝑧 ∈ (◡(𝑊‘𝑋) “ {𝑦}))) | 
| 207 | 206 | eqrdv 2735 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) = (◡(𝑊‘𝑋) “ {𝑦})) | 
| 208 | 189, 207 | sylan9eqr 2799 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → 𝑢 = (◡(𝑊‘𝑋) “ {𝑦})) | 
| 209 | 208 | sqxpeqd 5717 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → (𝑢 × 𝑢) = ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))) | 
| 210 | 209 | ineq2d 4220 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢)) = (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦})))) | 
| 211 |  | indir 4286 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))) = (((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))) ∪ ((𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦})))) | 
| 212 |  | inxp 5842 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))) = ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑦})) × ({(𝑋𝐹(𝑊‘𝑋))} ∩ (◡(𝑊‘𝑋) “ {𝑦}))) | 
| 213 |  | incom 4209 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({(𝑋𝐹(𝑊‘𝑋))} ∩ (◡(𝑊‘𝑋) “ {𝑦})) = ((◡(𝑊‘𝑋) “ {𝑦}) ∩ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 214 |  | cnvimass 6100 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (◡(𝑊‘𝑋) “ {𝑦}) ⊆ dom (𝑊‘𝑋) | 
| 215 | 18 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) | 
| 216 |  | dmss 5913 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑊‘𝑋) ⊆ (𝑋 × 𝑋) → dom (𝑊‘𝑋) ⊆ dom (𝑋 × 𝑋)) | 
| 217 | 215, 216 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → dom (𝑊‘𝑋) ⊆ dom (𝑋 × 𝑋)) | 
| 218 |  | dmxpid 5941 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ dom
(𝑋 × 𝑋) = 𝑋 | 
| 219 | 217, 218 | sseqtrdi 4024 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → dom (𝑊‘𝑋) ⊆ 𝑋) | 
| 220 | 214, 219 | sstrid 3995 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (◡(𝑊‘𝑋) “ {𝑦}) ⊆ 𝑋) | 
| 221 | 220, 191 | ssneldd 3986 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ (◡(𝑊‘𝑋) “ {𝑦})) | 
| 222 |  | disjsn 4711 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((◡(𝑊‘𝑋) “ {𝑦}) ∩ {(𝑋𝐹(𝑊‘𝑋))}) = ∅ ↔ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ (◡(𝑊‘𝑋) “ {𝑦})) | 
| 223 | 221, 222 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((◡(𝑊‘𝑋) “ {𝑦}) ∩ {(𝑋𝐹(𝑊‘𝑋))}) = ∅) | 
| 224 | 213, 223 | eqtrid 2789 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ({(𝑋𝐹(𝑊‘𝑋))} ∩ (◡(𝑊‘𝑋) “ {𝑦})) = ∅) | 
| 225 | 224 | xpeq2d 5715 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑦})) × ({(𝑋𝐹(𝑊‘𝑋))} ∩ (◡(𝑊‘𝑋) “ {𝑦}))) = ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑦})) × ∅)) | 
| 226 |  | xp0 6178 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑦})) × ∅) =
∅ | 
| 227 | 225, 226 | eqtrdi 2793 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑦})) × ({(𝑋𝐹(𝑊‘𝑋))} ∩ (◡(𝑊‘𝑋) “ {𝑦}))) = ∅) | 
| 228 | 212, 227 | eqtrid 2789 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))) = ∅) | 
| 229 | 228 | uneq2d 4168 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))) ∪ ((𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦})))) = (((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))) ∪ ∅)) | 
| 230 | 211, 229 | eqtrid 2789 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))) = (((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))) ∪ ∅)) | 
| 231 |  | un0 4394 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))) ∪ ∅) = ((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))) | 
| 232 | 230, 231 | eqtrdi 2793 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))) = ((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦})))) | 
| 233 | 232 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))) = ((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦})))) | 
| 234 | 210, 233 | eqtrd 2777 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢)) = ((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦})))) | 
| 235 | 208, 234 | oveq12d 7449 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → (𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = ((◡(𝑊‘𝑋) “ {𝑦})𝐹((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦}))))) | 
| 236 | 235 | eqeq1d 2739 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → ((𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ((◡(𝑊‘𝑋) “ {𝑦})𝐹((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦})))) = 𝑦)) | 
| 237 | 188, 236 | sbcied 3832 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ([(◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ((◡(𝑊‘𝑋) “ {𝑦})𝐹((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑦}) × (◡(𝑊‘𝑋) “ {𝑦})))) = 𝑦)) | 
| 238 | 177, 237 | mpbird 257 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → [(◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦) | 
| 239 | 166 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → 𝑦 = (𝑋𝐹(𝑊‘𝑋))) | 
| 240 | 239 | eqcomd 2743 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (𝑋𝐹(𝑊‘𝑋)) = 𝑦) | 
| 241 | 187 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) ∈ V) | 
| 242 |  | simplr 769 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) | 
| 243 | 239 | eleq1d 2826 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (𝑦 ∈ dom ◡(𝑊‘𝑋) ↔ (𝑋𝐹(𝑊‘𝑋)) ∈ dom ◡(𝑊‘𝑋))) | 
| 244 | 18 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) | 
| 245 |  | rnss 5950 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑊‘𝑋) ⊆ (𝑋 × 𝑋) → ran (𝑊‘𝑋) ⊆ ran (𝑋 × 𝑋)) | 
| 246 | 244, 245 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → ran (𝑊‘𝑋) ⊆ ran (𝑋 × 𝑋)) | 
| 247 |  | df-rn 5696 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ran
(𝑊‘𝑋) = dom ◡(𝑊‘𝑋) | 
| 248 |  | rnxpid 6193 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ran
(𝑋 × 𝑋) = 𝑋 | 
| 249 | 246, 247,
248 | 3sstr3g 4036 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → dom ◡(𝑊‘𝑋) ⊆ 𝑋) | 
| 250 | 249 | sseld 3982 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → ((𝑋𝐹(𝑊‘𝑋)) ∈ dom ◡(𝑊‘𝑋) → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋)) | 
| 251 | 243, 250 | sylbid 240 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (𝑦 ∈ dom ◡(𝑊‘𝑋) → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋)) | 
| 252 | 242, 251 | mtod 198 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → ¬ 𝑦 ∈ dom ◡(𝑊‘𝑋)) | 
| 253 |  | ndmima 6121 | . . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑦 ∈ dom ◡(𝑊‘𝑋) → (◡(𝑊‘𝑋) “ {𝑦}) = ∅) | 
| 254 | 252, 253 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (◡(𝑊‘𝑋) “ {𝑦}) = ∅) | 
| 255 | 239 | sneqd 4638 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → {𝑦} = {(𝑋𝐹(𝑊‘𝑋))}) | 
| 256 | 255 | imaeq2d 6078 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) “ {𝑦}) = (◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) “ {(𝑋𝐹(𝑊‘𝑋))})) | 
| 257 |  | df-ima 5698 | . . . . . . . . . . . . . . . . . . . 20
⊢ (◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) “ {(𝑋𝐹(𝑊‘𝑋))}) = ran (◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ↾ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 258 |  | cnvxp 6177 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) = ({(𝑋𝐹(𝑊‘𝑋))} × 𝑋) | 
| 259 | 258 | reseq1i 5993 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ↾ {(𝑋𝐹(𝑊‘𝑋))}) = (({(𝑋𝐹(𝑊‘𝑋))} × 𝑋) ↾ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 260 |  | ssid 4006 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {(𝑋𝐹(𝑊‘𝑋))} ⊆ {(𝑋𝐹(𝑊‘𝑋))} | 
| 261 |  | xpssres 6036 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({(𝑋𝐹(𝑊‘𝑋))} ⊆ {(𝑋𝐹(𝑊‘𝑋))} → (({(𝑋𝐹(𝑊‘𝑋))} × 𝑋) ↾ {(𝑋𝐹(𝑊‘𝑋))}) = ({(𝑋𝐹(𝑊‘𝑋))} × 𝑋)) | 
| 262 | 260, 261 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (({(𝑋𝐹(𝑊‘𝑋))} × 𝑋) ↾ {(𝑋𝐹(𝑊‘𝑋))}) = ({(𝑋𝐹(𝑊‘𝑋))} × 𝑋) | 
| 263 | 259, 262 | eqtri 2765 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ↾ {(𝑋𝐹(𝑊‘𝑋))}) = ({(𝑋𝐹(𝑊‘𝑋))} × 𝑋) | 
| 264 | 263 | rneqi 5948 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ran
(◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ↾ {(𝑋𝐹(𝑊‘𝑋))}) = ran ({(𝑋𝐹(𝑊‘𝑋))} × 𝑋) | 
| 265 | 46 | snnz 4776 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ {(𝑋𝐹(𝑊‘𝑋))} ≠ ∅ | 
| 266 |  | rnxp 6190 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ({(𝑋𝐹(𝑊‘𝑋))} ≠ ∅ → ran ({(𝑋𝐹(𝑊‘𝑋))} × 𝑋) = 𝑋) | 
| 267 | 265, 266 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ran
({(𝑋𝐹(𝑊‘𝑋))} × 𝑋) = 𝑋 | 
| 268 | 264, 267 | eqtri 2765 | . . . . . . . . . . . . . . . . . . . 20
⊢ ran
(◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ↾ {(𝑋𝐹(𝑊‘𝑋))}) = 𝑋 | 
| 269 | 257, 268 | eqtri 2765 | . . . . . . . . . . . . . . . . . . 19
⊢ (◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) “ {(𝑋𝐹(𝑊‘𝑋))}) = 𝑋 | 
| 270 | 256, 269 | eqtrdi 2793 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) “ {𝑦}) = 𝑋) | 
| 271 | 254, 270 | uneq12d 4169 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → ((◡(𝑊‘𝑋) “ {𝑦}) ∪ (◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) “ {𝑦})) = (∅ ∪ 𝑋)) | 
| 272 |  | cnvun 6162 | . . . . . . . . . . . . . . . . . . 19
⊢ ◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) = (◡(𝑊‘𝑋) ∪ ◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) | 
| 273 | 272 | imaeq1i 6075 | . . . . . . . . . . . . . . . . . 18
⊢ (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) = ((◡(𝑊‘𝑋) ∪ ◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) | 
| 274 |  | imaundir 6170 | . . . . . . . . . . . . . . . . . 18
⊢ ((◡(𝑊‘𝑋) ∪ ◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) = ((◡(𝑊‘𝑋) “ {𝑦}) ∪ (◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) “ {𝑦})) | 
| 275 | 273, 274 | eqtri 2765 | . . . . . . . . . . . . . . . . 17
⊢ (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) = ((◡(𝑊‘𝑋) “ {𝑦}) ∪ (◡(𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) “ {𝑦})) | 
| 276 |  | un0 4394 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∪ ∅) = 𝑋 | 
| 277 |  | uncom 4158 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∪ ∅) = (∅ ∪
𝑋) | 
| 278 | 276, 277 | eqtr3i 2767 | . . . . . . . . . . . . . . . . 17
⊢ 𝑋 = (∅ ∪ 𝑋) | 
| 279 | 271, 275,
278 | 3eqtr4g 2802 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) = 𝑋) | 
| 280 | 189, 279 | sylan9eqr 2799 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → 𝑢 = 𝑋) | 
| 281 | 280 | sqxpeqd 5717 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → (𝑢 × 𝑢) = (𝑋 × 𝑋)) | 
| 282 | 281 | ineq2d 4220 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢)) = (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑋 × 𝑋))) | 
| 283 |  | indir 4286 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑋 × 𝑋)) = (((𝑊‘𝑋) ∩ (𝑋 × 𝑋)) ∪ ((𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ∩ (𝑋 × 𝑋))) | 
| 284 |  | dfss2 3969 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑊‘𝑋) ⊆ (𝑋 × 𝑋) ↔ ((𝑊‘𝑋) ∩ (𝑋 × 𝑋)) = (𝑊‘𝑋)) | 
| 285 | 244, 284 | sylib 218 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → ((𝑊‘𝑋) ∩ (𝑋 × 𝑋)) = (𝑊‘𝑋)) | 
| 286 |  | incom 4209 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({(𝑋𝐹(𝑊‘𝑋))} ∩ 𝑋) = (𝑋 ∩ {(𝑋𝐹(𝑊‘𝑋))}) | 
| 287 |  | disjsn 4711 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑋 ∩ {(𝑋𝐹(𝑊‘𝑋))}) = ∅ ↔ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) | 
| 288 | 242, 287 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (𝑋 ∩ {(𝑋𝐹(𝑊‘𝑋))}) = ∅) | 
| 289 | 286, 288 | eqtrid 2789 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → ({(𝑋𝐹(𝑊‘𝑋))} ∩ 𝑋) = ∅) | 
| 290 | 289 | xpeq2d 5715 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (𝑋 × ({(𝑋𝐹(𝑊‘𝑋))} ∩ 𝑋)) = (𝑋 × ∅)) | 
| 291 |  | xpindi 5844 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑋 × ({(𝑋𝐹(𝑊‘𝑋))} ∩ 𝑋)) = ((𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ∩ (𝑋 × 𝑋)) | 
| 292 |  | xp0 6178 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑋 × ∅) =
∅ | 
| 293 | 290, 291,
292 | 3eqtr3g 2800 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → ((𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ∩ (𝑋 × 𝑋)) = ∅) | 
| 294 | 285, 293 | uneq12d 4169 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (((𝑊‘𝑋) ∩ (𝑋 × 𝑋)) ∪ ((𝑋 × {(𝑋𝐹(𝑊‘𝑋))}) ∩ (𝑋 × 𝑋))) = ((𝑊‘𝑋) ∪ ∅)) | 
| 295 | 283, 294 | eqtrid 2789 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑋 × 𝑋)) = ((𝑊‘𝑋) ∪ ∅)) | 
| 296 |  | un0 4394 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑊‘𝑋) ∪ ∅) = (𝑊‘𝑋) | 
| 297 | 295, 296 | eqtrdi 2793 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑋 × 𝑋)) = (𝑊‘𝑋)) | 
| 298 | 297 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑋 × 𝑋)) = (𝑊‘𝑋)) | 
| 299 | 282, 298 | eqtrd 2777 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢)) = (𝑊‘𝑋)) | 
| 300 | 280, 299 | oveq12d 7449 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → (𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = (𝑋𝐹(𝑊‘𝑋))) | 
| 301 | 300 | eqeq1d 2739 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) ∧ 𝑢 = (◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦})) → ((𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑋𝐹(𝑊‘𝑋)) = 𝑦)) | 
| 302 | 241, 301 | sbcied 3832 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → ([(◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑋𝐹(𝑊‘𝑋)) = 𝑦)) | 
| 303 | 240, 302 | mpbird 257 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))}) → [(◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦) | 
| 304 | 238, 303 | jaodan 960 | . . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∨ 𝑦 ∈ {(𝑋𝐹(𝑊‘𝑋))})) → [(◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦) | 
| 305 | 135, 304 | sylan2b 594 | . . . . . . . . 9
⊢ (((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})) → [(◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦) | 
| 306 | 305 | ralrimiva 3146 | . . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})[(◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦) | 
| 307 | 175, 306 | jca 511 | . . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})[(◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)) | 
| 308 | 2, 3 | fpwwe2lem2 10672 | . . . . . . . 8
⊢ (𝜑 → ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})𝑊((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ↔ (((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ⊆ 𝐴 ∧ ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}))) ∧ (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})[(◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)))) | 
| 309 | 308 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})𝑊((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ↔ (((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ⊆ 𝐴 ∧ ((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}))) ∧ (((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∧ ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})[(◡((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)))) | 
| 310 | 34, 307, 309 | mpbir2and 713 | . . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})𝑊((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))}))) | 
| 311 | 2 | relopabiv 5830 | . . . . . . 7
⊢ Rel 𝑊 | 
| 312 | 311 | releldmi 5959 | . . . . . 6
⊢ ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))})𝑊((𝑊‘𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊‘𝑋))})) → (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∈ dom 𝑊) | 
| 313 |  | elssuni 4937 | . . . . . 6
⊢ ((𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ∈ dom 𝑊 → (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ⊆ ∪
dom 𝑊) | 
| 314 | 310, 312,
313 | 3syl 18 | . . . . 5
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ⊆ ∪
dom 𝑊) | 
| 315 | 314, 7 | sseqtrrdi 4025 | . . . 4
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊‘𝑋))}) ⊆ 𝑋) | 
| 316 | 1, 315 | sstrid 3995 | . . 3
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → {(𝑋𝐹(𝑊‘𝑋))} ⊆ 𝑋) | 
| 317 | 46 | snss 4785 | . . 3
⊢ ((𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋 ↔ {(𝑋𝐹(𝑊‘𝑋))} ⊆ 𝑋) | 
| 318 | 316, 317 | sylibr 234 | . 2
⊢ ((𝜑 ∧ ¬ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) | 
| 319 | 318 | pm2.18da 800 | 1
⊢ (𝜑 → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) |