MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem12 Structured version   Visualization version   GIF version

Theorem fpwwe2lem12 10602
Description: Lemma for fpwwe2 10603. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe2lem12 (𝜑 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem12
Dummy variables 𝑎 𝑏 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun2 4145 . . . 4 {(𝑋𝐹(𝑊𝑋))} ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})
2 fpwwe2.1 . . . . . . . . . . . . . 14 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
3 fpwwe2.2 . . . . . . . . . . . . . . 15 (𝜑𝐴𝑉)
43adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝐴𝑉)
5 fpwwe2.3 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
65adantlr 715 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
7 fpwwe2.4 . . . . . . . . . . . . . 14 𝑋 = dom 𝑊
82, 4, 6, 7fpwwe2lem11 10601 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑋 ∈ dom 𝑊)
92, 4, 6, 7fpwwe2lem10 10600 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
10 ffun 6694 . . . . . . . . . . . . . 14 (𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋) → Fun 𝑊)
11 funfvbrb 7026 . . . . . . . . . . . . . 14 (Fun 𝑊 → (𝑋 ∈ dom 𝑊𝑋𝑊(𝑊𝑋)))
129, 10, 113syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∈ dom 𝑊𝑋𝑊(𝑊𝑋)))
138, 12mpbid 232 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑋𝑊(𝑊𝑋))
142, 4fpwwe2lem2 10592 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝑊(𝑊𝑋) ↔ ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))))
1513, 14mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)))
1615simpld 494 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)))
1716simpld 494 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑋𝐴)
1816simprd 495 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
1915simprd 495 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))
2019simpld 494 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) We 𝑋)
2117, 18, 203jca 1128 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋) ∧ (𝑊𝑋) We 𝑋))
222, 3, 5fpwwe2lem4 10594 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋) ∧ (𝑊𝑋) We 𝑋)) → (𝑋𝐹(𝑊𝑋)) ∈ 𝐴)
2321, 22syldan 591 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝐹(𝑊𝑋)) ∈ 𝐴)
2423snssd 4776 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → {(𝑋𝐹(𝑊𝑋))} ⊆ 𝐴)
2517, 24unssd 4158 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝐴)
26 ssun1 4144 . . . . . . . . . . 11 𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})
27 xpss12 5656 . . . . . . . . . . 11 ((𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) → (𝑋 × 𝑋) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
2826, 26, 27mp2an 692 . . . . . . . . . 10 (𝑋 × 𝑋) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
2918, 28sstrdi 3962 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
30 xpss12 5656 . . . . . . . . . . 11 ((𝑋 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ {(𝑋𝐹(𝑊𝑋))} ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) → (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
3126, 1, 30mp2an 692 . . . . . . . . . 10 (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
3231a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
3329, 32unssd 4158 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})))
3425, 33jca 511 . . . . . . 7 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝐴 ∧ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))))
35 ssdif0 4332 . . . . . . . . . . . . . 14 (𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))} ↔ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) = ∅)
36 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
3718ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
3837ssbrd 5153 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) → (𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)(𝑋𝐹(𝑊𝑋))))
39 brxp 5690 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)(𝑋𝐹(𝑊𝑋)) ↔ ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋 ∧ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
4039simplbi 497 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)(𝑋𝐹(𝑊𝑋)) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
4138, 40syl6 35 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
4236, 41mtod 198 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)))
43 brxp 5690 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)) ↔ ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋 ∧ (𝑋𝐹(𝑊𝑋)) ∈ {(𝑋𝐹(𝑊𝑋))}))
4443simplbi 497 . . . . . . . . . . . . . . . . . 18 ((𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
4536, 44nsyl 140 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)))
46 ovex 7423 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐹(𝑊𝑋)) ∈ V
47 breq2 5114 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑋𝐹(𝑊𝑋)) → ((𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))(𝑋𝐹(𝑊𝑋))))
48 brun 5161 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))(𝑋𝐹(𝑊𝑋)) ↔ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))))
4947, 48bitrdi 287 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑋𝐹(𝑊𝑋)) → ((𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)))))
5049notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑋𝐹(𝑊𝑋)) → (¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋)))))
5146, 50rexsn 4649 . . . . . . . . . . . . . . . . . 18 (∃𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))))
52 ioran 985 . . . . . . . . . . . . . . . . . 18 (¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))) ↔ (¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∧ ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))))
5351, 52bitri 275 . . . . . . . . . . . . . . . . 17 (∃𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)(𝑋𝐹(𝑊𝑋)) ∧ ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})(𝑋𝐹(𝑊𝑋))))
5442, 45, 53sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ∃𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
55 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))})
56 sssn 4793 . . . . . . . . . . . . . . . . . . 19 (𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))} ↔ (𝑥 = ∅ ∨ 𝑥 = {(𝑋𝐹(𝑊𝑋))}))
5755, 56sylib 218 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (𝑥 = ∅ ∨ 𝑥 = {(𝑋𝐹(𝑊𝑋))}))
58 simplrr 777 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → 𝑥 ≠ ∅)
5958neneqd 2931 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ¬ 𝑥 = ∅)
6057, 59orcnd 878 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → 𝑥 = {(𝑋𝐹(𝑊𝑋))})
6160raleqdv 3301 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
62 breq1 5113 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑋𝐹(𝑊𝑋)) → (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6362notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑋𝐹(𝑊𝑋)) → (¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6446, 63ralsn 4648 . . . . . . . . . . . . . . . . . 18 (∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
6561, 64bitrdi 287 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6660, 65rexeqbidv 3322 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → (∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ∃𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ (𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6754, 66mpbird 257 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ 𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))}) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
6867ex 412 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) → (𝑥 ⊆ {(𝑋𝐹(𝑊𝑋))} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
6935, 68biimtrrid 243 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) → ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) = ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
70 vex 3454 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
71 difexg 5287 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∈ V)
7270, 71mp1i 13 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∈ V)
73 wefr 5631 . . . . . . . . . . . . . . . . . 18 ((𝑊𝑋) We 𝑋 → (𝑊𝑋) Fr 𝑋)
7420, 73syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) Fr 𝑋)
7574ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (𝑊𝑋) Fr 𝑋)
76 simplrl 776 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → 𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
77 uncom 4124 . . . . . . . . . . . . . . . . . 18 (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} ∪ 𝑋)
7876, 77sseqtrdi 3990 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → 𝑥 ⊆ ({(𝑋𝐹(𝑊𝑋))} ∪ 𝑋))
79 ssundif 4454 . . . . . . . . . . . . . . . . 17 (𝑥 ⊆ ({(𝑋𝐹(𝑊𝑋))} ∪ 𝑋) ↔ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝑋)
8078, 79sylib 218 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝑋)
81 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅)
82 fri 5599 . . . . . . . . . . . . . . . 16 ((((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∈ V ∧ (𝑊𝑋) Fr 𝑋) ∧ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝑋 ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅)) → ∃𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦)
8372, 75, 80, 81, 82syl22anc 838 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → ∃𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦)
84 brun 5161 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (𝑧(𝑊𝑋)𝑦𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
85 idd 24 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑧(𝑊𝑋)𝑦𝑧(𝑊𝑋)𝑦))
86 brxp 5690 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦 ↔ (𝑧𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
8786simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})
88 eldifn 4098 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) → ¬ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})
8988adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ¬ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})
9089pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} → 𝑧(𝑊𝑋)𝑦))
9187, 90syl5 34 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦))
9285, 91jaod 859 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ((𝑧(𝑊𝑋)𝑦𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦) → 𝑧(𝑊𝑋)𝑦))
9384, 92biimtrid 242 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑧(𝑊𝑋)𝑦))
9493con3d 152 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (¬ 𝑧(𝑊𝑋)𝑦 → ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
9594ralimdv 3148 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → ∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
96 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
9796ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
9818ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
9998ssbrd 5153 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 → (𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)𝑦))
100 brxp 5690 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)𝑦 ↔ ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋𝑦𝑋))
101100simplbi 497 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝐹(𝑊𝑋))(𝑋 × 𝑋)𝑦 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
10299, 101syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
10397, 102mtod 198 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦)
104 brxp 5690 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦 ↔ ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
105104simprbi 496 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})
10689, 105nsyl 140 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)
107 brun 5161 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋𝐹(𝑊𝑋))((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
10862, 107bitrdi 287 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (𝑋𝐹(𝑊𝑋)) → (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)))
109108notbid 318 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑋𝐹(𝑊𝑋)) → (¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)))
11046, 109ralsn 4648 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ ¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
111 ioran 985 . . . . . . . . . . . . . . . . . . . . . 22 (¬ ((𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∨ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦) ↔ (¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∧ ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
112110, 111bitri 275 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ↔ (¬ (𝑋𝐹(𝑊𝑋))(𝑊𝑋)𝑦 ∧ ¬ (𝑋𝐹(𝑊𝑋))(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
113103, 106, 112sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
11495, 113jctird 526 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ∧ ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)))
115 ssun1 4144 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ⊆ (𝑥 ∪ {(𝑋𝐹(𝑊𝑋))})
116 undif1 4442 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))}) = (𝑥 ∪ {(𝑋𝐹(𝑊𝑋))})
117115, 116sseqtrri 3999 . . . . . . . . . . . . . . . . . . . 20 𝑥 ⊆ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))})
118 ralun 4164 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ∧ ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦) → ∀𝑧 ∈ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
119 ssralv 4018 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ⊆ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))}) → (∀𝑧 ∈ ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∪ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 → ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
120117, 118, 119mpsyl 68 . . . . . . . . . . . . . . . . . . 19 ((∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 ∧ ∀𝑧 ∈ {(𝑋𝐹(𝑊𝑋))} ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦) → ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
121114, 120syl6 35 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
122 eldifi 4097 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) → 𝑦𝑥)
123122adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → 𝑦𝑥)
124121, 123jctild 525 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) ∧ 𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})) → (∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → (𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)))
125124expimpd 453 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → ((𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦) → (𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)))
126125reximdv2 3144 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → (∃𝑦 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))})∀𝑧 ∈ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ¬ 𝑧(𝑊𝑋)𝑦 → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
12783, 126mpd 15 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) ∧ (𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
128127ex 412 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) → ((𝑥 ∖ {(𝑋𝐹(𝑊𝑋))}) ≠ ∅ → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
12969, 128pm2.61dne 3012 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅)) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
130129ex 412 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
131130alrimiv 1927 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ∀𝑥((𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
132 df-fr 5594 . . . . . . . . . 10 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) Fr (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ↔ ∀𝑥((𝑥 ⊆ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
133131, 132sylibr 234 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) Fr (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
134 elun 4119 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ↔ (𝑥𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}))
135 elun 4119 . . . . . . . . . . . 12 (𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ↔ (𝑦𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
136134, 135anbi12i 628 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) ↔ ((𝑥𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ (𝑦𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})))
137 weso 5632 . . . . . . . . . . . . . . . 16 ((𝑊𝑋) We 𝑋 → (𝑊𝑋) Or 𝑋)
13820, 137syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑊𝑋) Or 𝑋)
139 solin 5576 . . . . . . . . . . . . . . 15 (((𝑊𝑋) Or 𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝑊𝑋)𝑦𝑥 = 𝑦𝑦(𝑊𝑋)𝑥))
140138, 139sylan 580 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝑊𝑋)𝑦𝑥 = 𝑦𝑦(𝑊𝑋)𝑥))
141 ssun1 4144 . . . . . . . . . . . . . . . . 17 (𝑊𝑋) ⊆ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))
142141a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑊𝑋) ⊆ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})))
143142ssbrd 5153 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝑊𝑋)𝑦𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
144 idd 24 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦𝑥 = 𝑦))
145142ssbrd 5153 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦(𝑊𝑋)𝑥𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
146143, 144, 1453orim123d 1446 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(𝑊𝑋)𝑦𝑥 = 𝑦𝑦(𝑊𝑋)𝑥) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
147140, 146mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
148147ex 412 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥𝑋𝑦𝑋) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
149 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋)) → (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋))
150149ancomd 461 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋)) → (𝑦𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}))
151 brxp 5690 . . . . . . . . . . . . . . 15 (𝑦(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑥 ↔ (𝑦𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}))
152150, 151sylibr 234 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋)) → 𝑦(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑥)
153 ssun2 4145 . . . . . . . . . . . . . . 15 (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ⊆ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))
154153ssbri 5155 . . . . . . . . . . . . . 14 (𝑦(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑥𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)
155 3mix3 1333 . . . . . . . . . . . . . 14 (𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥 → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
156152, 154, 1553syl 18 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋)) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
157156ex 412 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦𝑋) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
158 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
159 brxp 5690 . . . . . . . . . . . . . . 15 (𝑥(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦 ↔ (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}))
160158, 159sylibr 234 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → 𝑥(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)
161153ssbri 5155 . . . . . . . . . . . . . 14 (𝑥(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
162 3mix1 1331 . . . . . . . . . . . . . 14 (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦 → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
163160, 161, 1623syl 18 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
164163ex 412 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
165 elsni 4609 . . . . . . . . . . . . . . 15 (𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} → 𝑥 = (𝑋𝐹(𝑊𝑋)))
166 elsni 4609 . . . . . . . . . . . . . . 15 (𝑦 ∈ {(𝑋𝐹(𝑊𝑋))} → 𝑦 = (𝑋𝐹(𝑊𝑋)))
167 eqtr3 2752 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑋𝐹(𝑊𝑋)) ∧ 𝑦 = (𝑋𝐹(𝑊𝑋))) → 𝑥 = 𝑦)
168165, 166, 167syl2an 596 . . . . . . . . . . . . . 14 ((𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → 𝑥 = 𝑦)
1691683mix2d 1338 . . . . . . . . . . . . 13 ((𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
170169a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥 ∈ {(𝑋𝐹(𝑊𝑋))} ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
171148, 157, 164, 170ccased 1038 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (((𝑥𝑋𝑥 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ (𝑦𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
172136, 171biimtrid 242 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) → (𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
173172ralrimivv 3179 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ∀𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})(𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥))
174 dfwe2 7753 . . . . . . . . 9 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ↔ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) Fr (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑥 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})(𝑥((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑥 = 𝑦𝑦((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑥)))
175133, 173, 174sylanbrc 583 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))
1762fpwwe2cbv 10590 . . . . . . . . . . . . 13 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑏](𝑏𝐹(𝑠 ∩ (𝑏 × 𝑏))) = 𝑧))}
177176, 4, 13fpwwe2lem3 10593 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) “ {𝑦})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))) = 𝑦)
178 cnvimass 6056 . . . . . . . . . . . . . . 15 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ⊆ dom ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))
179 fvex 6874 . . . . . . . . . . . . . . . . 17 (𝑊𝑋) ∈ V
180 snex 5394 . . . . . . . . . . . . . . . . . 18 {(𝑋𝐹(𝑊𝑋))} ∈ V
181 xpexg 7729 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ dom 𝑊 ∧ {(𝑋𝐹(𝑊𝑋))} ∈ V) → (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∈ V)
1828, 180, 181sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∈ V)
183 unexg 7722 . . . . . . . . . . . . . . . . 17 (((𝑊𝑋) ∈ V ∧ (𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∈ V) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∈ V)
184179, 182, 183sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∈ V)
185184dmexd 7882 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → dom ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∈ V)
186 ssexg 5281 . . . . . . . . . . . . . . 15 (((((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ⊆ dom ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∧ dom ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∈ V) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ∈ V)
187178, 185, 186sylancr 587 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ∈ V)
188187adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ∈ V)
189 id 22 . . . . . . . . . . . . . . . 16 (𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) → 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}))
190 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
191 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
192 nelne2 3024 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑋 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → 𝑦 ≠ (𝑋𝐹(𝑊𝑋)))
193190, 191, 192syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → 𝑦 ≠ (𝑋𝐹(𝑊𝑋)))
19487, 166syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑦 = (𝑋𝐹(𝑊𝑋)))
195194necon3ai 2951 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ≠ (𝑋𝐹(𝑊𝑋)) → ¬ 𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦)
196 biorf 936 . . . . . . . . . . . . . . . . . . . 20 𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦 → (𝑧(𝑊𝑋)𝑦 ↔ (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦)))
197193, 195, 1963syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (𝑧(𝑊𝑋)𝑦 ↔ (𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦)))
198 orcom 870 . . . . . . . . . . . . . . . . . . . 20 ((𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦) ↔ (𝑧(𝑊𝑋)𝑦𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦))
199198, 84bitr4i 278 . . . . . . . . . . . . . . . . . . 19 ((𝑧(𝑋 × {(𝑋𝐹(𝑊𝑋))})𝑦𝑧(𝑊𝑋)𝑦) ↔ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
200197, 199bitr2di 288 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦𝑧(𝑊𝑋)𝑦))
201 vex 3454 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
202201eliniseg 6068 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ V → (𝑧 ∈ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ↔ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦))
203202elv 3455 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ↔ 𝑧((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))𝑦)
204201eliniseg 6068 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ V → (𝑧 ∈ ((𝑊𝑋) “ {𝑦}) ↔ 𝑧(𝑊𝑋)𝑦))
205204elv 3455 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝑊𝑋) “ {𝑦}) ↔ 𝑧(𝑊𝑋)𝑦)
206200, 203, 2053bitr4g 314 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (𝑧 ∈ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ↔ 𝑧 ∈ ((𝑊𝑋) “ {𝑦})))
207206eqrdv 2728 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = ((𝑊𝑋) “ {𝑦}))
208189, 207sylan9eqr 2787 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → 𝑢 = ((𝑊𝑋) “ {𝑦}))
209208sqxpeqd 5673 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (𝑢 × 𝑢) = (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))
210209ineq2d 4186 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢)) = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
211 indir 4252 . . . . . . . . . . . . . . . . . . 19 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
212 inxp 5798 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦})))
213 incom 4175 . . . . . . . . . . . . . . . . . . . . . . . 24 ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦})) = (((𝑊𝑋) “ {𝑦}) ∩ {(𝑋𝐹(𝑊𝑋))})
214 cnvimass 6056 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑊𝑋) “ {𝑦}) ⊆ dom (𝑊𝑋)
21518adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
216 dmss 5869 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊𝑋) ⊆ (𝑋 × 𝑋) → dom (𝑊𝑋) ⊆ dom (𝑋 × 𝑋))
217215, 216syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → dom (𝑊𝑋) ⊆ dom (𝑋 × 𝑋))
218 dmxpid 5897 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 dom (𝑋 × 𝑋) = 𝑋
219217, 218sseqtrdi 3990 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → dom (𝑊𝑋) ⊆ 𝑋)
220214, 219sstrid 3961 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ((𝑊𝑋) “ {𝑦}) ⊆ 𝑋)
221220, 191ssneldd 3952 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ ((𝑊𝑋) “ {𝑦}))
222 disjsn 4678 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑊𝑋) “ {𝑦}) ∩ {(𝑋𝐹(𝑊𝑋))}) = ∅ ↔ ¬ (𝑋𝐹(𝑊𝑋)) ∈ ((𝑊𝑋) “ {𝑦}))
223221, 222sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) “ {𝑦}) ∩ {(𝑋𝐹(𝑊𝑋))}) = ∅)
224213, 223eqtrid 2777 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦})) = ∅)
225224xpeq2d 5671 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦}))) = ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ∅))
226 xp0 6134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ∅) = ∅
227225, 226eqtrdi 2781 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ((𝑋 ∩ ((𝑊𝑋) “ {𝑦})) × ({(𝑋𝐹(𝑊𝑋))} ∩ ((𝑊𝑋) “ {𝑦}))) = ∅)
228212, 227eqtrid 2777 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = ∅)
229228uneq2d 4134 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))) = (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ∅))
230211, 229eqtrid 2777 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ∅))
231 un0 4360 . . . . . . . . . . . . . . . . . 18 (((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) ∪ ∅) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))
232230, 231eqtrdi 2781 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
233232adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
234210, 233eqtrd 2765 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢)) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦}))))
235208, 234oveq12d 7408 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = (((𝑊𝑋) “ {𝑦})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))))
236235eqeq1d 2732 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → ((𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (((𝑊𝑋) “ {𝑦})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))) = 𝑦))
237188, 236sbcied 3800 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → ([(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (((𝑊𝑋) “ {𝑦})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑦}) × ((𝑊𝑋) “ {𝑦})))) = 𝑦))
238177, 237mpbird 257 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦𝑋) → [(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
239166adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → 𝑦 = (𝑋𝐹(𝑊𝑋)))
240239eqcomd 2736 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑋𝐹(𝑊𝑋)) = 𝑦)
241187adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) ∈ V)
242 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
243239eleq1d 2814 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑦 ∈ dom (𝑊𝑋) ↔ (𝑋𝐹(𝑊𝑋)) ∈ dom (𝑊𝑋)))
24418adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
245 rnss 5906 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊𝑋) ⊆ (𝑋 × 𝑋) → ran (𝑊𝑋) ⊆ ran (𝑋 × 𝑋))
246244, 245syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ran (𝑊𝑋) ⊆ ran (𝑋 × 𝑋))
247 df-rn 5652 . . . . . . . . . . . . . . . . . . . . . . 23 ran (𝑊𝑋) = dom (𝑊𝑋)
248 rnxpid 6149 . . . . . . . . . . . . . . . . . . . . . . 23 ran (𝑋 × 𝑋) = 𝑋
249246, 247, 2483sstr3g 4002 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → dom (𝑊𝑋) ⊆ 𝑋)
250249sseld 3948 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋𝐹(𝑊𝑋)) ∈ dom (𝑊𝑋) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
251243, 250sylbid 240 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑦 ∈ dom (𝑊𝑋) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
252242, 251mtod 198 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ¬ 𝑦 ∈ dom (𝑊𝑋))
253 ndmima 6077 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ dom (𝑊𝑋) → ((𝑊𝑋) “ {𝑦}) = ∅)
254252, 253syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑊𝑋) “ {𝑦}) = ∅)
255239sneqd 4604 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → {𝑦} = {(𝑋𝐹(𝑊𝑋))})
256255imaeq2d 6034 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦}) = ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {(𝑋𝐹(𝑊𝑋))}))
257 df-ima 5654 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {(𝑋𝐹(𝑊𝑋))}) = ran ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))})
258 cnvxp 6133 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 × {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} × 𝑋)
259258reseq1i 5949 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))}) = (({(𝑋𝐹(𝑊𝑋))} × 𝑋) ↾ {(𝑋𝐹(𝑊𝑋))})
260 ssid 3972 . . . . . . . . . . . . . . . . . . . . . . . 24 {(𝑋𝐹(𝑊𝑋))} ⊆ {(𝑋𝐹(𝑊𝑋))}
261 xpssres 5992 . . . . . . . . . . . . . . . . . . . . . . . 24 ({(𝑋𝐹(𝑊𝑋))} ⊆ {(𝑋𝐹(𝑊𝑋))} → (({(𝑋𝐹(𝑊𝑋))} × 𝑋) ↾ {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} × 𝑋))
262260, 261ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (({(𝑋𝐹(𝑊𝑋))} × 𝑋) ↾ {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} × 𝑋)
263259, 262eqtri 2753 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))}) = ({(𝑋𝐹(𝑊𝑋))} × 𝑋)
264263rneqi 5904 . . . . . . . . . . . . . . . . . . . . 21 ran ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))}) = ran ({(𝑋𝐹(𝑊𝑋))} × 𝑋)
26546snnz 4743 . . . . . . . . . . . . . . . . . . . . . 22 {(𝑋𝐹(𝑊𝑋))} ≠ ∅
266 rnxp 6146 . . . . . . . . . . . . . . . . . . . . . 22 ({(𝑋𝐹(𝑊𝑋))} ≠ ∅ → ran ({(𝑋𝐹(𝑊𝑋))} × 𝑋) = 𝑋)
267265, 266ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ran ({(𝑋𝐹(𝑊𝑋))} × 𝑋) = 𝑋
268264, 267eqtri 2753 . . . . . . . . . . . . . . . . . . . 20 ran ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ↾ {(𝑋𝐹(𝑊𝑋))}) = 𝑋
269257, 268eqtri 2753 . . . . . . . . . . . . . . . . . . 19 ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {(𝑋𝐹(𝑊𝑋))}) = 𝑋
270256, 269eqtrdi 2781 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦}) = 𝑋)
271254, 270uneq12d 4135 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) “ {𝑦}) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦})) = (∅ ∪ 𝑋))
272 cnvun 6118 . . . . . . . . . . . . . . . . . . 19 ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) = ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))}))
273272imaeq1i 6031 . . . . . . . . . . . . . . . . . 18 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})
274 imaundir 6126 . . . . . . . . . . . . . . . . . 18 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = (((𝑊𝑋) “ {𝑦}) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦}))
275273, 274eqtri 2753 . . . . . . . . . . . . . . . . 17 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = (((𝑊𝑋) “ {𝑦}) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) “ {𝑦}))
276 un0 4360 . . . . . . . . . . . . . . . . . 18 (𝑋 ∪ ∅) = 𝑋
277 uncom 4124 . . . . . . . . . . . . . . . . . 18 (𝑋 ∪ ∅) = (∅ ∪ 𝑋)
278276, 277eqtr3i 2755 . . . . . . . . . . . . . . . . 17 𝑋 = (∅ ∪ 𝑋)
279271, 275, 2783eqtr4g 2790 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) = 𝑋)
280189, 279sylan9eqr 2787 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → 𝑢 = 𝑋)
281280sqxpeqd 5673 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (𝑢 × 𝑢) = (𝑋 × 𝑋))
282281ineq2d 4186 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢)) = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)))
283 indir 4252 . . . . . . . . . . . . . . . . . . 19 (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)) = (((𝑊𝑋) ∩ (𝑋 × 𝑋)) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (𝑋 × 𝑋)))
284 dfss2 3935 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊𝑋) ⊆ (𝑋 × 𝑋) ↔ ((𝑊𝑋) ∩ (𝑋 × 𝑋)) = (𝑊𝑋))
285244, 284sylib 218 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑊𝑋) ∩ (𝑋 × 𝑋)) = (𝑊𝑋))
286 incom 4175 . . . . . . . . . . . . . . . . . . . . . . 23 ({(𝑋𝐹(𝑊𝑋))} ∩ 𝑋) = (𝑋 ∩ {(𝑋𝐹(𝑊𝑋))})
287 disjsn 4678 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 ∩ {(𝑋𝐹(𝑊𝑋))}) = ∅ ↔ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
288242, 287sylibr 234 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑋 ∩ {(𝑋𝐹(𝑊𝑋))}) = ∅)
289286, 288eqtrid 2777 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ({(𝑋𝐹(𝑊𝑋))} ∩ 𝑋) = ∅)
290289xpeq2d 5671 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (𝑋 × ({(𝑋𝐹(𝑊𝑋))} ∩ 𝑋)) = (𝑋 × ∅))
291 xpindi 5800 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 × ({(𝑋𝐹(𝑊𝑋))} ∩ 𝑋)) = ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (𝑋 × 𝑋))
292 xp0 6134 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 × ∅) = ∅
293290, 291, 2923eqtr3g 2788 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (𝑋 × 𝑋)) = ∅)
294285, 293uneq12d 4135 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∩ (𝑋 × 𝑋)) ∪ ((𝑋 × {(𝑋𝐹(𝑊𝑋))}) ∩ (𝑋 × 𝑋))) = ((𝑊𝑋) ∪ ∅))
295283, 294eqtrid 2777 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)) = ((𝑊𝑋) ∪ ∅))
296 un0 4360 . . . . . . . . . . . . . . . . . 18 ((𝑊𝑋) ∪ ∅) = (𝑊𝑋)
297295, 296eqtrdi 2781 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)) = (𝑊𝑋))
298297adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑋 × 𝑋)) = (𝑊𝑋))
299282, 298eqtrd 2765 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢)) = (𝑊𝑋))
300280, 299oveq12d 7408 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → (𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = (𝑋𝐹(𝑊𝑋)))
301300eqeq1d 2732 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) ∧ 𝑢 = (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦})) → ((𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑋𝐹(𝑊𝑋)) = 𝑦))
302241, 301sbcied 3800 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → ([(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑋𝐹(𝑊𝑋)) = 𝑦))
303240, 302mpbird 257 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ {(𝑋𝐹(𝑊𝑋))}) → [(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
304238, 303jaodan 959 . . . . . . . . . 10 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ (𝑦𝑋𝑦 ∈ {(𝑋𝐹(𝑊𝑋))})) → [(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
305135, 304sylan2b 594 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) ∧ 𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})) → [(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
306305ralrimiva 3126 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})[(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦)
307175, 306jca 511 . . . . . . 7 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})[(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦))
3082, 3fpwwe2lem2 10592 . . . . . . . 8 (𝜑 → ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})𝑊((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ↔ (((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝐴 ∧ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))) ∧ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})[(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦))))
309308adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})𝑊((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ↔ (((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝐴 ∧ ((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ⊆ ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) × (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}))) ∧ (((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) We (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∧ ∀𝑦 ∈ (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})[(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) “ {𝑦}) / 𝑢](𝑢𝐹(((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) ∩ (𝑢 × 𝑢))) = 𝑦))))
31034, 307, 309mpbir2and 713 . . . . . 6 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})𝑊((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})))
3112relopabiv 5786 . . . . . . 7 Rel 𝑊
312311releldmi 5915 . . . . . 6 ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))})𝑊((𝑊𝑋) ∪ (𝑋 × {(𝑋𝐹(𝑊𝑋))})) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∈ dom 𝑊)
313 elssuni 4904 . . . . . 6 ((𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ∈ dom 𝑊 → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ dom 𝑊)
314310, 312, 3133syl 18 . . . . 5 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ dom 𝑊)
315314, 7sseqtrrdi 3991 . . . 4 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋 ∪ {(𝑋𝐹(𝑊𝑋))}) ⊆ 𝑋)
3161, 315sstrid 3961 . . 3 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → {(𝑋𝐹(𝑊𝑋))} ⊆ 𝑋)
31746snss 4752 . . 3 ((𝑋𝐹(𝑊𝑋)) ∈ 𝑋 ↔ {(𝑋𝐹(𝑊𝑋))} ⊆ 𝑋)
318316, 317sylibr 234 . 2 ((𝜑 ∧ ¬ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋) → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
319318pm2.18da 799 1 (𝜑 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  [wsbc 3756  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cuni 4874   class class class wbr 5110  {copab 5172   Or wor 5548   Fr wfr 5591   We wwe 5593   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-oi 9470
This theorem is referenced by:  fpwwe2  10603
  Copyright terms: Public domain W3C validator