Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0ringsubrg Structured version   Visualization version   GIF version

Theorem 0ringsubrg 33223
Description: A subring of a zero ring is a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
0ringsubrg.1 𝐵 = (Base‘𝑅)
0ringsubrg.2 (𝜑𝑅 ∈ Ring)
0ringsubrg.3 (𝜑 → (♯‘𝐵) = 1)
0ringsubrg.4 (𝜑𝑆 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
0ringsubrg (𝜑 → (♯‘𝑆) = 1)

Proof of Theorem 0ringsubrg
StepHypRef Expression
1 0ringsubrg.4 . . . . . . 7 (𝜑𝑆 ∈ (SubRing‘𝑅))
2 0ringsubrg.1 . . . . . . . 8 𝐵 = (Base‘𝑅)
32subrgss 20600 . . . . . . 7 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
41, 3syl 17 . . . . . 6 (𝜑𝑆𝐵)
5 0ringsubrg.2 . . . . . . 7 (𝜑𝑅 ∈ Ring)
6 0ringsubrg.3 . . . . . . 7 (𝜑 → (♯‘𝐵) = 1)
7 eqid 2740 . . . . . . . 8 (0g𝑅) = (0g𝑅)
82, 70ring 20552 . . . . . . 7 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = {(0g𝑅)})
95, 6, 8syl2anc 583 . . . . . 6 (𝜑𝐵 = {(0g𝑅)})
104, 9sseqtrd 4049 . . . . 5 (𝜑𝑆 ⊆ {(0g𝑅)})
11 sssn 4851 . . . . 5 (𝑆 ⊆ {(0g𝑅)} ↔ (𝑆 = ∅ ∨ 𝑆 = {(0g𝑅)}))
1210, 11sylib 218 . . . 4 (𝜑 → (𝑆 = ∅ ∨ 𝑆 = {(0g𝑅)}))
13 eqid 2740 . . . . . . 7 (1r𝑅) = (1r𝑅)
1413subrg1cl 20608 . . . . . 6 (𝑆 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑆)
151, 14syl 17 . . . . 5 (𝜑 → (1r𝑅) ∈ 𝑆)
16 n0i 4363 . . . . 5 ((1r𝑅) ∈ 𝑆 → ¬ 𝑆 = ∅)
1715, 16syl 17 . . . 4 (𝜑 → ¬ 𝑆 = ∅)
1812, 17orcnd 877 . . 3 (𝜑𝑆 = {(0g𝑅)})
1918fveq2d 6924 . 2 (𝜑 → (♯‘𝑆) = (♯‘{(0g𝑅)}))
20 fvex 6933 . . 3 (0g𝑅) ∈ V
21 hashsng 14418 . . 3 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
2220, 21ax-mp 5 . 2 (♯‘{(0g𝑅)}) = 1
2319, 22eqtrdi 2796 1 (𝜑 → (♯‘𝑆) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  c0 4352  {csn 4648  cfv 6573  1c1 11185  chash 14379  Basecbs 17258  0gc0g 17499  1rcur 20208  Ringcrg 20260  SubRingcsubrg 20595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ring 20262  df-subrg 20597
This theorem is referenced by:  0ringirng  33689
  Copyright terms: Public domain W3C validator