Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0ringsubrg Structured version   Visualization version   GIF version

Theorem 0ringsubrg 33208
Description: A subring of a zero ring is a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
0ringsubrg.1 𝐵 = (Base‘𝑅)
0ringsubrg.2 (𝜑𝑅 ∈ Ring)
0ringsubrg.3 (𝜑 → (♯‘𝐵) = 1)
0ringsubrg.4 (𝜑𝑆 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
0ringsubrg (𝜑 → (♯‘𝑆) = 1)

Proof of Theorem 0ringsubrg
StepHypRef Expression
1 0ringsubrg.4 . . . . . . 7 (𝜑𝑆 ∈ (SubRing‘𝑅))
2 0ringsubrg.1 . . . . . . . 8 𝐵 = (Base‘𝑅)
32subrgss 20480 . . . . . . 7 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
41, 3syl 17 . . . . . 6 (𝜑𝑆𝐵)
5 0ringsubrg.2 . . . . . . 7 (𝜑𝑅 ∈ Ring)
6 0ringsubrg.3 . . . . . . 7 (𝜑 → (♯‘𝐵) = 1)
7 eqid 2730 . . . . . . . 8 (0g𝑅) = (0g𝑅)
82, 70ring 20434 . . . . . . 7 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = {(0g𝑅)})
95, 6, 8syl2anc 584 . . . . . 6 (𝜑𝐵 = {(0g𝑅)})
104, 9sseqtrd 3969 . . . . 5 (𝜑𝑆 ⊆ {(0g𝑅)})
11 sssn 4776 . . . . 5 (𝑆 ⊆ {(0g𝑅)} ↔ (𝑆 = ∅ ∨ 𝑆 = {(0g𝑅)}))
1210, 11sylib 218 . . . 4 (𝜑 → (𝑆 = ∅ ∨ 𝑆 = {(0g𝑅)}))
13 eqid 2730 . . . . . . 7 (1r𝑅) = (1r𝑅)
1413subrg1cl 20488 . . . . . 6 (𝑆 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑆)
151, 14syl 17 . . . . 5 (𝜑 → (1r𝑅) ∈ 𝑆)
16 n0i 4288 . . . . 5 ((1r𝑅) ∈ 𝑆 → ¬ 𝑆 = ∅)
1715, 16syl 17 . . . 4 (𝜑 → ¬ 𝑆 = ∅)
1812, 17orcnd 878 . . 3 (𝜑𝑆 = {(0g𝑅)})
1918fveq2d 6821 . 2 (𝜑 → (♯‘𝑆) = (♯‘{(0g𝑅)}))
20 fvex 6830 . . 3 (0g𝑅) ∈ V
21 hashsng 14268 . . 3 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
2220, 21ax-mp 5 . 2 (♯‘{(0g𝑅)}) = 1
2319, 22eqtrdi 2781 1 (𝜑 → (♯‘𝑆) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1541  wcel 2110  Vcvv 3434  wss 3900  c0 4281  {csn 4574  cfv 6477  1c1 10999  chash 14229  Basecbs 17112  0gc0g 17335  1rcur 20092  Ringcrg 20144  SubRingcsubrg 20477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-hash 14230  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-ring 20146  df-subrg 20478
This theorem is referenced by:  0ringirng  33692
  Copyright terms: Public domain W3C validator