| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0ringsubrg | Structured version Visualization version GIF version | ||
| Description: A subring of a zero ring is a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| 0ringsubrg.1 | ⊢ 𝐵 = (Base‘𝑅) |
| 0ringsubrg.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 0ringsubrg.3 | ⊢ (𝜑 → (♯‘𝐵) = 1) |
| 0ringsubrg.4 | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| Ref | Expression |
|---|---|
| 0ringsubrg | ⊢ (𝜑 → (♯‘𝑆) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ringsubrg.4 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 2 | 0ringsubrg.1 | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 2 | subrgss 20493 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 5 | 0ringsubrg.2 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | 0ringsubrg.3 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) = 1) | |
| 7 | eqid 2731 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 8 | 2, 7 | 0ring 20447 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = {(0g‘𝑅)}) |
| 9 | 5, 6, 8 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝐵 = {(0g‘𝑅)}) |
| 10 | 4, 9 | sseqtrd 3966 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ {(0g‘𝑅)}) |
| 11 | sssn 4777 | . . . . 5 ⊢ (𝑆 ⊆ {(0g‘𝑅)} ↔ (𝑆 = ∅ ∨ 𝑆 = {(0g‘𝑅)})) | |
| 12 | 10, 11 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑆 = ∅ ∨ 𝑆 = {(0g‘𝑅)})) |
| 13 | eqid 2731 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 14 | 13 | subrg1cl 20501 | . . . . . 6 ⊢ (𝑆 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝑆) |
| 15 | 1, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝑆) |
| 16 | n0i 4289 | . . . . 5 ⊢ ((1r‘𝑅) ∈ 𝑆 → ¬ 𝑆 = ∅) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → ¬ 𝑆 = ∅) |
| 18 | 12, 17 | orcnd 878 | . . 3 ⊢ (𝜑 → 𝑆 = {(0g‘𝑅)}) |
| 19 | 18 | fveq2d 6832 | . 2 ⊢ (𝜑 → (♯‘𝑆) = (♯‘{(0g‘𝑅)})) |
| 20 | fvex 6841 | . . 3 ⊢ (0g‘𝑅) ∈ V | |
| 21 | hashsng 14282 | . . 3 ⊢ ((0g‘𝑅) ∈ V → (♯‘{(0g‘𝑅)}) = 1) | |
| 22 | 20, 21 | ax-mp 5 | . 2 ⊢ (♯‘{(0g‘𝑅)}) = 1 |
| 23 | 19, 22 | eqtrdi 2782 | 1 ⊢ (𝜑 → (♯‘𝑆) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ∅c0 4282 {csn 4575 ‘cfv 6487 1c1 11013 ♯chash 14243 Basecbs 17126 0gc0g 17349 1rcur 20105 Ringcrg 20157 SubRingcsubrg 20490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-hash 14244 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-grp 18855 df-ring 20159 df-subrg 20491 |
| This theorem is referenced by: 0ringirng 33709 |
| Copyright terms: Public domain | W3C validator |