Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngidl Structured version   Visualization version   GIF version

Theorem drngidl 33388
Description: A nonzero ring is a division ring if and only if its only left ideals are the zero ideal and the unit ideal. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
drngidl.b 𝐵 = (Base‘𝑅)
drngidl.z 0 = (0g𝑅)
drngidl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngidl (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{ 0 }, 𝐵}))

Proof of Theorem drngidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngidl.b . . . 4 𝐵 = (Base‘𝑅)
2 drngidl.z . . . 4 0 = (0g𝑅)
3 drngidl.u . . . 4 𝑈 = (LIdeal‘𝑅)
41, 2, 3drngnidl 21173 . . 3 (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})
54adantl 481 . 2 ((𝑅 ∈ NzRing ∧ 𝑅 ∈ DivRing) → 𝑈 = {{ 0 }, 𝐵})
6 eqid 2730 . . . . 5 (1r𝑅) = (1r𝑅)
76, 2nzrnz 20423 . . . 4 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
87adantr 480 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → (1r𝑅) ≠ 0 )
9 eqid 2730 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
10 eqid 2730 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
11 nzrring 20424 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
1211adantr 480 . . . . . . . . . . . . 13 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → 𝑅 ∈ Ring)
1312adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring)
1413ad4antr 732 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑅 ∈ Ring)
15 simp-4r 783 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑦𝐵)
16 simplr 768 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑧𝐵)
17 simpr 484 . . . . . . . . . . . . . 14 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ (𝐵 ∖ { 0 }))
1817eldifad 3912 . . . . . . . . . . . . 13 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
1918ad2antrr 726 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑥𝐵)
2019ad2antrr 726 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑥𝐵)
21 simpr 484 . . . . . . . . . . . 12 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (1r𝑅) = (𝑧(.r𝑅)𝑦))
2221eqcomd 2736 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑧(.r𝑅)𝑦) = (1r𝑅))
23 simpr 484 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) = (𝑦(.r𝑅)𝑥))
2423eqcomd 2736 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (𝑦(.r𝑅)𝑥) = (1r𝑅))
2524ad2antrr 726 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑦(.r𝑅)𝑥) = (1r𝑅))
261, 2, 6, 9, 10, 14, 15, 16, 20, 22, 25ringinveu 33250 . . . . . . . . . 10 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑥 = 𝑧)
2726oveq1d 7356 . . . . . . . . 9 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑥(.r𝑅)𝑦) = (𝑧(.r𝑅)𝑦))
2827, 22eqtrd 2765 . . . . . . . 8 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑥(.r𝑅)𝑦) = (1r𝑅))
2913ad2antrr 726 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑅 ∈ Ring)
30 simplr 768 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑦𝐵)
311, 6ringidcl 20176 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
3213, 31syl 17 . . . . . . . . . . 11 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (1r𝑅) ∈ 𝐵)
3332ad2antrr 726 . . . . . . . . . 10 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) ∈ 𝐵)
3430snssd 4759 . . . . . . . . . . . . . 14 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → {𝑦} ⊆ 𝐵)
35 eqid 2730 . . . . . . . . . . . . . . 15 (RSpan‘𝑅) = (RSpan‘𝑅)
3635, 1, 3rspcl 21165 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ {𝑦} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑦}) ∈ 𝑈)
3729, 34, 36syl2anc 584 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ∈ 𝑈)
38 simp-4r 783 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑈 = {{ 0 }, 𝐵})
3937, 38eleqtrd 2831 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ∈ {{ 0 }, 𝐵})
40 elpri 4598 . . . . . . . . . . . 12 (((RSpan‘𝑅)‘{𝑦}) ∈ {{ 0 }, 𝐵} → (((RSpan‘𝑅)‘{𝑦}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑦}) = 𝐵))
4139, 40syl 17 . . . . . . . . . . 11 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (((RSpan‘𝑅)‘{𝑦}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑦}) = 𝐵))
42 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) = (𝑦(.r𝑅)𝑥))
43 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → 𝑦 = 0 )
4443oveq1d 7356 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (𝑦(.r𝑅)𝑥) = ( 0 (.r𝑅)𝑥))
451, 9, 2ringlz 20204 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ( 0 (.r𝑅)𝑥) = 0 )
4613, 18, 45syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ( 0 (.r𝑅)𝑥) = 0 )
4746ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → ( 0 (.r𝑅)𝑥) = 0 )
4842, 44, 473eqtrd 2769 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) = 0 )
498ad4antr 732 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) ≠ 0 )
5049neneqd 2931 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → ¬ (1r𝑅) = 0 )
5148, 50pm2.65da 816 . . . . . . . . . . . . . 14 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ¬ 𝑦 = 0 )
5251neqned 2933 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑦0 )
531, 2, 35pidlnz 33331 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑦0 ) → ((RSpan‘𝑅)‘{𝑦}) ≠ { 0 })
5429, 30, 52, 53syl3anc 1373 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ≠ { 0 })
5554neneqd 2931 . . . . . . . . . . 11 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ¬ ((RSpan‘𝑅)‘{𝑦}) = { 0 })
5641, 55orcnd 878 . . . . . . . . . 10 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) = 𝐵)
5733, 56eleqtrrd 2832 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦}))
581, 9, 35elrspsn 21170 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦}) ↔ ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦)))
5958biimpa 476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦))
6029, 30, 57, 59syl21anc 837 . . . . . . . 8 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦))
6128, 60r19.29a 3138 . . . . . . 7 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (𝑥(.r𝑅)𝑦) = (1r𝑅))
6261, 24jca 511 . . . . . 6 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
6362anasss 466 . . . . 5 ((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑦𝐵 ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥))) → ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
6418snssd 4759 . . . . . . . . . . 11 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → {𝑥} ⊆ 𝐵)
6535, 1, 3rspcl 21165 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ {𝑥} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑥}) ∈ 𝑈)
6613, 64, 65syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ∈ 𝑈)
67 simplr 768 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑈 = {{ 0 }, 𝐵})
6866, 67eleqtrd 2831 . . . . . . . . 9 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ∈ {{ 0 }, 𝐵})
69 elpri 4598 . . . . . . . . 9 (((RSpan‘𝑅)‘{𝑥}) ∈ {{ 0 }, 𝐵} → (((RSpan‘𝑅)‘{𝑥}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑥}) = 𝐵))
7068, 69syl 17 . . . . . . . 8 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((RSpan‘𝑅)‘{𝑥}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑥}) = 𝐵))
71 eldifsni 4740 . . . . . . . . . . 11 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
7271adantl 481 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥0 )
731, 2, 35pidlnz 33331 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑥0 ) → ((RSpan‘𝑅)‘{𝑥}) ≠ { 0 })
7413, 18, 72, 73syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ≠ { 0 })
7574neneqd 2931 . . . . . . . 8 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ¬ ((RSpan‘𝑅)‘{𝑥}) = { 0 })
7670, 75orcnd 878 . . . . . . 7 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) = 𝐵)
7732, 76eleqtrrd 2832 . . . . . 6 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥}))
781, 9, 35elrspsn 21170 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥)))
7978biimpa 476 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥})) → ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥))
8013, 18, 77, 79syl21anc 837 . . . . 5 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥))
8163, 80reximddv 3146 . . . 4 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
8281ralrimiva 3122 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
831, 2, 6, 9, 10, 12isdrng4 33251 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → (𝑅 ∈ DivRing ↔ ((1r𝑅) ≠ 0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))))
848, 82, 83mpbir2and 713 . 2 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → 𝑅 ∈ DivRing)
855, 84impbida 800 1 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{ 0 }, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  cdif 3897  wss 3900  {csn 4574  {cpr 4576  cfv 6477  (class class class)co 7341  Basecbs 17112  .rcmulr 17154  0gc0g 17335  1rcur 20092  Ringcrg 20144  Unitcui 20266  NzRingcnzr 20420  DivRingcdr 20637  LIdealclidl 21136  RSpancrsp 21137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-nzr 20421  df-subrg 20478  df-drng 20639  df-lmod 20788  df-lss 20858  df-lsp 20898  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-rsp 21139
This theorem is referenced by:  drngidlhash  33389  drngmxidlr  33433
  Copyright terms: Public domain W3C validator