Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngidl Structured version   Visualization version   GIF version

Theorem drngidl 33380
Description: A nonzero ring is a division ring if and only if its only left ideals are the zero ideal and the unit ideal. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
drngidl.b 𝐵 = (Base‘𝑅)
drngidl.z 0 = (0g𝑅)
drngidl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngidl (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{ 0 }, 𝐵}))

Proof of Theorem drngidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngidl.b . . . 4 𝐵 = (Base‘𝑅)
2 drngidl.z . . . 4 0 = (0g𝑅)
3 drngidl.u . . . 4 𝑈 = (LIdeal‘𝑅)
41, 2, 3drngnidl 21168 . . 3 (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})
54adantl 481 . 2 ((𝑅 ∈ NzRing ∧ 𝑅 ∈ DivRing) → 𝑈 = {{ 0 }, 𝐵})
6 eqid 2729 . . . . 5 (1r𝑅) = (1r𝑅)
76, 2nzrnz 20418 . . . 4 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
87adantr 480 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → (1r𝑅) ≠ 0 )
9 eqid 2729 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
10 eqid 2729 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
11 nzrring 20419 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
1211adantr 480 . . . . . . . . . . . . 13 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → 𝑅 ∈ Ring)
1312adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring)
1413ad4antr 732 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑅 ∈ Ring)
15 simp-4r 783 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑦𝐵)
16 simplr 768 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑧𝐵)
17 simpr 484 . . . . . . . . . . . . . 14 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ (𝐵 ∖ { 0 }))
1817eldifad 3917 . . . . . . . . . . . . 13 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
1918ad2antrr 726 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑥𝐵)
2019ad2antrr 726 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑥𝐵)
21 simpr 484 . . . . . . . . . . . 12 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (1r𝑅) = (𝑧(.r𝑅)𝑦))
2221eqcomd 2735 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑧(.r𝑅)𝑦) = (1r𝑅))
23 simpr 484 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) = (𝑦(.r𝑅)𝑥))
2423eqcomd 2735 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (𝑦(.r𝑅)𝑥) = (1r𝑅))
2524ad2antrr 726 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑦(.r𝑅)𝑥) = (1r𝑅))
261, 2, 6, 9, 10, 14, 15, 16, 20, 22, 25ringinveu 33243 . . . . . . . . . 10 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑥 = 𝑧)
2726oveq1d 7368 . . . . . . . . 9 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑥(.r𝑅)𝑦) = (𝑧(.r𝑅)𝑦))
2827, 22eqtrd 2764 . . . . . . . 8 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑥(.r𝑅)𝑦) = (1r𝑅))
2913ad2antrr 726 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑅 ∈ Ring)
30 simplr 768 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑦𝐵)
311, 6ringidcl 20168 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
3213, 31syl 17 . . . . . . . . . . 11 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (1r𝑅) ∈ 𝐵)
3332ad2antrr 726 . . . . . . . . . 10 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) ∈ 𝐵)
3430snssd 4763 . . . . . . . . . . . . . 14 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → {𝑦} ⊆ 𝐵)
35 eqid 2729 . . . . . . . . . . . . . . 15 (RSpan‘𝑅) = (RSpan‘𝑅)
3635, 1, 3rspcl 21160 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ {𝑦} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑦}) ∈ 𝑈)
3729, 34, 36syl2anc 584 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ∈ 𝑈)
38 simp-4r 783 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑈 = {{ 0 }, 𝐵})
3937, 38eleqtrd 2830 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ∈ {{ 0 }, 𝐵})
40 elpri 4603 . . . . . . . . . . . 12 (((RSpan‘𝑅)‘{𝑦}) ∈ {{ 0 }, 𝐵} → (((RSpan‘𝑅)‘{𝑦}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑦}) = 𝐵))
4139, 40syl 17 . . . . . . . . . . 11 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (((RSpan‘𝑅)‘{𝑦}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑦}) = 𝐵))
42 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) = (𝑦(.r𝑅)𝑥))
43 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → 𝑦 = 0 )
4443oveq1d 7368 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (𝑦(.r𝑅)𝑥) = ( 0 (.r𝑅)𝑥))
451, 9, 2ringlz 20196 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ( 0 (.r𝑅)𝑥) = 0 )
4613, 18, 45syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ( 0 (.r𝑅)𝑥) = 0 )
4746ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → ( 0 (.r𝑅)𝑥) = 0 )
4842, 44, 473eqtrd 2768 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) = 0 )
498ad4antr 732 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) ≠ 0 )
5049neneqd 2930 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → ¬ (1r𝑅) = 0 )
5148, 50pm2.65da 816 . . . . . . . . . . . . . 14 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ¬ 𝑦 = 0 )
5251neqned 2932 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑦0 )
531, 2, 35pidlnz 33323 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑦0 ) → ((RSpan‘𝑅)‘{𝑦}) ≠ { 0 })
5429, 30, 52, 53syl3anc 1373 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ≠ { 0 })
5554neneqd 2930 . . . . . . . . . . 11 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ¬ ((RSpan‘𝑅)‘{𝑦}) = { 0 })
5641, 55orcnd 878 . . . . . . . . . 10 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) = 𝐵)
5733, 56eleqtrrd 2831 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦}))
581, 9, 35elrspsn 21165 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦}) ↔ ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦)))
5958biimpa 476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦))
6029, 30, 57, 59syl21anc 837 . . . . . . . 8 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦))
6128, 60r19.29a 3137 . . . . . . 7 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (𝑥(.r𝑅)𝑦) = (1r𝑅))
6261, 24jca 511 . . . . . 6 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
6362anasss 466 . . . . 5 ((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑦𝐵 ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥))) → ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
6418snssd 4763 . . . . . . . . . . 11 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → {𝑥} ⊆ 𝐵)
6535, 1, 3rspcl 21160 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ {𝑥} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑥}) ∈ 𝑈)
6613, 64, 65syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ∈ 𝑈)
67 simplr 768 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑈 = {{ 0 }, 𝐵})
6866, 67eleqtrd 2830 . . . . . . . . 9 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ∈ {{ 0 }, 𝐵})
69 elpri 4603 . . . . . . . . 9 (((RSpan‘𝑅)‘{𝑥}) ∈ {{ 0 }, 𝐵} → (((RSpan‘𝑅)‘{𝑥}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑥}) = 𝐵))
7068, 69syl 17 . . . . . . . 8 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((RSpan‘𝑅)‘{𝑥}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑥}) = 𝐵))
71 eldifsni 4744 . . . . . . . . . . 11 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
7271adantl 481 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥0 )
731, 2, 35pidlnz 33323 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑥0 ) → ((RSpan‘𝑅)‘{𝑥}) ≠ { 0 })
7413, 18, 72, 73syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ≠ { 0 })
7574neneqd 2930 . . . . . . . 8 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ¬ ((RSpan‘𝑅)‘{𝑥}) = { 0 })
7670, 75orcnd 878 . . . . . . 7 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) = 𝐵)
7732, 76eleqtrrd 2831 . . . . . 6 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥}))
781, 9, 35elrspsn 21165 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥)))
7978biimpa 476 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥})) → ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥))
8013, 18, 77, 79syl21anc 837 . . . . 5 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥))
8163, 80reximddv 3145 . . . 4 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
8281ralrimiva 3121 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
831, 2, 6, 9, 10, 12isdrng4 33244 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → (𝑅 ∈ DivRing ↔ ((1r𝑅) ≠ 0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))))
848, 82, 83mpbir2and 713 . 2 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → 𝑅 ∈ DivRing)
855, 84impbida 800 1 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{ 0 }, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3902  wss 3905  {csn 4579  {cpr 4581  cfv 6486  (class class class)co 7353  Basecbs 17138  .rcmulr 17180  0gc0g 17361  1rcur 20084  Ringcrg 20136  Unitcui 20258  NzRingcnzr 20415  DivRingcdr 20632  LIdealclidl 21131  RSpancrsp 21132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-nzr 20416  df-subrg 20473  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134
This theorem is referenced by:  drngidlhash  33381  drngmxidlr  33425
  Copyright terms: Public domain W3C validator