Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngidl Structured version   Visualization version   GIF version

Theorem drngidl 33448
Description: A nonzero ring is a division ring if and only if its only left ideals are the zero ideal and the unit ideal. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
drngidl.b 𝐵 = (Base‘𝑅)
drngidl.z 0 = (0g𝑅)
drngidl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngidl (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{ 0 }, 𝐵}))

Proof of Theorem drngidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngidl.b . . . 4 𝐵 = (Base‘𝑅)
2 drngidl.z . . . 4 0 = (0g𝑅)
3 drngidl.u . . . 4 𝑈 = (LIdeal‘𝑅)
41, 2, 3drngnidl 21204 . . 3 (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})
54adantl 481 . 2 ((𝑅 ∈ NzRing ∧ 𝑅 ∈ DivRing) → 𝑈 = {{ 0 }, 𝐵})
6 eqid 2735 . . . . 5 (1r𝑅) = (1r𝑅)
76, 2nzrnz 20475 . . . 4 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
87adantr 480 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → (1r𝑅) ≠ 0 )
9 eqid 2735 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
10 eqid 2735 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
11 nzrring 20476 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
1211adantr 480 . . . . . . . . . . . . 13 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → 𝑅 ∈ Ring)
1312adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring)
1413ad4antr 732 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑅 ∈ Ring)
15 simp-4r 783 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑦𝐵)
16 simplr 768 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑧𝐵)
17 simpr 484 . . . . . . . . . . . . . 14 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ (𝐵 ∖ { 0 }))
1817eldifad 3938 . . . . . . . . . . . . 13 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
1918ad2antrr 726 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑥𝐵)
2019ad2antrr 726 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑥𝐵)
21 simpr 484 . . . . . . . . . . . 12 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (1r𝑅) = (𝑧(.r𝑅)𝑦))
2221eqcomd 2741 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑧(.r𝑅)𝑦) = (1r𝑅))
23 simpr 484 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) = (𝑦(.r𝑅)𝑥))
2423eqcomd 2741 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (𝑦(.r𝑅)𝑥) = (1r𝑅))
2524ad2antrr 726 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑦(.r𝑅)𝑥) = (1r𝑅))
261, 2, 6, 9, 10, 14, 15, 16, 20, 22, 25ringinveu 33288 . . . . . . . . . 10 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑥 = 𝑧)
2726oveq1d 7420 . . . . . . . . 9 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑥(.r𝑅)𝑦) = (𝑧(.r𝑅)𝑦))
2827, 22eqtrd 2770 . . . . . . . 8 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑥(.r𝑅)𝑦) = (1r𝑅))
2913ad2antrr 726 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑅 ∈ Ring)
30 simplr 768 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑦𝐵)
311, 6ringidcl 20225 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
3213, 31syl 17 . . . . . . . . . . 11 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (1r𝑅) ∈ 𝐵)
3332ad2antrr 726 . . . . . . . . . 10 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) ∈ 𝐵)
3430snssd 4785 . . . . . . . . . . . . . 14 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → {𝑦} ⊆ 𝐵)
35 eqid 2735 . . . . . . . . . . . . . . 15 (RSpan‘𝑅) = (RSpan‘𝑅)
3635, 1, 3rspcl 21196 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ {𝑦} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑦}) ∈ 𝑈)
3729, 34, 36syl2anc 584 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ∈ 𝑈)
38 simp-4r 783 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑈 = {{ 0 }, 𝐵})
3937, 38eleqtrd 2836 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ∈ {{ 0 }, 𝐵})
40 elpri 4625 . . . . . . . . . . . 12 (((RSpan‘𝑅)‘{𝑦}) ∈ {{ 0 }, 𝐵} → (((RSpan‘𝑅)‘{𝑦}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑦}) = 𝐵))
4139, 40syl 17 . . . . . . . . . . 11 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (((RSpan‘𝑅)‘{𝑦}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑦}) = 𝐵))
42 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) = (𝑦(.r𝑅)𝑥))
43 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → 𝑦 = 0 )
4443oveq1d 7420 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (𝑦(.r𝑅)𝑥) = ( 0 (.r𝑅)𝑥))
451, 9, 2ringlz 20253 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ( 0 (.r𝑅)𝑥) = 0 )
4613, 18, 45syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ( 0 (.r𝑅)𝑥) = 0 )
4746ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → ( 0 (.r𝑅)𝑥) = 0 )
4842, 44, 473eqtrd 2774 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) = 0 )
498ad4antr 732 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) ≠ 0 )
5049neneqd 2937 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → ¬ (1r𝑅) = 0 )
5148, 50pm2.65da 816 . . . . . . . . . . . . . 14 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ¬ 𝑦 = 0 )
5251neqned 2939 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑦0 )
531, 2, 35pidlnz 33391 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑦0 ) → ((RSpan‘𝑅)‘{𝑦}) ≠ { 0 })
5429, 30, 52, 53syl3anc 1373 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ≠ { 0 })
5554neneqd 2937 . . . . . . . . . . 11 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ¬ ((RSpan‘𝑅)‘{𝑦}) = { 0 })
5641, 55orcnd 878 . . . . . . . . . 10 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) = 𝐵)
5733, 56eleqtrrd 2837 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦}))
581, 9, 35elrspsn 21201 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦}) ↔ ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦)))
5958biimpa 476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦))
6029, 30, 57, 59syl21anc 837 . . . . . . . 8 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦))
6128, 60r19.29a 3148 . . . . . . 7 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (𝑥(.r𝑅)𝑦) = (1r𝑅))
6261, 24jca 511 . . . . . 6 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
6362anasss 466 . . . . 5 ((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑦𝐵 ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥))) → ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
6418snssd 4785 . . . . . . . . . . 11 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → {𝑥} ⊆ 𝐵)
6535, 1, 3rspcl 21196 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ {𝑥} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑥}) ∈ 𝑈)
6613, 64, 65syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ∈ 𝑈)
67 simplr 768 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑈 = {{ 0 }, 𝐵})
6866, 67eleqtrd 2836 . . . . . . . . 9 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ∈ {{ 0 }, 𝐵})
69 elpri 4625 . . . . . . . . 9 (((RSpan‘𝑅)‘{𝑥}) ∈ {{ 0 }, 𝐵} → (((RSpan‘𝑅)‘{𝑥}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑥}) = 𝐵))
7068, 69syl 17 . . . . . . . 8 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((RSpan‘𝑅)‘{𝑥}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑥}) = 𝐵))
71 eldifsni 4766 . . . . . . . . . . 11 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
7271adantl 481 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥0 )
731, 2, 35pidlnz 33391 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑥0 ) → ((RSpan‘𝑅)‘{𝑥}) ≠ { 0 })
7413, 18, 72, 73syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ≠ { 0 })
7574neneqd 2937 . . . . . . . 8 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ¬ ((RSpan‘𝑅)‘{𝑥}) = { 0 })
7670, 75orcnd 878 . . . . . . 7 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) = 𝐵)
7732, 76eleqtrrd 2837 . . . . . 6 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥}))
781, 9, 35elrspsn 21201 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥)))
7978biimpa 476 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥})) → ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥))
8013, 18, 77, 79syl21anc 837 . . . . 5 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥))
8163, 80reximddv 3156 . . . 4 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
8281ralrimiva 3132 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
831, 2, 6, 9, 10, 12isdrng4 33289 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → (𝑅 ∈ DivRing ↔ ((1r𝑅) ≠ 0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))))
848, 82, 83mpbir2and 713 . 2 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → 𝑅 ∈ DivRing)
855, 84impbida 800 1 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{ 0 }, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cdif 3923  wss 3926  {csn 4601  {cpr 4603  cfv 6531  (class class class)co 7405  Basecbs 17228  .rcmulr 17272  0gc0g 17453  1rcur 20141  Ringcrg 20193  Unitcui 20315  NzRingcnzr 20472  DivRingcdr 20689  LIdealclidl 21167  RSpancrsp 21168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-nzr 20473  df-subrg 20530  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170
This theorem is referenced by:  drngidlhash  33449  drngmxidlr  33493
  Copyright terms: Public domain W3C validator