Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngidl Structured version   Visualization version   GIF version

Theorem drngidl 33426
Description: A nonzero ring is a division ring if and only if its only left ideals are the zero ideal and the unit ideal. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
drngidl.b 𝐵 = (Base‘𝑅)
drngidl.z 0 = (0g𝑅)
drngidl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngidl (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{ 0 }, 𝐵}))

Proof of Theorem drngidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngidl.b . . . 4 𝐵 = (Base‘𝑅)
2 drngidl.z . . . 4 0 = (0g𝑅)
3 drngidl.u . . . 4 𝑈 = (LIdeal‘𝑅)
41, 2, 3drngnidl 21276 . . 3 (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})
54adantl 481 . 2 ((𝑅 ∈ NzRing ∧ 𝑅 ∈ DivRing) → 𝑈 = {{ 0 }, 𝐵})
6 eqid 2740 . . . . 5 (1r𝑅) = (1r𝑅)
76, 2nzrnz 20541 . . . 4 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
87adantr 480 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → (1r𝑅) ≠ 0 )
9 eqid 2740 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
10 eqid 2740 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
11 nzrring 20542 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
1211adantr 480 . . . . . . . . . . . . 13 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → 𝑅 ∈ Ring)
1312adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring)
1413ad4antr 731 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑅 ∈ Ring)
15 simp-4r 783 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑦𝐵)
16 simplr 768 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑧𝐵)
17 simpr 484 . . . . . . . . . . . . . 14 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ (𝐵 ∖ { 0 }))
1817eldifad 3988 . . . . . . . . . . . . 13 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
1918ad2antrr 725 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑥𝐵)
2019ad2antrr 725 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑥𝐵)
21 simpr 484 . . . . . . . . . . . 12 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (1r𝑅) = (𝑧(.r𝑅)𝑦))
2221eqcomd 2746 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑧(.r𝑅)𝑦) = (1r𝑅))
23 simpr 484 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) = (𝑦(.r𝑅)𝑥))
2423eqcomd 2746 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (𝑦(.r𝑅)𝑥) = (1r𝑅))
2524ad2antrr 725 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑦(.r𝑅)𝑥) = (1r𝑅))
261, 2, 6, 9, 10, 14, 15, 16, 20, 22, 25ringinveu 33263 . . . . . . . . . 10 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑥 = 𝑧)
2726oveq1d 7463 . . . . . . . . 9 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑥(.r𝑅)𝑦) = (𝑧(.r𝑅)𝑦))
2827, 22eqtrd 2780 . . . . . . . 8 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑥(.r𝑅)𝑦) = (1r𝑅))
2913ad2antrr 725 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑅 ∈ Ring)
30 simplr 768 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑦𝐵)
311, 6ringidcl 20289 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
3213, 31syl 17 . . . . . . . . . . 11 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (1r𝑅) ∈ 𝐵)
3332ad2antrr 725 . . . . . . . . . 10 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) ∈ 𝐵)
3430snssd 4834 . . . . . . . . . . . . . 14 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → {𝑦} ⊆ 𝐵)
35 eqid 2740 . . . . . . . . . . . . . . 15 (RSpan‘𝑅) = (RSpan‘𝑅)
3635, 1, 3rspcl 21268 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ {𝑦} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑦}) ∈ 𝑈)
3729, 34, 36syl2anc 583 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ∈ 𝑈)
38 simp-4r 783 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑈 = {{ 0 }, 𝐵})
3937, 38eleqtrd 2846 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ∈ {{ 0 }, 𝐵})
40 elpri 4671 . . . . . . . . . . . 12 (((RSpan‘𝑅)‘{𝑦}) ∈ {{ 0 }, 𝐵} → (((RSpan‘𝑅)‘{𝑦}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑦}) = 𝐵))
4139, 40syl 17 . . . . . . . . . . 11 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (((RSpan‘𝑅)‘{𝑦}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑦}) = 𝐵))
42 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) = (𝑦(.r𝑅)𝑥))
43 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → 𝑦 = 0 )
4443oveq1d 7463 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (𝑦(.r𝑅)𝑥) = ( 0 (.r𝑅)𝑥))
451, 9, 2ringlz 20316 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ( 0 (.r𝑅)𝑥) = 0 )
4613, 18, 45syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ( 0 (.r𝑅)𝑥) = 0 )
4746ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → ( 0 (.r𝑅)𝑥) = 0 )
4842, 44, 473eqtrd 2784 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) = 0 )
498ad4antr 731 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) ≠ 0 )
5049neneqd 2951 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → ¬ (1r𝑅) = 0 )
5148, 50pm2.65da 816 . . . . . . . . . . . . . 14 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ¬ 𝑦 = 0 )
5251neqned 2953 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑦0 )
531, 2, 35pidlnz 33369 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑦0 ) → ((RSpan‘𝑅)‘{𝑦}) ≠ { 0 })
5429, 30, 52, 53syl3anc 1371 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ≠ { 0 })
5554neneqd 2951 . . . . . . . . . . 11 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ¬ ((RSpan‘𝑅)‘{𝑦}) = { 0 })
5641, 55orcnd 877 . . . . . . . . . 10 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) = 𝐵)
5733, 56eleqtrrd 2847 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦}))
581, 9, 35elrspsn 21273 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦}) ↔ ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦)))
5958biimpa 476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦))
6029, 30, 57, 59syl21anc 837 . . . . . . . 8 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦))
6128, 60r19.29a 3168 . . . . . . 7 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (𝑥(.r𝑅)𝑦) = (1r𝑅))
6261, 24jca 511 . . . . . 6 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
6362anasss 466 . . . . 5 ((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑦𝐵 ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥))) → ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
6418snssd 4834 . . . . . . . . . . 11 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → {𝑥} ⊆ 𝐵)
6535, 1, 3rspcl 21268 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ {𝑥} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑥}) ∈ 𝑈)
6613, 64, 65syl2anc 583 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ∈ 𝑈)
67 simplr 768 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑈 = {{ 0 }, 𝐵})
6866, 67eleqtrd 2846 . . . . . . . . 9 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ∈ {{ 0 }, 𝐵})
69 elpri 4671 . . . . . . . . 9 (((RSpan‘𝑅)‘{𝑥}) ∈ {{ 0 }, 𝐵} → (((RSpan‘𝑅)‘{𝑥}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑥}) = 𝐵))
7068, 69syl 17 . . . . . . . 8 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((RSpan‘𝑅)‘{𝑥}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑥}) = 𝐵))
71 eldifsni 4815 . . . . . . . . . . 11 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
7271adantl 481 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥0 )
731, 2, 35pidlnz 33369 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑥0 ) → ((RSpan‘𝑅)‘{𝑥}) ≠ { 0 })
7413, 18, 72, 73syl3anc 1371 . . . . . . . . 9 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ≠ { 0 })
7574neneqd 2951 . . . . . . . 8 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ¬ ((RSpan‘𝑅)‘{𝑥}) = { 0 })
7670, 75orcnd 877 . . . . . . 7 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) = 𝐵)
7732, 76eleqtrrd 2847 . . . . . 6 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥}))
781, 9, 35elrspsn 21273 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥)))
7978biimpa 476 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥})) → ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥))
8013, 18, 77, 79syl21anc 837 . . . . 5 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥))
8163, 80reximddv 3177 . . . 4 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
8281ralrimiva 3152 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
831, 2, 6, 9, 10, 12isdrng4 33264 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → (𝑅 ∈ DivRing ↔ ((1r𝑅) ≠ 0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))))
848, 82, 83mpbir2and 712 . 2 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → 𝑅 ∈ DivRing)
855, 84impbida 800 1 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{ 0 }, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  wss 3976  {csn 4648  {cpr 4650  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  0gc0g 17499  1rcur 20208  Ringcrg 20260  Unitcui 20381  NzRingcnzr 20538  DivRingcdr 20751  LIdealclidl 21239  RSpancrsp 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-nzr 20539  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242
This theorem is referenced by:  drngidlhash  33427  drngmxidlr  33471
  Copyright terms: Public domain W3C validator