Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngidl Structured version   Visualization version   GIF version

Theorem drngidl 32826
Description: A nonzero ring is a division ring if and only if its only left ideals are the zero ideal and the unit ideal. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
drngidl.b 𝐵 = (Base‘𝑅)
drngidl.z 0 = (0g𝑅)
drngidl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngidl (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{ 0 }, 𝐵}))

Proof of Theorem drngidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngidl.b . . . 4 𝐵 = (Base‘𝑅)
2 drngidl.z . . . 4 0 = (0g𝑅)
3 drngidl.u . . . 4 𝑈 = (LIdeal‘𝑅)
41, 2, 3drngnidl 21004 . . 3 (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})
54adantl 481 . 2 ((𝑅 ∈ NzRing ∧ 𝑅 ∈ DivRing) → 𝑈 = {{ 0 }, 𝐵})
6 eqid 2731 . . . . 5 (1r𝑅) = (1r𝑅)
76, 2nzrnz 20407 . . . 4 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
87adantr 480 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → (1r𝑅) ≠ 0 )
9 eqid 2731 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
10 eqid 2731 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
11 nzrring 20408 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
1211adantr 480 . . . . . . . . . . . . 13 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → 𝑅 ∈ Ring)
1312adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring)
1413ad4antr 729 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑅 ∈ Ring)
15 simp-4r 781 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑦𝐵)
16 simplr 766 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑧𝐵)
17 simpr 484 . . . . . . . . . . . . . 14 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ (𝐵 ∖ { 0 }))
1817eldifad 3960 . . . . . . . . . . . . 13 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
1918ad2antrr 723 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑥𝐵)
2019ad2antrr 723 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑥𝐵)
21 simpr 484 . . . . . . . . . . . 12 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (1r𝑅) = (𝑧(.r𝑅)𝑦))
2221eqcomd 2737 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑧(.r𝑅)𝑦) = (1r𝑅))
23 simpr 484 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) = (𝑦(.r𝑅)𝑥))
2423eqcomd 2737 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (𝑦(.r𝑅)𝑥) = (1r𝑅))
2524ad2antrr 723 . . . . . . . . . . 11 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑦(.r𝑅)𝑥) = (1r𝑅))
261, 2, 6, 9, 10, 14, 15, 16, 20, 22, 25ringinveu 32665 . . . . . . . . . 10 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → 𝑥 = 𝑧)
2726oveq1d 7427 . . . . . . . . 9 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑥(.r𝑅)𝑦) = (𝑧(.r𝑅)𝑦))
2827, 22eqtrd 2771 . . . . . . . 8 (((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑧𝐵) ∧ (1r𝑅) = (𝑧(.r𝑅)𝑦)) → (𝑥(.r𝑅)𝑦) = (1r𝑅))
2913ad2antrr 723 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑅 ∈ Ring)
30 simplr 766 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑦𝐵)
311, 6ringidcl 20155 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
3213, 31syl 17 . . . . . . . . . . 11 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (1r𝑅) ∈ 𝐵)
3332ad2antrr 723 . . . . . . . . . 10 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) ∈ 𝐵)
3430snssd 4812 . . . . . . . . . . . . . 14 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → {𝑦} ⊆ 𝐵)
35 eqid 2731 . . . . . . . . . . . . . . 15 (RSpan‘𝑅) = (RSpan‘𝑅)
3635, 1, 3rspcl 20997 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ {𝑦} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑦}) ∈ 𝑈)
3729, 34, 36syl2anc 583 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ∈ 𝑈)
38 simp-4r 781 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑈 = {{ 0 }, 𝐵})
3937, 38eleqtrd 2834 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ∈ {{ 0 }, 𝐵})
40 elpri 4650 . . . . . . . . . . . 12 (((RSpan‘𝑅)‘{𝑦}) ∈ {{ 0 }, 𝐵} → (((RSpan‘𝑅)‘{𝑦}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑦}) = 𝐵))
4139, 40syl 17 . . . . . . . . . . 11 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (((RSpan‘𝑅)‘{𝑦}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑦}) = 𝐵))
42 simplr 766 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) = (𝑦(.r𝑅)𝑥))
43 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → 𝑦 = 0 )
4443oveq1d 7427 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (𝑦(.r𝑅)𝑥) = ( 0 (.r𝑅)𝑥))
451, 9, 2ringlz 20182 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ( 0 (.r𝑅)𝑥) = 0 )
4613, 18, 45syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ( 0 (.r𝑅)𝑥) = 0 )
4746ad3antrrr 727 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → ( 0 (.r𝑅)𝑥) = 0 )
4842, 44, 473eqtrd 2775 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) = 0 )
498ad4antr 729 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → (1r𝑅) ≠ 0 )
5049neneqd 2944 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) ∧ 𝑦 = 0 ) → ¬ (1r𝑅) = 0 )
5148, 50pm2.65da 814 . . . . . . . . . . . . . 14 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ¬ 𝑦 = 0 )
5251neqned 2946 . . . . . . . . . . . . 13 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → 𝑦0 )
531, 2, 35pidlnz 32763 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑦0 ) → ((RSpan‘𝑅)‘{𝑦}) ≠ { 0 })
5429, 30, 52, 53syl3anc 1370 . . . . . . . . . . . 12 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) ≠ { 0 })
5554neneqd 2944 . . . . . . . . . . 11 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ¬ ((RSpan‘𝑅)‘{𝑦}) = { 0 })
5641, 55orcnd 876 . . . . . . . . . 10 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((RSpan‘𝑅)‘{𝑦}) = 𝐵)
5733, 56eleqtrrd 2835 . . . . . . . . 9 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦}))
581, 9, 35rspsnel 32759 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦}) ↔ ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦)))
5958biimpa 476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑦})) → ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦))
6029, 30, 57, 59syl21anc 835 . . . . . . . 8 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ∃𝑧𝐵 (1r𝑅) = (𝑧(.r𝑅)𝑦))
6128, 60r19.29a 3161 . . . . . . 7 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → (𝑥(.r𝑅)𝑦) = (1r𝑅))
6261, 24jca 511 . . . . . 6 (((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ 𝑦𝐵) ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥)) → ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
6362anasss 466 . . . . 5 ((((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑦𝐵 ∧ (1r𝑅) = (𝑦(.r𝑅)𝑥))) → ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
6418snssd 4812 . . . . . . . . . . 11 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → {𝑥} ⊆ 𝐵)
6535, 1, 3rspcl 20997 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ {𝑥} ⊆ 𝐵) → ((RSpan‘𝑅)‘{𝑥}) ∈ 𝑈)
6613, 64, 65syl2anc 583 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ∈ 𝑈)
67 simplr 766 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑈 = {{ 0 }, 𝐵})
6866, 67eleqtrd 2834 . . . . . . . . 9 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ∈ {{ 0 }, 𝐵})
69 elpri 4650 . . . . . . . . 9 (((RSpan‘𝑅)‘{𝑥}) ∈ {{ 0 }, 𝐵} → (((RSpan‘𝑅)‘{𝑥}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑥}) = 𝐵))
7068, 69syl 17 . . . . . . . 8 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (((RSpan‘𝑅)‘{𝑥}) = { 0 } ∨ ((RSpan‘𝑅)‘{𝑥}) = 𝐵))
71 eldifsni 4793 . . . . . . . . . . 11 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
7271adantl 481 . . . . . . . . . 10 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥0 )
731, 2, 35pidlnz 32763 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑥0 ) → ((RSpan‘𝑅)‘{𝑥}) ≠ { 0 })
7413, 18, 72, 73syl3anc 1370 . . . . . . . . 9 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) ≠ { 0 })
7574neneqd 2944 . . . . . . . 8 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ¬ ((RSpan‘𝑅)‘{𝑥}) = { 0 })
7670, 75orcnd 876 . . . . . . 7 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((RSpan‘𝑅)‘{𝑥}) = 𝐵)
7732, 76eleqtrrd 2835 . . . . . 6 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥}))
781, 9, 35rspsnel 32759 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥}) ↔ ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥)))
7978biimpa 476 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (1r𝑅) ∈ ((RSpan‘𝑅)‘{𝑥})) → ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥))
8013, 18, 77, 79syl21anc 835 . . . . 5 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 (1r𝑅) = (𝑦(.r𝑅)𝑥))
8163, 80reximddv 3170 . . . 4 (((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
8281ralrimiva 3145 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))
831, 2, 6, 9, 10, 12isdrng4 32666 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → (𝑅 ∈ DivRing ↔ ((1r𝑅) ≠ 0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥(.r𝑅)𝑦) = (1r𝑅) ∧ (𝑦(.r𝑅)𝑥) = (1r𝑅)))))
848, 82, 83mpbir2and 710 . 2 ((𝑅 ∈ NzRing ∧ 𝑈 = {{ 0 }, 𝐵}) → 𝑅 ∈ DivRing)
855, 84impbida 798 1 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{ 0 }, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  cdif 3945  wss 3948  {csn 4628  {cpr 4630  cfv 6543  (class class class)co 7412  Basecbs 17149  .rcmulr 17203  0gc0g 17390  1rcur 20076  Ringcrg 20128  Unitcui 20247  NzRingcnzr 20404  DivRingcdr 20501  LIdealclidl 20929  RSpancrsp 20930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8215  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-ip 17220  df-0g 17392  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-grp 18859  df-minusg 18860  df-sbg 18861  df-subg 19040  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-nzr 20405  df-subrg 20460  df-drng 20503  df-lmod 20617  df-lss 20688  df-lsp 20728  df-sra 20931  df-rgmod 20932  df-lidl 20933  df-rsp 20934
This theorem is referenced by:  drngidlhash  32827
  Copyright terms: Public domain W3C validator