Step | Hyp | Ref
| Expression |
1 | | drngidl.b |
. . . 4
β’ π΅ = (Baseβπ
) |
2 | | drngidl.z |
. . . 4
β’ 0 =
(0gβπ
) |
3 | | drngidl.u |
. . . 4
β’ π = (LIdealβπ
) |
4 | 1, 2, 3 | drngnidl 20853 |
. . 3
β’ (π
β DivRing β π = {{ 0 }, π΅}) |
5 | 4 | adantl 482 |
. 2
β’ ((π
β NzRing β§ π
β DivRing) β π = {{ 0 }, π΅}) |
6 | | eqid 2732 |
. . . . 5
β’
(1rβπ
) = (1rβπ
) |
7 | 6, 2 | nzrnz 20293 |
. . . 4
β’ (π
β NzRing β
(1rβπ
)
β 0
) |
8 | 7 | adantr 481 |
. . 3
β’ ((π
β NzRing β§ π = {{ 0 }, π΅}) β (1rβπ
) β 0 ) |
9 | | eqid 2732 |
. . . . . . . . . . 11
β’
(.rβπ
) = (.rβπ
) |
10 | | eqid 2732 |
. . . . . . . . . . 11
β’
(Unitβπ
) =
(Unitβπ
) |
11 | | nzrring 20294 |
. . . . . . . . . . . . . 14
β’ (π
β NzRing β π
β Ring) |
12 | 11 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π
β NzRing β§ π = {{ 0 }, π΅}) β π
β Ring) |
13 | 12 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β π
β Ring) |
14 | 13 | ad4antr 730 |
. . . . . . . . . . 11
β’
(((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π§ β π΅) β§ (1rβπ
) = (π§(.rβπ
)π¦)) β π
β Ring) |
15 | | simp-4r 782 |
. . . . . . . . . . 11
β’
(((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π§ β π΅) β§ (1rβπ
) = (π§(.rβπ
)π¦)) β π¦ β π΅) |
16 | | simplr 767 |
. . . . . . . . . . 11
β’
(((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π§ β π΅) β§ (1rβπ
) = (π§(.rβπ
)π¦)) β π§ β π΅) |
17 | | simpr 485 |
. . . . . . . . . . . . . 14
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β π₯ β (π΅ β { 0 })) |
18 | 17 | eldifad 3960 |
. . . . . . . . . . . . 13
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β π₯ β π΅) |
19 | 18 | ad2antrr 724 |
. . . . . . . . . . . 12
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β π₯ β π΅) |
20 | 19 | ad2antrr 724 |
. . . . . . . . . . 11
β’
(((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π§ β π΅) β§ (1rβπ
) = (π§(.rβπ
)π¦)) β π₯ β π΅) |
21 | | simpr 485 |
. . . . . . . . . . . 12
β’
(((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π§ β π΅) β§ (1rβπ
) = (π§(.rβπ
)π¦)) β (1rβπ
) = (π§(.rβπ
)π¦)) |
22 | 21 | eqcomd 2738 |
. . . . . . . . . . 11
β’
(((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π§ β π΅) β§ (1rβπ
) = (π§(.rβπ
)π¦)) β (π§(.rβπ
)π¦) = (1rβπ
)) |
23 | | simpr 485 |
. . . . . . . . . . . . 13
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β (1rβπ
) = (π¦(.rβπ
)π₯)) |
24 | 23 | eqcomd 2738 |
. . . . . . . . . . . 12
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β (π¦(.rβπ
)π₯) = (1rβπ
)) |
25 | 24 | ad2antrr 724 |
. . . . . . . . . . 11
β’
(((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π§ β π΅) β§ (1rβπ
) = (π§(.rβπ
)π¦)) β (π¦(.rβπ
)π₯) = (1rβπ
)) |
26 | 1, 2, 6, 9, 10, 14, 15, 16, 20, 22, 25 | ringinveu 32389 |
. . . . . . . . . 10
β’
(((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π§ β π΅) β§ (1rβπ
) = (π§(.rβπ
)π¦)) β π₯ = π§) |
27 | 26 | oveq1d 7423 |
. . . . . . . . 9
β’
(((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π§ β π΅) β§ (1rβπ
) = (π§(.rβπ
)π¦)) β (π₯(.rβπ
)π¦) = (π§(.rβπ
)π¦)) |
28 | 27, 22 | eqtrd 2772 |
. . . . . . . 8
β’
(((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π§ β π΅) β§ (1rβπ
) = (π§(.rβπ
)π¦)) β (π₯(.rβπ
)π¦) = (1rβπ
)) |
29 | 13 | ad2antrr 724 |
. . . . . . . . 9
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β π
β Ring) |
30 | | simplr 767 |
. . . . . . . . 9
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β π¦ β π΅) |
31 | 1, 6 | ringidcl 20082 |
. . . . . . . . . . . 12
β’ (π
β Ring β
(1rβπ
)
β π΅) |
32 | 13, 31 | syl 17 |
. . . . . . . . . . 11
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β
(1rβπ
)
β π΅) |
33 | 32 | ad2antrr 724 |
. . . . . . . . . 10
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β (1rβπ
) β π΅) |
34 | 30 | snssd 4812 |
. . . . . . . . . . . . . 14
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β {π¦} β π΅) |
35 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(RSpanβπ
) =
(RSpanβπ
) |
36 | 35, 1, 3 | rspcl 20846 |
. . . . . . . . . . . . . 14
β’ ((π
β Ring β§ {π¦} β π΅) β ((RSpanβπ
)β{π¦}) β π) |
37 | 29, 34, 36 | syl2anc 584 |
. . . . . . . . . . . . 13
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β ((RSpanβπ
)β{π¦}) β π) |
38 | | simp-4r 782 |
. . . . . . . . . . . . 13
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β π = {{ 0 }, π΅}) |
39 | 37, 38 | eleqtrd 2835 |
. . . . . . . . . . . 12
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β ((RSpanβπ
)β{π¦}) β {{ 0 }, π΅}) |
40 | | elpri 4650 |
. . . . . . . . . . . 12
β’
(((RSpanβπ
)β{π¦}) β {{ 0 }, π΅} β (((RSpanβπ
)β{π¦}) = { 0 } β¨ ((RSpanβπ
)β{π¦}) = π΅)) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . 11
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β (((RSpanβπ
)β{π¦}) = { 0 } β¨ ((RSpanβπ
)β{π¦}) = π΅)) |
42 | | simplr 767 |
. . . . . . . . . . . . . . . 16
β’
((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π¦ = 0 ) β
(1rβπ
) =
(π¦(.rβπ
)π₯)) |
43 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
β’
((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π¦ = 0 ) β π¦ = 0 ) |
44 | 43 | oveq1d 7423 |
. . . . . . . . . . . . . . . 16
β’
((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π¦ = 0 ) β (π¦(.rβπ
)π₯) = ( 0 (.rβπ
)π₯)) |
45 | 1, 9, 2 | ringlz 20106 |
. . . . . . . . . . . . . . . . . 18
β’ ((π
β Ring β§ π₯ β π΅) β ( 0 (.rβπ
)π₯) = 0 ) |
46 | 13, 18, 45 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β ( 0
(.rβπ
)π₯) = 0 ) |
47 | 46 | ad3antrrr 728 |
. . . . . . . . . . . . . . . 16
β’
((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π¦ = 0 ) β ( 0
(.rβπ
)π₯) = 0 ) |
48 | 42, 44, 47 | 3eqtrd 2776 |
. . . . . . . . . . . . . . 15
β’
((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π¦ = 0 ) β
(1rβπ
) =
0
) |
49 | 8 | ad4antr 730 |
. . . . . . . . . . . . . . . 16
β’
((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π¦ = 0 ) β
(1rβπ
)
β 0
) |
50 | 49 | neneqd 2945 |
. . . . . . . . . . . . . . 15
β’
((((((π
β
NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β§ π¦ = 0 ) β Β¬
(1rβπ
) =
0
) |
51 | 48, 50 | pm2.65da 815 |
. . . . . . . . . . . . . 14
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β Β¬ π¦ = 0 ) |
52 | 51 | neqned 2947 |
. . . . . . . . . . . . 13
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β π¦ β 0 ) |
53 | 1, 2, 35 | pidlnz 32483 |
. . . . . . . . . . . . 13
β’ ((π
β Ring β§ π¦ β π΅ β§ π¦ β 0 ) β
((RSpanβπ
)β{π¦}) β { 0 }) |
54 | 29, 30, 52, 53 | syl3anc 1371 |
. . . . . . . . . . . 12
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β ((RSpanβπ
)β{π¦}) β { 0 }) |
55 | 54 | neneqd 2945 |
. . . . . . . . . . 11
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β Β¬ ((RSpanβπ
)β{π¦}) = { 0 }) |
56 | 41, 55 | orcnd 877 |
. . . . . . . . . 10
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β ((RSpanβπ
)β{π¦}) = π΅) |
57 | 33, 56 | eleqtrrd 2836 |
. . . . . . . . 9
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β (1rβπ
) β ((RSpanβπ
)β{π¦})) |
58 | 1, 9, 35 | rspsnel 32479 |
. . . . . . . . . 10
β’ ((π
β Ring β§ π¦ β π΅) β ((1rβπ
) β ((RSpanβπ
)β{π¦}) β βπ§ β π΅ (1rβπ
) = (π§(.rβπ
)π¦))) |
59 | 58 | biimpa 477 |
. . . . . . . . 9
β’ (((π
β Ring β§ π¦ β π΅) β§ (1rβπ
) β ((RSpanβπ
)β{π¦})) β βπ§ β π΅ (1rβπ
) = (π§(.rβπ
)π¦)) |
60 | 29, 30, 57, 59 | syl21anc 836 |
. . . . . . . 8
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β βπ§ β π΅ (1rβπ
) = (π§(.rβπ
)π¦)) |
61 | 28, 60 | r19.29a 3162 |
. . . . . . 7
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β (π₯(.rβπ
)π¦) = (1rβπ
)) |
62 | 61, 24 | jca 512 |
. . . . . 6
β’
(((((π
β NzRing
β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ π¦ β π΅) β§ (1rβπ
) = (π¦(.rβπ
)π₯)) β ((π₯(.rβπ
)π¦) = (1rβπ
) β§ (π¦(.rβπ
)π₯) = (1rβπ
))) |
63 | 62 | anasss 467 |
. . . . 5
β’ ((((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β§ (π¦ β π΅ β§ (1rβπ
) = (π¦(.rβπ
)π₯))) β ((π₯(.rβπ
)π¦) = (1rβπ
) β§ (π¦(.rβπ
)π₯) = (1rβπ
))) |
64 | 18 | snssd 4812 |
. . . . . . . . . . 11
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β {π₯} β π΅) |
65 | 35, 1, 3 | rspcl 20846 |
. . . . . . . . . . 11
β’ ((π
β Ring β§ {π₯} β π΅) β ((RSpanβπ
)β{π₯}) β π) |
66 | 13, 64, 65 | syl2anc 584 |
. . . . . . . . . 10
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β
((RSpanβπ
)β{π₯}) β π) |
67 | | simplr 767 |
. . . . . . . . . 10
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β π = {{ 0 }, π΅}) |
68 | 66, 67 | eleqtrd 2835 |
. . . . . . . . 9
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β
((RSpanβπ
)β{π₯}) β {{ 0 }, π΅}) |
69 | | elpri 4650 |
. . . . . . . . 9
β’
(((RSpanβπ
)β{π₯}) β {{ 0 }, π΅} β (((RSpanβπ
)β{π₯}) = { 0 } β¨ ((RSpanβπ
)β{π₯}) = π΅)) |
70 | 68, 69 | syl 17 |
. . . . . . . 8
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β
(((RSpanβπ
)β{π₯}) = { 0 } β¨ ((RSpanβπ
)β{π₯}) = π΅)) |
71 | | eldifsni 4793 |
. . . . . . . . . . 11
β’ (π₯ β (π΅ β { 0 }) β π₯ β 0 ) |
72 | 71 | adantl 482 |
. . . . . . . . . 10
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β π₯ β 0 ) |
73 | 1, 2, 35 | pidlnz 32483 |
. . . . . . . . . 10
β’ ((π
β Ring β§ π₯ β π΅ β§ π₯ β 0 ) β
((RSpanβπ
)β{π₯}) β { 0 }) |
74 | 13, 18, 72, 73 | syl3anc 1371 |
. . . . . . . . 9
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β
((RSpanβπ
)β{π₯}) β { 0 }) |
75 | 74 | neneqd 2945 |
. . . . . . . 8
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β Β¬
((RSpanβπ
)β{π₯}) = { 0 }) |
76 | 70, 75 | orcnd 877 |
. . . . . . 7
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β
((RSpanβπ
)β{π₯}) = π΅) |
77 | 32, 76 | eleqtrrd 2836 |
. . . . . 6
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β
(1rβπ
)
β ((RSpanβπ
)β{π₯})) |
78 | 1, 9, 35 | rspsnel 32479 |
. . . . . . 7
β’ ((π
β Ring β§ π₯ β π΅) β ((1rβπ
) β ((RSpanβπ
)β{π₯}) β βπ¦ β π΅ (1rβπ
) = (π¦(.rβπ
)π₯))) |
79 | 78 | biimpa 477 |
. . . . . 6
β’ (((π
β Ring β§ π₯ β π΅) β§ (1rβπ
) β ((RSpanβπ
)β{π₯})) β βπ¦ β π΅ (1rβπ
) = (π¦(.rβπ
)π₯)) |
80 | 13, 18, 77, 79 | syl21anc 836 |
. . . . 5
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β βπ¦ β π΅ (1rβπ
) = (π¦(.rβπ
)π₯)) |
81 | 63, 80 | reximddv 3171 |
. . . 4
β’ (((π
β NzRing β§ π = {{ 0 }, π΅}) β§ π₯ β (π΅ β { 0 })) β βπ¦ β π΅ ((π₯(.rβπ
)π¦) = (1rβπ
) β§ (π¦(.rβπ
)π₯) = (1rβπ
))) |
82 | 81 | ralrimiva 3146 |
. . 3
β’ ((π
β NzRing β§ π = {{ 0 }, π΅}) β βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯(.rβπ
)π¦) = (1rβπ
) β§ (π¦(.rβπ
)π₯) = (1rβπ
))) |
83 | 1, 2, 6, 9, 10, 12 | isdrng4 32390 |
. . 3
β’ ((π
β NzRing β§ π = {{ 0 }, π΅}) β (π
β DivRing β
((1rβπ
)
β 0
β§ βπ₯ β
(π΅ β { 0
})βπ¦ β π΅ ((π₯(.rβπ
)π¦) = (1rβπ
) β§ (π¦(.rβπ
)π₯) = (1rβπ
))))) |
84 | 8, 82, 83 | mpbir2and 711 |
. 2
β’ ((π
β NzRing β§ π = {{ 0 }, π΅}) β π
β DivRing) |
85 | 5, 84 | impbida 799 |
1
β’ (π
β NzRing β (π
β DivRing β π = {{ 0 }, π΅})) |