Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poxp2 Structured version   Visualization version   GIF version

Theorem poxp2 33835
Description: Another way of partially ordering a cross product of two classes. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
xpord2.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
poxp2.1 (𝜑𝑅 Po 𝐴)
poxp2.2 (𝜑𝑆 Po 𝐵)
Assertion
Ref Expression
poxp2 (𝜑𝑇 Po (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem poxp2
Dummy variables 𝑎 𝑏 𝑐 𝑝 𝑞 𝑟 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5624 . . . 4 (𝑎 ∈ (𝐴 × 𝐵) ↔ ∃𝑝𝐴𝑞𝐵 𝑎 = ⟨𝑝, 𝑞⟩)
2 equid 2013 . . . . . . . . . . . 12 𝑝 = 𝑝
3 equid 2013 . . . . . . . . . . . 12 𝑞 = 𝑞
42, 3pm3.2i 472 . . . . . . . . . . 11 (𝑝 = 𝑝𝑞 = 𝑞)
5 neorian 3037 . . . . . . . . . . . 12 ((𝑝𝑝𝑞𝑞) ↔ ¬ (𝑝 = 𝑝𝑞 = 𝑞))
65con2bii 358 . . . . . . . . . . 11 ((𝑝 = 𝑝𝑞 = 𝑞) ↔ ¬ (𝑝𝑝𝑞𝑞))
74, 6mpbi 229 . . . . . . . . . 10 ¬ (𝑝𝑝𝑞𝑞)
8 simp3 1138 . . . . . . . . . 10 (((𝑝𝑅𝑝𝑝 = 𝑝) ∧ (𝑞𝑆𝑞𝑞 = 𝑞) ∧ (𝑝𝑝𝑞𝑞)) → (𝑝𝑝𝑞𝑞))
97, 8mto 196 . . . . . . . . 9 ¬ ((𝑝𝑅𝑝𝑝 = 𝑝) ∧ (𝑞𝑆𝑞𝑞 = 𝑞) ∧ (𝑝𝑝𝑞𝑞))
10 simp3 1138 . . . . . . . . 9 (((𝑝𝐴𝑞𝐵) ∧ (𝑝𝐴𝑞𝐵) ∧ ((𝑝𝑅𝑝𝑝 = 𝑝) ∧ (𝑞𝑆𝑞𝑞 = 𝑞) ∧ (𝑝𝑝𝑞𝑞))) → ((𝑝𝑅𝑝𝑝 = 𝑝) ∧ (𝑞𝑆𝑞𝑞 = 𝑞) ∧ (𝑝𝑝𝑞𝑞)))
119, 10mto 196 . . . . . . . 8 ¬ ((𝑝𝐴𝑞𝐵) ∧ (𝑝𝐴𝑞𝐵) ∧ ((𝑝𝑅𝑝𝑝 = 𝑝) ∧ (𝑞𝑆𝑞𝑞 = 𝑞) ∧ (𝑝𝑝𝑞𝑞)))
12 xpord2.1 . . . . . . . . 9 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
1312xpord2lem 33834 . . . . . . . 8 (⟨𝑝, 𝑞𝑇𝑝, 𝑞⟩ ↔ ((𝑝𝐴𝑞𝐵) ∧ (𝑝𝐴𝑞𝐵) ∧ ((𝑝𝑅𝑝𝑝 = 𝑝) ∧ (𝑞𝑆𝑞𝑞 = 𝑞) ∧ (𝑝𝑝𝑞𝑞))))
1411, 13mtbir 323 . . . . . . 7 ¬ ⟨𝑝, 𝑞𝑇𝑝, 𝑞
15 breq12 5086 . . . . . . . 8 ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑎 = ⟨𝑝, 𝑞⟩) → (𝑎𝑇𝑎 ↔ ⟨𝑝, 𝑞𝑇𝑝, 𝑞⟩))
1615anidms 568 . . . . . . 7 (𝑎 = ⟨𝑝, 𝑞⟩ → (𝑎𝑇𝑎 ↔ ⟨𝑝, 𝑞𝑇𝑝, 𝑞⟩))
1714, 16mtbiri 327 . . . . . 6 (𝑎 = ⟨𝑝, 𝑞⟩ → ¬ 𝑎𝑇𝑎)
1817rexlimivw 3145 . . . . 5 (∃𝑞𝐵 𝑎 = ⟨𝑝, 𝑞⟩ → ¬ 𝑎𝑇𝑎)
1918rexlimivw 3145 . . . 4 (∃𝑝𝐴𝑞𝐵 𝑎 = ⟨𝑝, 𝑞⟩ → ¬ 𝑎𝑇𝑎)
201, 19sylbi 216 . . 3 (𝑎 ∈ (𝐴 × 𝐵) → ¬ 𝑎𝑇𝑎)
2120adantl 483 . 2 ((𝜑𝑎 ∈ (𝐴 × 𝐵)) → ¬ 𝑎𝑇𝑎)
22 3reeanv 3215 . . . 4 (∃𝑝𝐴𝑟𝐴𝑡𝐴 (∃𝑞𝐵 𝑎 = ⟨𝑝, 𝑞⟩ ∧ ∃𝑠𝐵 𝑏 = ⟨𝑟, 𝑠⟩ ∧ ∃𝑢𝐵 𝑐 = ⟨𝑡, 𝑢⟩) ↔ (∃𝑝𝐴𝑞𝐵 𝑎 = ⟨𝑝, 𝑞⟩ ∧ ∃𝑟𝐴𝑠𝐵 𝑏 = ⟨𝑟, 𝑠⟩ ∧ ∃𝑡𝐴𝑢𝐵 𝑐 = ⟨𝑡, 𝑢⟩))
23 3reeanv 3215 . . . . . 6 (∃𝑞𝐵𝑠𝐵𝑢𝐵 (𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) ↔ (∃𝑞𝐵 𝑎 = ⟨𝑝, 𝑞⟩ ∧ ∃𝑠𝐵 𝑏 = ⟨𝑟, 𝑠⟩ ∧ ∃𝑢𝐵 𝑐 = ⟨𝑡, 𝑢⟩))
2423rexbii 3094 . . . . 5 (∃𝑡𝐴𝑞𝐵𝑠𝐵𝑢𝐵 (𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) ↔ ∃𝑡𝐴 (∃𝑞𝐵 𝑎 = ⟨𝑝, 𝑞⟩ ∧ ∃𝑠𝐵 𝑏 = ⟨𝑟, 𝑠⟩ ∧ ∃𝑢𝐵 𝑐 = ⟨𝑡, 𝑢⟩))
25242rexbii 3125 . . . 4 (∃𝑝𝐴𝑟𝐴𝑡𝐴𝑞𝐵𝑠𝐵𝑢𝐵 (𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) ↔ ∃𝑝𝐴𝑟𝐴𝑡𝐴 (∃𝑞𝐵 𝑎 = ⟨𝑝, 𝑞⟩ ∧ ∃𝑠𝐵 𝑏 = ⟨𝑟, 𝑠⟩ ∧ ∃𝑢𝐵 𝑐 = ⟨𝑡, 𝑢⟩))
26 elxp2 5624 . . . . 5 (𝑏 ∈ (𝐴 × 𝐵) ↔ ∃𝑟𝐴𝑠𝐵 𝑏 = ⟨𝑟, 𝑠⟩)
27 elxp2 5624 . . . . 5 (𝑐 ∈ (𝐴 × 𝐵) ↔ ∃𝑡𝐴𝑢𝐵 𝑐 = ⟨𝑡, 𝑢⟩)
281, 26, 273anbi123i 1155 . . . 4 ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑏 ∈ (𝐴 × 𝐵) ∧ 𝑐 ∈ (𝐴 × 𝐵)) ↔ (∃𝑝𝐴𝑞𝐵 𝑎 = ⟨𝑝, 𝑞⟩ ∧ ∃𝑟𝐴𝑠𝐵 𝑏 = ⟨𝑟, 𝑠⟩ ∧ ∃𝑡𝐴𝑢𝐵 𝑐 = ⟨𝑡, 𝑢⟩))
2922, 25, 283bitr4ri 304 . . 3 ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑏 ∈ (𝐴 × 𝐵) ∧ 𝑐 ∈ (𝐴 × 𝐵)) ↔ ∃𝑝𝐴𝑟𝐴𝑡𝐴𝑞𝐵𝑠𝐵𝑢𝐵 (𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩))
30 df-3an 1089 . . . . . . . . . 10 (((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵)) ↔ (((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵)) ∧ (𝑠𝐵𝑢𝐵)))
31 simp3 1138 . . . . . . . . . . . 12 (((𝑝𝐴𝑞𝐵) ∧ (𝑟𝐴𝑠𝐵) ∧ ((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠))) → ((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)))
32 simp3 1138 . . . . . . . . . . . 12 (((𝑟𝐴𝑠𝐵) ∧ (𝑡𝐴𝑢𝐵) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢))) → ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))
33 simpr1l 1230 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) → 𝑝𝐴)
3433adantr 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑝𝐴)
35 simpr2r 1233 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) → 𝑞𝐵)
3635adantr 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑞𝐵)
3734, 36jca 513 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑝𝐴𝑞𝐵))
38 simpr2l 1232 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) → 𝑡𝐴)
3938adantr 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑡𝐴)
40 simpr3r 1235 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) → 𝑢𝐵)
4140adantr 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑢𝐵)
4239, 41jca 513 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑡𝐴𝑢𝐵))
43 poxp2.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 Po 𝐴)
4443ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑅 Po 𝐴)
45 simpr1r 1231 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) → 𝑟𝐴)
4645adantr 482 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑟𝐴)
47 potr 5527 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 Po 𝐴 ∧ (𝑝𝐴𝑟𝐴𝑡𝐴)) → ((𝑝𝑅𝑟𝑟𝑅𝑡) → 𝑝𝑅𝑡))
4844, 34, 46, 39, 47syl13anc 1372 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ((𝑝𝑅𝑟𝑟𝑅𝑡) → 𝑝𝑅𝑡))
49 orc 865 . . . . . . . . . . . . . . . . . . 19 (𝑝𝑅𝑡 → (𝑝𝑅𝑡𝑝 = 𝑡))
5048, 49syl6 35 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ((𝑝𝑅𝑟𝑟𝑅𝑡) → (𝑝𝑅𝑡𝑝 = 𝑡)))
5150expd 417 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑝𝑅𝑟 → (𝑟𝑅𝑡 → (𝑝𝑅𝑡𝑝 = 𝑡))))
52 breq1 5084 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑟 → (𝑝𝑅𝑡𝑟𝑅𝑡))
5352, 49syl6bir 254 . . . . . . . . . . . . . . . . . 18 (𝑝 = 𝑟 → (𝑟𝑅𝑡 → (𝑝𝑅𝑡𝑝 = 𝑡)))
5453a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑝 = 𝑟 → (𝑟𝑅𝑡 → (𝑝𝑅𝑡𝑝 = 𝑡))))
55 simprl1 1218 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑝𝑅𝑟𝑝 = 𝑟))
5651, 54, 55mpjaod 858 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑟𝑅𝑡 → (𝑝𝑅𝑡𝑝 = 𝑡)))
57 breq2 5085 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑡 → (𝑝𝑅𝑟𝑝𝑅𝑡))
58 equequ2 2027 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑡 → (𝑝 = 𝑟𝑝 = 𝑡))
5957, 58orbi12d 917 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑡 → ((𝑝𝑅𝑟𝑝 = 𝑟) ↔ (𝑝𝑅𝑡𝑝 = 𝑡)))
6055, 59syl5ibcom 245 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑟 = 𝑡 → (𝑝𝑅𝑡𝑝 = 𝑡)))
61 simprr1 1221 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑟𝑅𝑡𝑟 = 𝑡))
6256, 60, 61mpjaod 858 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑝𝑅𝑡𝑝 = 𝑡))
63 poxp2.2 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 Po 𝐵)
6463ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑆 Po 𝐵)
65 simpr3l 1234 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) → 𝑠𝐵)
6665adantr 482 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑠𝐵)
67 potr 5527 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 Po 𝐵 ∧ (𝑞𝐵𝑠𝐵𝑢𝐵)) → ((𝑞𝑆𝑠𝑠𝑆𝑢) → 𝑞𝑆𝑢))
6864, 36, 66, 41, 67syl13anc 1372 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ((𝑞𝑆𝑠𝑠𝑆𝑢) → 𝑞𝑆𝑢))
69 orc 865 . . . . . . . . . . . . . . . . . . 19 (𝑞𝑆𝑢 → (𝑞𝑆𝑢𝑞 = 𝑢))
7068, 69syl6 35 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ((𝑞𝑆𝑠𝑠𝑆𝑢) → (𝑞𝑆𝑢𝑞 = 𝑢)))
7170expd 417 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑞𝑆𝑠 → (𝑠𝑆𝑢 → (𝑞𝑆𝑢𝑞 = 𝑢))))
72 breq1 5084 . . . . . . . . . . . . . . . . . . 19 (𝑞 = 𝑠 → (𝑞𝑆𝑢𝑠𝑆𝑢))
7372, 69syl6bir 254 . . . . . . . . . . . . . . . . . 18 (𝑞 = 𝑠 → (𝑠𝑆𝑢 → (𝑞𝑆𝑢𝑞 = 𝑢)))
7473a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑞 = 𝑠 → (𝑠𝑆𝑢 → (𝑞𝑆𝑢𝑞 = 𝑢))))
75 simprl2 1219 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑞𝑆𝑠𝑞 = 𝑠))
7671, 74, 75mpjaod 858 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑠𝑆𝑢 → (𝑞𝑆𝑢𝑞 = 𝑢)))
77 breq2 5085 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑢 → (𝑞𝑆𝑠𝑞𝑆𝑢))
78 equequ2 2027 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑢 → (𝑞 = 𝑠𝑞 = 𝑢))
7977, 78orbi12d 917 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑢 → ((𝑞𝑆𝑠𝑞 = 𝑠) ↔ (𝑞𝑆𝑢𝑞 = 𝑢)))
8075, 79syl5ibcom 245 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑠 = 𝑢 → (𝑞𝑆𝑢𝑞 = 𝑢)))
81 simprr2 1222 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑠𝑆𝑢𝑠 = 𝑢))
8276, 80, 81mpjaod 858 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑞𝑆𝑢𝑞 = 𝑢))
83 simprr3 1223 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑟𝑡𝑠𝑢))
84 neorian 3037 . . . . . . . . . . . . . . . . 17 ((𝑟𝑡𝑠𝑢) ↔ ¬ (𝑟 = 𝑡𝑠 = 𝑢))
8583, 84sylib 217 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ¬ (𝑟 = 𝑡𝑠 = 𝑢))
86 neorian 3037 . . . . . . . . . . . . . . . . . 18 ((𝑝𝑡𝑞𝑢) ↔ ¬ (𝑝 = 𝑡𝑞 = 𝑢))
8786con2bii 358 . . . . . . . . . . . . . . . . 17 ((𝑝 = 𝑡𝑞 = 𝑢) ↔ ¬ (𝑝𝑡𝑞𝑢))
88 breq1 5084 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = 𝑡 → (𝑝𝑅𝑟𝑡𝑅𝑟))
89 equequ1 2026 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = 𝑡 → (𝑝 = 𝑟𝑡 = 𝑟))
9088, 89orbi12d 917 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = 𝑡 → ((𝑝𝑅𝑟𝑝 = 𝑟) ↔ (𝑡𝑅𝑟𝑡 = 𝑟)))
9190adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 = 𝑡𝑞 = 𝑢) → ((𝑝𝑅𝑟𝑝 = 𝑟) ↔ (𝑡𝑅𝑟𝑡 = 𝑟)))
92 breq1 5084 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞 = 𝑢 → (𝑞𝑆𝑠𝑢𝑆𝑠))
93 equequ1 2026 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞 = 𝑢 → (𝑞 = 𝑠𝑢 = 𝑠))
9492, 93orbi12d 917 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 = 𝑢 → ((𝑞𝑆𝑠𝑞 = 𝑠) ↔ (𝑢𝑆𝑠𝑢 = 𝑠)))
9594adantl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 = 𝑡𝑞 = 𝑢) → ((𝑞𝑆𝑠𝑞 = 𝑠) ↔ (𝑢𝑆𝑠𝑢 = 𝑠)))
96 neeq1 3004 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = 𝑡 → (𝑝𝑟𝑡𝑟))
9796adantr 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 = 𝑡𝑞 = 𝑢) → (𝑝𝑟𝑡𝑟))
98 neeq1 3004 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞 = 𝑢 → (𝑞𝑠𝑢𝑠))
9998adantl 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 = 𝑡𝑞 = 𝑢) → (𝑞𝑠𝑢𝑠))
10097, 99orbi12d 917 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 = 𝑡𝑞 = 𝑢) → ((𝑝𝑟𝑞𝑠) ↔ (𝑡𝑟𝑢𝑠)))
10191, 95, 1003anbi123d 1436 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 = 𝑡𝑞 = 𝑢) → (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ↔ ((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠))))
102101anbi1d 631 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 = 𝑡𝑞 = 𝑢) → ((((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢))) ↔ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))))
103102anbi2d 630 . . . . . . . . . . . . . . . . . . 19 ((𝑝 = 𝑡𝑞 = 𝑢) → (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) ↔ ((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢))))))
104 simprl1 1218 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑡𝑅𝑟𝑡 = 𝑟))
105 simprr1 1221 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑟𝑅𝑡𝑟 = 𝑡))
106 orcom 868 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑡𝑅𝑟𝑟𝑅𝑡) ∨ 𝑟 = 𝑡) ↔ (𝑟 = 𝑡 ∨ (𝑡𝑅𝑟𝑟𝑅𝑡)))
107 ordi 1004 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 = 𝑡 ∨ (𝑡𝑅𝑟𝑟𝑅𝑡)) ↔ ((𝑟 = 𝑡𝑡𝑅𝑟) ∧ (𝑟 = 𝑡𝑟𝑅𝑡)))
108 orcom 868 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 = 𝑡𝑡𝑅𝑟) ↔ (𝑡𝑅𝑟𝑟 = 𝑡))
109 equcom 2019 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 = 𝑡𝑡 = 𝑟)
110109orbi2i 911 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡𝑅𝑟𝑟 = 𝑡) ↔ (𝑡𝑅𝑟𝑡 = 𝑟))
111108, 110bitri 275 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 = 𝑡𝑡𝑅𝑟) ↔ (𝑡𝑅𝑟𝑡 = 𝑟))
112 orcom 868 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 = 𝑡𝑟𝑅𝑡) ↔ (𝑟𝑅𝑡𝑟 = 𝑡))
113111, 112anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑟 = 𝑡𝑡𝑅𝑟) ∧ (𝑟 = 𝑡𝑟𝑅𝑡)) ↔ ((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑟𝑅𝑡𝑟 = 𝑡)))
114106, 107, 1133bitri 297 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑡𝑅𝑟𝑟𝑅𝑡) ∨ 𝑟 = 𝑡) ↔ ((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑟𝑅𝑡𝑟 = 𝑡)))
115104, 105, 114sylanbrc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ((𝑡𝑅𝑟𝑟𝑅𝑡) ∨ 𝑟 = 𝑡))
11643ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑅 Po 𝐴)
11738adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑡𝐴)
11845adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑟𝐴)
119 po2nr 5528 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 Po 𝐴 ∧ (𝑡𝐴𝑟𝐴)) → ¬ (𝑡𝑅𝑟𝑟𝑅𝑡))
120116, 117, 118, 119syl12anc 835 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ¬ (𝑡𝑅𝑟𝑟𝑅𝑡))
121115, 120orcnd 877 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑟 = 𝑡)
122 simprl2 1219 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑢𝑆𝑠𝑢 = 𝑠))
123 simprr2 1222 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑠𝑆𝑢𝑠 = 𝑢))
124 orcom 868 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢𝑆𝑠𝑠𝑆𝑢) ∨ 𝑠 = 𝑢) ↔ (𝑠 = 𝑢 ∨ (𝑢𝑆𝑠𝑠𝑆𝑢)))
125 ordi 1004 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 = 𝑢 ∨ (𝑢𝑆𝑠𝑠𝑆𝑢)) ↔ ((𝑠 = 𝑢𝑢𝑆𝑠) ∧ (𝑠 = 𝑢𝑠𝑆𝑢)))
126 orcom 868 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑠 = 𝑢𝑢𝑆𝑠) ↔ (𝑢𝑆𝑠𝑠 = 𝑢))
127 equcom 2019 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = 𝑢𝑢 = 𝑠)
128127orbi2i 911 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢𝑆𝑠𝑠 = 𝑢) ↔ (𝑢𝑆𝑠𝑢 = 𝑠))
129126, 128bitri 275 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 = 𝑢𝑢𝑆𝑠) ↔ (𝑢𝑆𝑠𝑢 = 𝑠))
130 orcom 868 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 = 𝑢𝑠𝑆𝑢) ↔ (𝑠𝑆𝑢𝑠 = 𝑢))
131129, 130anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑠 = 𝑢𝑢𝑆𝑠) ∧ (𝑠 = 𝑢𝑠𝑆𝑢)) ↔ ((𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑠𝑆𝑢𝑠 = 𝑢)))
132124, 125, 1313bitri 297 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑢𝑆𝑠𝑠𝑆𝑢) ∨ 𝑠 = 𝑢) ↔ ((𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑠𝑆𝑢𝑠 = 𝑢)))
133122, 123, 132sylanbrc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ((𝑢𝑆𝑠𝑠𝑆𝑢) ∨ 𝑠 = 𝑢))
13463ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑆 Po 𝐵)
13540adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑢𝐵)
13665adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑠𝐵)
137 po2nr 5528 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 Po 𝐵 ∧ (𝑢𝐵𝑠𝐵)) → ¬ (𝑢𝑆𝑠𝑠𝑆𝑢))
138134, 135, 136, 137syl12anc 835 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ¬ (𝑢𝑆𝑠𝑠𝑆𝑢))
139133, 138orcnd 877 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → 𝑠 = 𝑢)
140121, 139jca 513 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑡𝑅𝑟𝑡 = 𝑟) ∧ (𝑢𝑆𝑠𝑢 = 𝑠) ∧ (𝑡𝑟𝑢𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑟 = 𝑡𝑠 = 𝑢))
141103, 140syl6bi 253 . . . . . . . . . . . . . . . . . 18 ((𝑝 = 𝑡𝑞 = 𝑢) → (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑟 = 𝑡𝑠 = 𝑢)))
142141com12 32 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ((𝑝 = 𝑡𝑞 = 𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
14387, 142syl5bir 243 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (¬ (𝑝𝑡𝑞𝑢) → (𝑟 = 𝑡𝑠 = 𝑢)))
14485, 143mt3d 148 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → (𝑝𝑡𝑞𝑢))
14562, 82, 1443jca 1128 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ((𝑝𝑅𝑡𝑝 = 𝑡) ∧ (𝑞𝑆𝑢𝑞 = 𝑢) ∧ (𝑝𝑡𝑞𝑢)))
14637, 42, 1453jca 1128 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) ∧ (((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ((𝑝𝐴𝑞𝐵) ∧ (𝑡𝐴𝑢𝐵) ∧ ((𝑝𝑅𝑡𝑝 = 𝑡) ∧ (𝑞𝑆𝑢𝑞 = 𝑢) ∧ (𝑝𝑡𝑞𝑢))))
147146ex 414 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) → ((((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢))) → ((𝑝𝐴𝑞𝐵) ∧ (𝑡𝐴𝑢𝐵) ∧ ((𝑝𝑅𝑡𝑝 = 𝑡) ∧ (𝑞𝑆𝑢𝑞 = 𝑢) ∧ (𝑝𝑡𝑞𝑢)))))
14831, 32, 147syl2ani 608 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) → ((((𝑝𝐴𝑞𝐵) ∧ (𝑟𝐴𝑠𝐵) ∧ ((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠))) ∧ ((𝑟𝐴𝑠𝐵) ∧ (𝑡𝐴𝑢𝐵) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ((𝑝𝐴𝑞𝐵) ∧ (𝑡𝐴𝑢𝐵) ∧ ((𝑝𝑅𝑡𝑝 = 𝑡) ∧ (𝑞𝑆𝑢𝑞 = 𝑢) ∧ (𝑝𝑡𝑞𝑢)))))
149 breq12 5086 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩) → (𝑎𝑇𝑏 ↔ ⟨𝑝, 𝑞𝑇𝑟, 𝑠⟩))
1501493adant3 1132 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → (𝑎𝑇𝑏 ↔ ⟨𝑝, 𝑞𝑇𝑟, 𝑠⟩))
15112xpord2lem 33834 . . . . . . . . . . . . . 14 (⟨𝑝, 𝑞𝑇𝑟, 𝑠⟩ ↔ ((𝑝𝐴𝑞𝐵) ∧ (𝑟𝐴𝑠𝐵) ∧ ((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠))))
152150, 151bitrdi 287 . . . . . . . . . . . . 13 ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → (𝑎𝑇𝑏 ↔ ((𝑝𝐴𝑞𝐵) ∧ (𝑟𝐴𝑠𝐵) ∧ ((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠)))))
153 breq12 5086 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → (𝑏𝑇𝑐 ↔ ⟨𝑟, 𝑠𝑇𝑡, 𝑢⟩))
1541533adant1 1130 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → (𝑏𝑇𝑐 ↔ ⟨𝑟, 𝑠𝑇𝑡, 𝑢⟩))
15512xpord2lem 33834 . . . . . . . . . . . . . 14 (⟨𝑟, 𝑠𝑇𝑡, 𝑢⟩ ↔ ((𝑟𝐴𝑠𝐵) ∧ (𝑡𝐴𝑢𝐵) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢))))
156154, 155bitrdi 287 . . . . . . . . . . . . 13 ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → (𝑏𝑇𝑐 ↔ ((𝑟𝐴𝑠𝐵) ∧ (𝑡𝐴𝑢𝐵) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))))
157152, 156anbi12d 632 . . . . . . . . . . . 12 ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → ((𝑎𝑇𝑏𝑏𝑇𝑐) ↔ (((𝑝𝐴𝑞𝐵) ∧ (𝑟𝐴𝑠𝐵) ∧ ((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠))) ∧ ((𝑟𝐴𝑠𝐵) ∧ (𝑡𝐴𝑢𝐵) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢))))))
158 breq12 5086 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → (𝑎𝑇𝑐 ↔ ⟨𝑝, 𝑞𝑇𝑡, 𝑢⟩))
1591583adant2 1131 . . . . . . . . . . . . 13 ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → (𝑎𝑇𝑐 ↔ ⟨𝑝, 𝑞𝑇𝑡, 𝑢⟩))
16012xpord2lem 33834 . . . . . . . . . . . . 13 (⟨𝑝, 𝑞𝑇𝑡, 𝑢⟩ ↔ ((𝑝𝐴𝑞𝐵) ∧ (𝑡𝐴𝑢𝐵) ∧ ((𝑝𝑅𝑡𝑝 = 𝑡) ∧ (𝑞𝑆𝑢𝑞 = 𝑢) ∧ (𝑝𝑡𝑞𝑢))))
161159, 160bitrdi 287 . . . . . . . . . . . 12 ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → (𝑎𝑇𝑐 ↔ ((𝑝𝐴𝑞𝐵) ∧ (𝑡𝐴𝑢𝐵) ∧ ((𝑝𝑅𝑡𝑝 = 𝑡) ∧ (𝑞𝑆𝑢𝑞 = 𝑢) ∧ (𝑝𝑡𝑞𝑢)))))
162157, 161imbi12d 345 . . . . . . . . . . 11 ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → (((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐) ↔ ((((𝑝𝐴𝑞𝐵) ∧ (𝑟𝐴𝑠𝐵) ∧ ((𝑝𝑅𝑟𝑝 = 𝑟) ∧ (𝑞𝑆𝑠𝑞 = 𝑠) ∧ (𝑝𝑟𝑞𝑠))) ∧ ((𝑟𝐴𝑠𝐵) ∧ (𝑡𝐴𝑢𝐵) ∧ ((𝑟𝑅𝑡𝑟 = 𝑡) ∧ (𝑠𝑆𝑢𝑠 = 𝑢) ∧ (𝑟𝑡𝑠𝑢)))) → ((𝑝𝐴𝑞𝐵) ∧ (𝑡𝐴𝑢𝐵) ∧ ((𝑝𝑅𝑡𝑝 = 𝑡) ∧ (𝑞𝑆𝑢𝑞 = 𝑢) ∧ (𝑝𝑡𝑞𝑢))))))
163148, 162syl5ibrcom 247 . . . . . . . . . 10 ((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵) ∧ (𝑠𝐵𝑢𝐵))) → ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → ((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐)))
16430, 163sylan2br 596 . . . . . . . . 9 ((𝜑 ∧ (((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵)) ∧ (𝑠𝐵𝑢𝐵))) → ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → ((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐)))
165164anassrs 469 . . . . . . . 8 (((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵))) ∧ (𝑠𝐵𝑢𝐵)) → ((𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → ((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐)))
166165rexlimdvva 3202 . . . . . . 7 ((𝜑 ∧ ((𝑝𝐴𝑟𝐴) ∧ (𝑡𝐴𝑞𝐵))) → (∃𝑠𝐵𝑢𝐵 (𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → ((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐)))
167166anassrs 469 . . . . . 6 (((𝜑 ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑡𝐴𝑞𝐵)) → (∃𝑠𝐵𝑢𝐵 (𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → ((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐)))
168167rexlimdvva 3202 . . . . 5 ((𝜑 ∧ (𝑝𝐴𝑟𝐴)) → (∃𝑡𝐴𝑞𝐵𝑠𝐵𝑢𝐵 (𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → ((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐)))
169168rexlimdvva 3202 . . . 4 (𝜑 → (∃𝑝𝐴𝑟𝐴𝑡𝐴𝑞𝐵𝑠𝐵𝑢𝐵 (𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩) → ((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐)))
170169imp 408 . . 3 ((𝜑 ∧ ∃𝑝𝐴𝑟𝐴𝑡𝐴𝑞𝐵𝑠𝐵𝑢𝐵 (𝑎 = ⟨𝑝, 𝑞⟩ ∧ 𝑏 = ⟨𝑟, 𝑠⟩ ∧ 𝑐 = ⟨𝑡, 𝑢⟩)) → ((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐))
17129, 170sylan2b 595 . 2 ((𝜑 ∧ (𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑏 ∈ (𝐴 × 𝐵) ∧ 𝑐 ∈ (𝐴 × 𝐵))) → ((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐))
17221, 171ispod 5523 1 (𝜑𝑇 Po (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wrex 3071  cop 4571   class class class wbr 5081  {copab 5143   Po wpo 5512   × cxp 5598  cfv 6458  1st c1st 7861  2nd c2nd 7862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-iota 6410  df-fun 6460  df-fv 6466  df-1st 7863  df-2nd 7864
This theorem is referenced by:  xpord2ind  33839  on2recsfn  33871  on2recsov  33872  noxpordpo  34152
  Copyright terms: Public domain W3C validator