MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem3 Structured version   Visualization version   GIF version

Theorem evlslem3 21963
Description: Lemma for evlseu 21966. Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlslem3.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem3.b 𝐵 = (Base‘𝑃)
evlslem3.c 𝐶 = (Base‘𝑆)
evlslem3.k 𝐾 = (Base‘𝑅)
evlslem3.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem3.t 𝑇 = (mulGrp‘𝑆)
evlslem3.x = (.g𝑇)
evlslem3.m · = (.r𝑆)
evlslem3.v 𝑉 = (𝐼 mVar 𝑅)
evlslem3.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
evlslem3.i (𝜑𝐼𝑊)
evlslem3.r (𝜑𝑅 ∈ CRing)
evlslem3.s (𝜑𝑆 ∈ CRing)
evlslem3.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem3.g (𝜑𝐺:𝐼𝐶)
evlslem3.z 0 = (0g𝑅)
evlslem3.a (𝜑𝐴𝐷)
evlslem3.q (𝜑𝐻𝐾)
Assertion
Ref Expression
evlslem3 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
Distinct variable groups:   𝑝,𝑏,𝑥, 0   𝐵,𝑝   𝐶,𝑏   𝐷,𝑏,𝑝,𝑥   𝐹,𝑏,𝑝   ,𝑏,𝑝   ,𝑏,𝐴,𝑝,𝑥   ,𝐼   𝑥,𝐾   𝜑,𝑏,𝑥   𝐺,𝑏,𝑝   𝐻,𝑏,𝑝,𝑥   𝑆,𝑏,𝑝   𝑇,𝑏,𝑝   · ,𝑏,𝑝   𝑥,𝑅
Allowed substitution hints:   𝜑(,𝑝)   𝐵(𝑥,,𝑏)   𝐶(𝑥,,𝑝)   𝐷()   𝑃(𝑥,,𝑝,𝑏)   𝑅(,𝑝,𝑏)   𝑆(𝑥,)   𝑇(𝑥,)   · (𝑥,)   𝐸(𝑥,,𝑝,𝑏)   (𝑥,)   𝐹(𝑥,)   𝐺(𝑥,)   𝐻()   𝐼(𝑥,𝑝,𝑏)   𝐾(,𝑝,𝑏)   𝑉(𝑥,,𝑝,𝑏)   𝑊(𝑥,,𝑝,𝑏)   0 ()

Proof of Theorem evlslem3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlslem3.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
2 evlslem3.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 evlslem3.z . . . 4 0 = (0g𝑅)
4 evlslem3.k . . . 4 𝐾 = (Base‘𝑅)
5 evlslem3.i . . . 4 (𝜑𝐼𝑊)
6 evlslem3.r . . . . 5 (𝜑𝑅 ∈ CRing)
7 crngring 20130 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
86, 7syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
9 evlslem3.b . . . 4 𝐵 = (Base‘𝑃)
10 evlslem3.q . . . 4 (𝜑𝐻𝐾)
11 evlslem3.a . . . 4 (𝜑𝐴𝐷)
121, 2, 3, 4, 5, 8, 9, 10, 11mplmon2cl 21951 . . 3 (𝜑 → (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) ∈ 𝐵)
13 fveq1 6839 . . . . . . . 8 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑝𝑏) = ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏))
1413fveq2d 6844 . . . . . . 7 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝐹‘(𝑝𝑏)) = (𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)))
1514oveq1d 7384 . . . . . 6 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
1615mpteq2dv 5196 . . . . 5 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
1716oveq2d 7385 . . . 4 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
18 evlslem3.e . . . 4 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
19 ovex 7402 . . . 4 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
2017, 18, 19fvmpt 6950 . . 3 ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) ∈ 𝐵 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
2112, 20syl 17 . 2 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
22 eqid 2729 . . . . . . . 8 (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))
23 eqeq1 2733 . . . . . . . . 9 (𝑥 = 𝑏 → (𝑥 = 𝐴𝑏 = 𝐴))
2423ifbid 4508 . . . . . . . 8 (𝑥 = 𝑏 → if(𝑥 = 𝐴, 𝐻, 0 ) = if(𝑏 = 𝐴, 𝐻, 0 ))
25 simpr 484 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝑏𝐷)
263fvexi 6854 . . . . . . . . . . 11 0 ∈ V
2726a1i 11 . . . . . . . . . 10 (𝜑0 ∈ V)
2810, 27ifexd 4533 . . . . . . . . 9 (𝜑 → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ V)
2928adantr 480 . . . . . . . 8 ((𝜑𝑏𝐷) → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ V)
3022, 24, 25, 29fvmptd3 6973 . . . . . . 7 ((𝜑𝑏𝐷) → ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏) = if(𝑏 = 𝐴, 𝐻, 0 ))
3130fveq2d 6844 . . . . . 6 ((𝜑𝑏𝐷) → (𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) = (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )))
3231oveq1d 7384 . . . . 5 ((𝜑𝑏𝐷) → ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))
3332mpteq2dva 5195 . . . 4 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))))
3433oveq2d 7385 . . 3 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))))
35 evlslem3.c . . . 4 𝐶 = (Base‘𝑆)
36 eqid 2729 . . . 4 (0g𝑆) = (0g𝑆)
37 evlslem3.s . . . . . 6 (𝜑𝑆 ∈ CRing)
38 crngring 20130 . . . . . 6 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
3937, 38syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
40 ringmnd 20128 . . . . 5 (𝑆 ∈ Ring → 𝑆 ∈ Mnd)
4139, 40syl 17 . . . 4 (𝜑𝑆 ∈ Mnd)
42 ovex 7402 . . . . . 6 (ℕ0m 𝐼) ∈ V
432, 42rabex2 5291 . . . . 5 𝐷 ∈ V
4443a1i 11 . . . 4 (𝜑𝐷 ∈ V)
4539adantr 480 . . . . . 6 ((𝜑𝑏𝐷) → 𝑆 ∈ Ring)
46 evlslem3.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
474, 35rhmf 20370 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐾𝐶)
4846, 47syl 17 . . . . . . . 8 (𝜑𝐹:𝐾𝐶)
494, 3ring0cl 20152 . . . . . . . . . 10 (𝑅 ∈ Ring → 0𝐾)
508, 49syl 17 . . . . . . . . 9 (𝜑0𝐾)
5110, 50ifcld 4531 . . . . . . . 8 (𝜑 → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ 𝐾)
5248, 51ffvelcdmd 7039 . . . . . . 7 (𝜑 → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶)
5352adantr 480 . . . . . 6 ((𝜑𝑏𝐷) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶)
54 evlslem3.t . . . . . . . 8 𝑇 = (mulGrp‘𝑆)
5554, 35mgpbas 20030 . . . . . . 7 𝐶 = (Base‘𝑇)
56 eqid 2729 . . . . . . 7 (0g𝑇) = (0g𝑇)
5754crngmgp 20126 . . . . . . . . 9 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
5837, 57syl 17 . . . . . . . 8 (𝜑𝑇 ∈ CMnd)
5958adantr 480 . . . . . . 7 ((𝜑𝑏𝐷) → 𝑇 ∈ CMnd)
605adantr 480 . . . . . . 7 ((𝜑𝑏𝐷) → 𝐼𝑊)
61 evlslem3.x . . . . . . . . 9 = (.g𝑇)
62 cmnmnd 19703 . . . . . . . . . . 11 (𝑇 ∈ CMnd → 𝑇 ∈ Mnd)
6358, 62syl 17 . . . . . . . . . 10 (𝜑𝑇 ∈ Mnd)
6463ad2antrr 726 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑇 ∈ Mnd)
65 simprl 770 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑦 ∈ ℕ0)
66 simprr 772 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑧𝐶)
6755, 61, 64, 65, 66mulgnn0cld 19003 . . . . . . . 8 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → (𝑦 𝑧) ∈ 𝐶)
682psrbagf 21803 . . . . . . . . 9 (𝑏𝐷𝑏:𝐼⟶ℕ0)
6968adantl 481 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝑏:𝐼⟶ℕ0)
70 evlslem3.g . . . . . . . . 9 (𝜑𝐺:𝐼𝐶)
7170adantr 480 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝐺:𝐼𝐶)
72 inidm 4186 . . . . . . . 8 (𝐼𝐼) = 𝐼
7367, 69, 71, 60, 60, 72off 7651 . . . . . . 7 ((𝜑𝑏𝐷) → (𝑏f 𝐺):𝐼𝐶)
74 ovex 7402 . . . . . . . . 9 (𝑏f 𝐺) ∈ V
7574a1i 11 . . . . . . . 8 ((𝜑𝑏𝐷) → (𝑏f 𝐺) ∈ V)
7673ffund 6674 . . . . . . . 8 ((𝜑𝑏𝐷) → Fun (𝑏f 𝐺))
77 fvexd 6855 . . . . . . . 8 ((𝜑𝑏𝐷) → (0g𝑇) ∈ V)
782psrbag 21802 . . . . . . . . . 10 (𝐼𝑊 → (𝑏𝐷 ↔ (𝑏:𝐼⟶ℕ0 ∧ (𝑏 “ ℕ) ∈ Fin)))
795, 78syl 17 . . . . . . . . 9 (𝜑 → (𝑏𝐷 ↔ (𝑏:𝐼⟶ℕ0 ∧ (𝑏 “ ℕ) ∈ Fin)))
8079simplbda 499 . . . . . . . 8 ((𝜑𝑏𝐷) → (𝑏 “ ℕ) ∈ Fin)
8169ffnd 6671 . . . . . . . . . . . 12 ((𝜑𝑏𝐷) → 𝑏 Fn 𝐼)
8281adantr 480 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝑏 Fn 𝐼)
8370ffnd 6671 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝐼)
8483ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝐺 Fn 𝐼)
855ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝐼𝑊)
86 eldifi 4090 . . . . . . . . . . . 12 (𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ)) → 𝑦𝐼)
8786adantl 481 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝑦𝐼)
88 fnfvof 7650 . . . . . . . . . . 11 (((𝑏 Fn 𝐼𝐺 Fn 𝐼) ∧ (𝐼𝑊𝑦𝐼)) → ((𝑏f 𝐺)‘𝑦) = ((𝑏𝑦) (𝐺𝑦)))
8982, 84, 85, 87, 88syl22anc 838 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏f 𝐺)‘𝑦) = ((𝑏𝑦) (𝐺𝑦)))
90 ffvelcdm 7035 . . . . . . . . . . . . . 14 ((𝑏:𝐼⟶ℕ0𝑦𝐼) → (𝑏𝑦) ∈ ℕ0)
9169, 86, 90syl2an 596 . . . . . . . . . . . . 13 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝑏𝑦) ∈ ℕ0)
92 elnn0 12420 . . . . . . . . . . . . 13 ((𝑏𝑦) ∈ ℕ0 ↔ ((𝑏𝑦) ∈ ℕ ∨ (𝑏𝑦) = 0))
9391, 92sylib 218 . . . . . . . . . . . 12 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏𝑦) ∈ ℕ ∨ (𝑏𝑦) = 0))
94 eldifn 4091 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ)) → ¬ 𝑦 ∈ (𝑏 “ ℕ))
9594adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ¬ 𝑦 ∈ (𝑏 “ ℕ))
9681ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑏 Fn 𝐼)
9786ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑦𝐼)
98 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → (𝑏𝑦) ∈ ℕ)
9996, 97, 98elpreimad 7013 . . . . . . . . . . . . 13 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑦 ∈ (𝑏 “ ℕ))
10095, 99mtand 815 . . . . . . . . . . . 12 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ¬ (𝑏𝑦) ∈ ℕ)
10193, 100orcnd 878 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝑏𝑦) = 0)
102101oveq1d 7384 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏𝑦) (𝐺𝑦)) = (0 (𝐺𝑦)))
103 ffvelcdm 7035 . . . . . . . . . . . 12 ((𝐺:𝐼𝐶𝑦𝐼) → (𝐺𝑦) ∈ 𝐶)
10471, 86, 103syl2an 596 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝐺𝑦) ∈ 𝐶)
10555, 56, 61mulg0 18982 . . . . . . . . . . 11 ((𝐺𝑦) ∈ 𝐶 → (0 (𝐺𝑦)) = (0g𝑇))
106104, 105syl 17 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (0 (𝐺𝑦)) = (0g𝑇))
10789, 102, 1063eqtrd 2768 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏f 𝐺)‘𝑦) = (0g𝑇))
10873, 107suppss 8150 . . . . . . . 8 ((𝜑𝑏𝐷) → ((𝑏f 𝐺) supp (0g𝑇)) ⊆ (𝑏 “ ℕ))
109 suppssfifsupp 9307 . . . . . . . 8 ((((𝑏f 𝐺) ∈ V ∧ Fun (𝑏f 𝐺) ∧ (0g𝑇) ∈ V) ∧ ((𝑏 “ ℕ) ∈ Fin ∧ ((𝑏f 𝐺) supp (0g𝑇)) ⊆ (𝑏 “ ℕ))) → (𝑏f 𝐺) finSupp (0g𝑇))
11075, 76, 77, 80, 108, 109syl32anc 1380 . . . . . . 7 ((𝜑𝑏𝐷) → (𝑏f 𝐺) finSupp (0g𝑇))
11155, 56, 59, 60, 73, 110gsumcl 19821 . . . . . 6 ((𝜑𝑏𝐷) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
112 evlslem3.m . . . . . . 7 · = (.r𝑆)
11335, 112ringcl 20135 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶 ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
11445, 53, 111, 113syl3anc 1373 . . . . 5 ((𝜑𝑏𝐷) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
115114fmpttd 7069 . . . 4 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
116 eldifsnneq 4751 . . . . . . . . . . 11 (𝑏 ∈ (𝐷 ∖ {𝐴}) → ¬ 𝑏 = 𝐴)
117116iffalsed 4495 . . . . . . . . . 10 (𝑏 ∈ (𝐷 ∖ {𝐴}) → if(𝑏 = 𝐴, 𝐻, 0 ) = 0 )
118117adantl 481 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → if(𝑏 = 𝐴, 𝐻, 0 ) = 0 )
119118fveq2d 6844 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (𝐹0 ))
120 rhmghm 20369 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
12146, 120syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
1223, 36ghmid 19130 . . . . . . . . . 10 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹0 ) = (0g𝑆))
123121, 122syl 17 . . . . . . . . 9 (𝜑 → (𝐹0 ) = (0g𝑆))
124123adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹0 ) = (0g𝑆))
125119, 124eqtrd 2764 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (0g𝑆))
126125oveq1d 7384 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) = ((0g𝑆) · (𝑇 Σg (𝑏f 𝐺))))
12739adantr 480 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → 𝑆 ∈ Ring)
128 eldifi 4090 . . . . . . . 8 (𝑏 ∈ (𝐷 ∖ {𝐴}) → 𝑏𝐷)
129128, 111sylan2 593 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
13035, 112, 36ringlz 20178 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶) → ((0g𝑆) · (𝑇 Σg (𝑏f 𝐺))) = (0g𝑆))
131127, 129, 130syl2anc 584 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((0g𝑆) · (𝑇 Σg (𝑏f 𝐺))) = (0g𝑆))
132126, 131eqtrd 2764 . . . . 5 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) = (0g𝑆))
133132, 44suppss2 8156 . . . 4 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))) supp (0g𝑆)) ⊆ {𝐴})
13435, 36, 41, 44, 11, 115, 133gsumpt 19868 . . 3 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))) = ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴))
13534, 134eqtrd 2764 . 2 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴))
136 iftrue 4490 . . . . . 6 (𝑏 = 𝐴 → if(𝑏 = 𝐴, 𝐻, 0 ) = 𝐻)
137136fveq2d 6844 . . . . 5 (𝑏 = 𝐴 → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (𝐹𝐻))
138 oveq1 7376 . . . . . 6 (𝑏 = 𝐴 → (𝑏f 𝐺) = (𝐴f 𝐺))
139138oveq2d 7385 . . . . 5 (𝑏 = 𝐴 → (𝑇 Σg (𝑏f 𝐺)) = (𝑇 Σg (𝐴f 𝐺)))
140137, 139oveq12d 7387 . . . 4 (𝑏 = 𝐴 → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
141 eqid 2729 . . . 4 (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))
142 ovex 7402 . . . 4 ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))) ∈ V
143140, 141, 142fvmpt 6950 . . 3 (𝐴𝐷 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
14411, 143syl 17 . 2 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
14521, 135, 1443eqtrd 2768 1 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  cdif 3908  wss 3911  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183  ccnv 5630  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631   supp csupp 8116  m cmap 8776  Fincfn 8895   finSupp cfsupp 9288  0cc0 11044  cn 12162  0cn0 12418  Basecbs 17155  .rcmulr 17197  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18637  .gcmg 18975   GrpHom cghm 19120  CMndccmn 19686  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354   mVar cmvr 21790   mPoly cmpl 21791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-rhm 20357  df-lmod 20744  df-lss 20814  df-psr 21794  df-mpl 21796
This theorem is referenced by:  evlslem1  21965
  Copyright terms: Public domain W3C validator