MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem3 Structured version   Visualization version   GIF version

Theorem evlslem3 21290
Description: Lemma for evlseu 21293. Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlslem3.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem3.b 𝐵 = (Base‘𝑃)
evlslem3.c 𝐶 = (Base‘𝑆)
evlslem3.k 𝐾 = (Base‘𝑅)
evlslem3.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem3.t 𝑇 = (mulGrp‘𝑆)
evlslem3.x = (.g𝑇)
evlslem3.m · = (.r𝑆)
evlslem3.v 𝑉 = (𝐼 mVar 𝑅)
evlslem3.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
evlslem3.i (𝜑𝐼𝑊)
evlslem3.r (𝜑𝑅 ∈ CRing)
evlslem3.s (𝜑𝑆 ∈ CRing)
evlslem3.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem3.g (𝜑𝐺:𝐼𝐶)
evlslem3.z 0 = (0g𝑅)
evlslem3.a (𝜑𝐴𝐷)
evlslem3.q (𝜑𝐻𝐾)
Assertion
Ref Expression
evlslem3 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
Distinct variable groups:   𝑝,𝑏,𝑥, 0   𝐵,𝑝   𝐶,𝑏   𝐷,𝑏,𝑝,𝑥   𝐹,𝑏,𝑝   ,𝑏,𝑝   ,𝑏,𝐴,𝑝,𝑥   ,𝐼   𝑥,𝐾   𝜑,𝑏,𝑥   𝐺,𝑏,𝑝   𝐻,𝑏,𝑝,𝑥   𝑆,𝑏,𝑝   𝑇,𝑏,𝑝   · ,𝑏,𝑝   𝑥,𝑅
Allowed substitution hints:   𝜑(,𝑝)   𝐵(𝑥,,𝑏)   𝐶(𝑥,,𝑝)   𝐷()   𝑃(𝑥,,𝑝,𝑏)   𝑅(,𝑝,𝑏)   𝑆(𝑥,)   𝑇(𝑥,)   · (𝑥,)   𝐸(𝑥,,𝑝,𝑏)   (𝑥,)   𝐹(𝑥,)   𝐺(𝑥,)   𝐻()   𝐼(𝑥,𝑝,𝑏)   𝐾(,𝑝,𝑏)   𝑉(𝑥,,𝑝,𝑏)   𝑊(𝑥,,𝑝,𝑏)   0 ()

Proof of Theorem evlslem3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlslem3.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
2 evlslem3.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 evlslem3.z . . . 4 0 = (0g𝑅)
4 evlslem3.k . . . 4 𝐾 = (Base‘𝑅)
5 evlslem3.i . . . 4 (𝜑𝐼𝑊)
6 evlslem3.r . . . . 5 (𝜑𝑅 ∈ CRing)
7 crngring 19795 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
86, 7syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
9 evlslem3.b . . . 4 𝐵 = (Base‘𝑃)
10 evlslem3.q . . . 4 (𝜑𝐻𝐾)
11 evlslem3.a . . . 4 (𝜑𝐴𝐷)
121, 2, 3, 4, 5, 8, 9, 10, 11mplmon2cl 21276 . . 3 (𝜑 → (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) ∈ 𝐵)
13 fveq1 6773 . . . . . . . 8 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑝𝑏) = ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏))
1413fveq2d 6778 . . . . . . 7 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝐹‘(𝑝𝑏)) = (𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)))
1514oveq1d 7290 . . . . . 6 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
1615mpteq2dv 5176 . . . . 5 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
1716oveq2d 7291 . . . 4 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
18 evlslem3.e . . . 4 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
19 ovex 7308 . . . 4 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
2017, 18, 19fvmpt 6875 . . 3 ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) ∈ 𝐵 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
2112, 20syl 17 . 2 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
22 eqid 2738 . . . . . . . 8 (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))
23 eqeq1 2742 . . . . . . . . 9 (𝑥 = 𝑏 → (𝑥 = 𝐴𝑏 = 𝐴))
2423ifbid 4482 . . . . . . . 8 (𝑥 = 𝑏 → if(𝑥 = 𝐴, 𝐻, 0 ) = if(𝑏 = 𝐴, 𝐻, 0 ))
25 simpr 485 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝑏𝐷)
263fvexi 6788 . . . . . . . . . . 11 0 ∈ V
2726a1i 11 . . . . . . . . . 10 (𝜑0 ∈ V)
2810, 27ifexd 4507 . . . . . . . . 9 (𝜑 → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ V)
2928adantr 481 . . . . . . . 8 ((𝜑𝑏𝐷) → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ V)
3022, 24, 25, 29fvmptd3 6898 . . . . . . 7 ((𝜑𝑏𝐷) → ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏) = if(𝑏 = 𝐴, 𝐻, 0 ))
3130fveq2d 6778 . . . . . 6 ((𝜑𝑏𝐷) → (𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) = (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )))
3231oveq1d 7290 . . . . 5 ((𝜑𝑏𝐷) → ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))
3332mpteq2dva 5174 . . . 4 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))))
3433oveq2d 7291 . . 3 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))))
35 evlslem3.c . . . 4 𝐶 = (Base‘𝑆)
36 eqid 2738 . . . 4 (0g𝑆) = (0g𝑆)
37 evlslem3.s . . . . . 6 (𝜑𝑆 ∈ CRing)
38 crngring 19795 . . . . . 6 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
3937, 38syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
40 ringmnd 19793 . . . . 5 (𝑆 ∈ Ring → 𝑆 ∈ Mnd)
4139, 40syl 17 . . . 4 (𝜑𝑆 ∈ Mnd)
42 ovex 7308 . . . . . 6 (ℕ0m 𝐼) ∈ V
432, 42rabex2 5258 . . . . 5 𝐷 ∈ V
4443a1i 11 . . . 4 (𝜑𝐷 ∈ V)
4539adantr 481 . . . . . 6 ((𝜑𝑏𝐷) → 𝑆 ∈ Ring)
46 evlslem3.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
474, 35rhmf 19970 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐾𝐶)
4846, 47syl 17 . . . . . . . 8 (𝜑𝐹:𝐾𝐶)
494, 3ring0cl 19808 . . . . . . . . . 10 (𝑅 ∈ Ring → 0𝐾)
508, 49syl 17 . . . . . . . . 9 (𝜑0𝐾)
5110, 50ifcld 4505 . . . . . . . 8 (𝜑 → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ 𝐾)
5248, 51ffvelrnd 6962 . . . . . . 7 (𝜑 → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶)
5352adantr 481 . . . . . 6 ((𝜑𝑏𝐷) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶)
54 evlslem3.t . . . . . . . 8 𝑇 = (mulGrp‘𝑆)
5554, 35mgpbas 19726 . . . . . . 7 𝐶 = (Base‘𝑇)
56 eqid 2738 . . . . . . 7 (0g𝑇) = (0g𝑇)
5754crngmgp 19791 . . . . . . . . 9 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
5837, 57syl 17 . . . . . . . 8 (𝜑𝑇 ∈ CMnd)
5958adantr 481 . . . . . . 7 ((𝜑𝑏𝐷) → 𝑇 ∈ CMnd)
605adantr 481 . . . . . . 7 ((𝜑𝑏𝐷) → 𝐼𝑊)
61 cmnmnd 19402 . . . . . . . . . . 11 (𝑇 ∈ CMnd → 𝑇 ∈ Mnd)
6258, 61syl 17 . . . . . . . . . 10 (𝜑𝑇 ∈ Mnd)
6362ad2antrr 723 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑇 ∈ Mnd)
64 simprl 768 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑦 ∈ ℕ0)
65 simprr 770 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑧𝐶)
66 evlslem3.x . . . . . . . . . 10 = (.g𝑇)
6755, 66mulgnn0cl 18720 . . . . . . . . 9 ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑧𝐶) → (𝑦 𝑧) ∈ 𝐶)
6863, 64, 65, 67syl3anc 1370 . . . . . . . 8 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → (𝑦 𝑧) ∈ 𝐶)
692psrbagf 21121 . . . . . . . . 9 (𝑏𝐷𝑏:𝐼⟶ℕ0)
7069adantl 482 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝑏:𝐼⟶ℕ0)
71 evlslem3.g . . . . . . . . 9 (𝜑𝐺:𝐼𝐶)
7271adantr 481 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝐺:𝐼𝐶)
73 inidm 4152 . . . . . . . 8 (𝐼𝐼) = 𝐼
7468, 70, 72, 60, 60, 73off 7551 . . . . . . 7 ((𝜑𝑏𝐷) → (𝑏f 𝐺):𝐼𝐶)
75 ovex 7308 . . . . . . . . 9 (𝑏f 𝐺) ∈ V
7675a1i 11 . . . . . . . 8 ((𝜑𝑏𝐷) → (𝑏f 𝐺) ∈ V)
7774ffund 6604 . . . . . . . 8 ((𝜑𝑏𝐷) → Fun (𝑏f 𝐺))
78 fvexd 6789 . . . . . . . 8 ((𝜑𝑏𝐷) → (0g𝑇) ∈ V)
792psrbag 21120 . . . . . . . . . 10 (𝐼𝑊 → (𝑏𝐷 ↔ (𝑏:𝐼⟶ℕ0 ∧ (𝑏 “ ℕ) ∈ Fin)))
805, 79syl 17 . . . . . . . . 9 (𝜑 → (𝑏𝐷 ↔ (𝑏:𝐼⟶ℕ0 ∧ (𝑏 “ ℕ) ∈ Fin)))
8180simplbda 500 . . . . . . . 8 ((𝜑𝑏𝐷) → (𝑏 “ ℕ) ∈ Fin)
8270ffnd 6601 . . . . . . . . . . . 12 ((𝜑𝑏𝐷) → 𝑏 Fn 𝐼)
8382adantr 481 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝑏 Fn 𝐼)
8471ffnd 6601 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝐼)
8584ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝐺 Fn 𝐼)
865ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝐼𝑊)
87 eldifi 4061 . . . . . . . . . . . 12 (𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ)) → 𝑦𝐼)
8887adantl 482 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝑦𝐼)
89 fnfvof 7550 . . . . . . . . . . 11 (((𝑏 Fn 𝐼𝐺 Fn 𝐼) ∧ (𝐼𝑊𝑦𝐼)) → ((𝑏f 𝐺)‘𝑦) = ((𝑏𝑦) (𝐺𝑦)))
9083, 85, 86, 88, 89syl22anc 836 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏f 𝐺)‘𝑦) = ((𝑏𝑦) (𝐺𝑦)))
91 ffvelrn 6959 . . . . . . . . . . . . . 14 ((𝑏:𝐼⟶ℕ0𝑦𝐼) → (𝑏𝑦) ∈ ℕ0)
9270, 87, 91syl2an 596 . . . . . . . . . . . . 13 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝑏𝑦) ∈ ℕ0)
93 elnn0 12235 . . . . . . . . . . . . 13 ((𝑏𝑦) ∈ ℕ0 ↔ ((𝑏𝑦) ∈ ℕ ∨ (𝑏𝑦) = 0))
9492, 93sylib 217 . . . . . . . . . . . 12 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏𝑦) ∈ ℕ ∨ (𝑏𝑦) = 0))
95 eldifn 4062 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ)) → ¬ 𝑦 ∈ (𝑏 “ ℕ))
9695adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ¬ 𝑦 ∈ (𝑏 “ ℕ))
9782ad2antrr 723 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑏 Fn 𝐼)
9887ad2antlr 724 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑦𝐼)
99 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → (𝑏𝑦) ∈ ℕ)
10097, 98, 99elpreimad 6936 . . . . . . . . . . . . 13 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑦 ∈ (𝑏 “ ℕ))
10196, 100mtand 813 . . . . . . . . . . . 12 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ¬ (𝑏𝑦) ∈ ℕ)
10294, 101orcnd 876 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝑏𝑦) = 0)
103102oveq1d 7290 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏𝑦) (𝐺𝑦)) = (0 (𝐺𝑦)))
104 ffvelrn 6959 . . . . . . . . . . . 12 ((𝐺:𝐼𝐶𝑦𝐼) → (𝐺𝑦) ∈ 𝐶)
10572, 87, 104syl2an 596 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝐺𝑦) ∈ 𝐶)
10655, 56, 66mulg0 18707 . . . . . . . . . . 11 ((𝐺𝑦) ∈ 𝐶 → (0 (𝐺𝑦)) = (0g𝑇))
107105, 106syl 17 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (0 (𝐺𝑦)) = (0g𝑇))
10890, 103, 1073eqtrd 2782 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏f 𝐺)‘𝑦) = (0g𝑇))
10974, 108suppss 8010 . . . . . . . 8 ((𝜑𝑏𝐷) → ((𝑏f 𝐺) supp (0g𝑇)) ⊆ (𝑏 “ ℕ))
110 suppssfifsupp 9143 . . . . . . . 8 ((((𝑏f 𝐺) ∈ V ∧ Fun (𝑏f 𝐺) ∧ (0g𝑇) ∈ V) ∧ ((𝑏 “ ℕ) ∈ Fin ∧ ((𝑏f 𝐺) supp (0g𝑇)) ⊆ (𝑏 “ ℕ))) → (𝑏f 𝐺) finSupp (0g𝑇))
11176, 77, 78, 81, 109, 110syl32anc 1377 . . . . . . 7 ((𝜑𝑏𝐷) → (𝑏f 𝐺) finSupp (0g𝑇))
11255, 56, 59, 60, 74, 111gsumcl 19516 . . . . . 6 ((𝜑𝑏𝐷) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
113 evlslem3.m . . . . . . 7 · = (.r𝑆)
11435, 113ringcl 19800 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶 ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
11545, 53, 112, 114syl3anc 1370 . . . . 5 ((𝜑𝑏𝐷) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
116115fmpttd 6989 . . . 4 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
117 eldifsnneq 4724 . . . . . . . . . . 11 (𝑏 ∈ (𝐷 ∖ {𝐴}) → ¬ 𝑏 = 𝐴)
118117iffalsed 4470 . . . . . . . . . 10 (𝑏 ∈ (𝐷 ∖ {𝐴}) → if(𝑏 = 𝐴, 𝐻, 0 ) = 0 )
119118adantl 482 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → if(𝑏 = 𝐴, 𝐻, 0 ) = 0 )
120119fveq2d 6778 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (𝐹0 ))
121 rhmghm 19969 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
12246, 121syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
1233, 36ghmid 18840 . . . . . . . . . 10 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹0 ) = (0g𝑆))
124122, 123syl 17 . . . . . . . . 9 (𝜑 → (𝐹0 ) = (0g𝑆))
125124adantr 481 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹0 ) = (0g𝑆))
126120, 125eqtrd 2778 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (0g𝑆))
127126oveq1d 7290 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) = ((0g𝑆) · (𝑇 Σg (𝑏f 𝐺))))
12839adantr 481 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → 𝑆 ∈ Ring)
129 eldifi 4061 . . . . . . . 8 (𝑏 ∈ (𝐷 ∖ {𝐴}) → 𝑏𝐷)
130129, 112sylan2 593 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
13135, 113, 36ringlz 19826 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶) → ((0g𝑆) · (𝑇 Σg (𝑏f 𝐺))) = (0g𝑆))
132128, 130, 131syl2anc 584 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((0g𝑆) · (𝑇 Σg (𝑏f 𝐺))) = (0g𝑆))
133127, 132eqtrd 2778 . . . . 5 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) = (0g𝑆))
134133, 44suppss2 8016 . . . 4 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))) supp (0g𝑆)) ⊆ {𝐴})
13535, 36, 41, 44, 11, 116, 134gsumpt 19563 . . 3 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))) = ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴))
13634, 135eqtrd 2778 . 2 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴))
137 iftrue 4465 . . . . . 6 (𝑏 = 𝐴 → if(𝑏 = 𝐴, 𝐻, 0 ) = 𝐻)
138137fveq2d 6778 . . . . 5 (𝑏 = 𝐴 → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (𝐹𝐻))
139 oveq1 7282 . . . . . 6 (𝑏 = 𝐴 → (𝑏f 𝐺) = (𝐴f 𝐺))
140139oveq2d 7291 . . . . 5 (𝑏 = 𝐴 → (𝑇 Σg (𝑏f 𝐺)) = (𝑇 Σg (𝐴f 𝐺)))
141138, 140oveq12d 7293 . . . 4 (𝑏 = 𝐴 → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
142 eqid 2738 . . . 4 (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))
143 ovex 7308 . . . 4 ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))) ∈ V
144141, 142, 143fvmpt 6875 . . 3 (𝐴𝐷 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
14511, 144syl 17 . 2 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
14621, 136, 1453eqtrd 2782 1 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cdif 3884  wss 3887  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157  ccnv 5588  cima 5592  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531   supp csupp 7977  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128  0cc0 10871  cn 11973  0cn0 12233  Basecbs 16912  .rcmulr 16963  0gc0g 17150   Σg cgsu 17151  Mndcmnd 18385  .gcmg 18700   GrpHom cghm 18831  CMndccmn 19386  mulGrpcmgp 19720  Ringcrg 19783  CRingccrg 19784   RingHom crh 19956   mVar cmvr 21108   mPoly cmpl 21109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-tset 16981  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-rnghom 19959  df-lmod 20125  df-lss 20194  df-psr 21112  df-mpl 21114
This theorem is referenced by:  evlslem1  21292
  Copyright terms: Public domain W3C validator