MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem3 Structured version   Visualization version   GIF version

Theorem evlslem3 21067
Description: Lemma for evlseu 21070. Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlslem3.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem3.b 𝐵 = (Base‘𝑃)
evlslem3.c 𝐶 = (Base‘𝑆)
evlslem3.k 𝐾 = (Base‘𝑅)
evlslem3.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem3.t 𝑇 = (mulGrp‘𝑆)
evlslem3.x = (.g𝑇)
evlslem3.m · = (.r𝑆)
evlslem3.v 𝑉 = (𝐼 mVar 𝑅)
evlslem3.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
evlslem3.i (𝜑𝐼𝑊)
evlslem3.r (𝜑𝑅 ∈ CRing)
evlslem3.s (𝜑𝑆 ∈ CRing)
evlslem3.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem3.g (𝜑𝐺:𝐼𝐶)
evlslem3.z 0 = (0g𝑅)
evlslem3.a (𝜑𝐴𝐷)
evlslem3.q (𝜑𝐻𝐾)
Assertion
Ref Expression
evlslem3 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
Distinct variable groups:   𝑝,𝑏,𝑥, 0   𝐵,𝑝   𝐶,𝑏   𝐷,𝑏,𝑝,𝑥   𝐹,𝑏,𝑝   ,𝑏,𝑝   ,𝑏,𝐴,𝑝,𝑥   ,𝐼   𝑥,𝐾   𝜑,𝑏,𝑥   𝐺,𝑏,𝑝   𝐻,𝑏,𝑝,𝑥   𝑆,𝑏,𝑝   𝑇,𝑏,𝑝   · ,𝑏,𝑝   𝑥,𝑅
Allowed substitution hints:   𝜑(,𝑝)   𝐵(𝑥,,𝑏)   𝐶(𝑥,,𝑝)   𝐷()   𝑃(𝑥,,𝑝,𝑏)   𝑅(,𝑝,𝑏)   𝑆(𝑥,)   𝑇(𝑥,)   · (𝑥,)   𝐸(𝑥,,𝑝,𝑏)   (𝑥,)   𝐹(𝑥,)   𝐺(𝑥,)   𝐻()   𝐼(𝑥,𝑝,𝑏)   𝐾(,𝑝,𝑏)   𝑉(𝑥,,𝑝,𝑏)   𝑊(𝑥,,𝑝,𝑏)   0 ()

Proof of Theorem evlslem3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlslem3.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
2 evlslem3.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 evlslem3.z . . . 4 0 = (0g𝑅)
4 evlslem3.k . . . 4 𝐾 = (Base‘𝑅)
5 evlslem3.i . . . 4 (𝜑𝐼𝑊)
6 evlslem3.r . . . . 5 (𝜑𝑅 ∈ CRing)
7 crngring 19602 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
86, 7syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
9 evlslem3.b . . . 4 𝐵 = (Base‘𝑃)
10 evlslem3.q . . . 4 (𝜑𝐻𝐾)
11 evlslem3.a . . . 4 (𝜑𝐴𝐷)
121, 2, 3, 4, 5, 8, 9, 10, 11mplmon2cl 21053 . . 3 (𝜑 → (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) ∈ 𝐵)
13 fveq1 6735 . . . . . . . 8 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑝𝑏) = ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏))
1413fveq2d 6740 . . . . . . 7 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝐹‘(𝑝𝑏)) = (𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)))
1514oveq1d 7247 . . . . . 6 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
1615mpteq2dv 5166 . . . . 5 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
1716oveq2d 7248 . . . 4 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
18 evlslem3.e . . . 4 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
19 ovex 7265 . . . 4 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
2017, 18, 19fvmpt 6837 . . 3 ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) ∈ 𝐵 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
2112, 20syl 17 . 2 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
22 eqid 2738 . . . . . . . 8 (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))
23 eqeq1 2742 . . . . . . . . 9 (𝑥 = 𝑏 → (𝑥 = 𝐴𝑏 = 𝐴))
2423ifbid 4477 . . . . . . . 8 (𝑥 = 𝑏 → if(𝑥 = 𝐴, 𝐻, 0 ) = if(𝑏 = 𝐴, 𝐻, 0 ))
25 simpr 488 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝑏𝐷)
263fvexi 6750 . . . . . . . . . . 11 0 ∈ V
2726a1i 11 . . . . . . . . . 10 (𝜑0 ∈ V)
2810, 27ifexd 4502 . . . . . . . . 9 (𝜑 → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ V)
2928adantr 484 . . . . . . . 8 ((𝜑𝑏𝐷) → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ V)
3022, 24, 25, 29fvmptd3 6860 . . . . . . 7 ((𝜑𝑏𝐷) → ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏) = if(𝑏 = 𝐴, 𝐻, 0 ))
3130fveq2d 6740 . . . . . 6 ((𝜑𝑏𝐷) → (𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) = (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )))
3231oveq1d 7247 . . . . 5 ((𝜑𝑏𝐷) → ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))
3332mpteq2dva 5165 . . . 4 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))))
3433oveq2d 7248 . . 3 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))))
35 evlslem3.c . . . 4 𝐶 = (Base‘𝑆)
36 eqid 2738 . . . 4 (0g𝑆) = (0g𝑆)
37 evlslem3.s . . . . . 6 (𝜑𝑆 ∈ CRing)
38 crngring 19602 . . . . . 6 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
3937, 38syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
40 ringmnd 19600 . . . . 5 (𝑆 ∈ Ring → 𝑆 ∈ Mnd)
4139, 40syl 17 . . . 4 (𝜑𝑆 ∈ Mnd)
42 ovex 7265 . . . . . 6 (ℕ0m 𝐼) ∈ V
432, 42rabex2 5242 . . . . 5 𝐷 ∈ V
4443a1i 11 . . . 4 (𝜑𝐷 ∈ V)
4539adantr 484 . . . . . 6 ((𝜑𝑏𝐷) → 𝑆 ∈ Ring)
46 evlslem3.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
474, 35rhmf 19774 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐾𝐶)
4846, 47syl 17 . . . . . . . 8 (𝜑𝐹:𝐾𝐶)
494, 3ring0cl 19615 . . . . . . . . . 10 (𝑅 ∈ Ring → 0𝐾)
508, 49syl 17 . . . . . . . . 9 (𝜑0𝐾)
5110, 50ifcld 4500 . . . . . . . 8 (𝜑 → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ 𝐾)
5248, 51ffvelrnd 6924 . . . . . . 7 (𝜑 → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶)
5352adantr 484 . . . . . 6 ((𝜑𝑏𝐷) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶)
54 evlslem3.t . . . . . . . 8 𝑇 = (mulGrp‘𝑆)
5554, 35mgpbas 19538 . . . . . . 7 𝐶 = (Base‘𝑇)
56 eqid 2738 . . . . . . 7 (0g𝑇) = (0g𝑇)
5754crngmgp 19598 . . . . . . . . 9 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
5837, 57syl 17 . . . . . . . 8 (𝜑𝑇 ∈ CMnd)
5958adantr 484 . . . . . . 7 ((𝜑𝑏𝐷) → 𝑇 ∈ CMnd)
605adantr 484 . . . . . . 7 ((𝜑𝑏𝐷) → 𝐼𝑊)
61 cmnmnd 19214 . . . . . . . . . . 11 (𝑇 ∈ CMnd → 𝑇 ∈ Mnd)
6258, 61syl 17 . . . . . . . . . 10 (𝜑𝑇 ∈ Mnd)
6362ad2antrr 726 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑇 ∈ Mnd)
64 simprl 771 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑦 ∈ ℕ0)
65 simprr 773 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑧𝐶)
66 evlslem3.x . . . . . . . . . 10 = (.g𝑇)
6755, 66mulgnn0cl 18536 . . . . . . . . 9 ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑧𝐶) → (𝑦 𝑧) ∈ 𝐶)
6863, 64, 65, 67syl3anc 1373 . . . . . . . 8 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → (𝑦 𝑧) ∈ 𝐶)
692psrbagf 20904 . . . . . . . . 9 (𝑏𝐷𝑏:𝐼⟶ℕ0)
7069adantl 485 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝑏:𝐼⟶ℕ0)
71 evlslem3.g . . . . . . . . 9 (𝜑𝐺:𝐼𝐶)
7271adantr 484 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝐺:𝐼𝐶)
73 inidm 4148 . . . . . . . 8 (𝐼𝐼) = 𝐼
7468, 70, 72, 60, 60, 73off 7505 . . . . . . 7 ((𝜑𝑏𝐷) → (𝑏f 𝐺):𝐼𝐶)
75 ovex 7265 . . . . . . . . 9 (𝑏f 𝐺) ∈ V
7675a1i 11 . . . . . . . 8 ((𝜑𝑏𝐷) → (𝑏f 𝐺) ∈ V)
7774ffund 6568 . . . . . . . 8 ((𝜑𝑏𝐷) → Fun (𝑏f 𝐺))
78 fvexd 6751 . . . . . . . 8 ((𝜑𝑏𝐷) → (0g𝑇) ∈ V)
792psrbag 20903 . . . . . . . . . 10 (𝐼𝑊 → (𝑏𝐷 ↔ (𝑏:𝐼⟶ℕ0 ∧ (𝑏 “ ℕ) ∈ Fin)))
805, 79syl 17 . . . . . . . . 9 (𝜑 → (𝑏𝐷 ↔ (𝑏:𝐼⟶ℕ0 ∧ (𝑏 “ ℕ) ∈ Fin)))
8180simplbda 503 . . . . . . . 8 ((𝜑𝑏𝐷) → (𝑏 “ ℕ) ∈ Fin)
8270ffnd 6565 . . . . . . . . . . . 12 ((𝜑𝑏𝐷) → 𝑏 Fn 𝐼)
8382adantr 484 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝑏 Fn 𝐼)
8471ffnd 6565 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝐼)
8584ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝐺 Fn 𝐼)
865ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝐼𝑊)
87 eldifi 4056 . . . . . . . . . . . 12 (𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ)) → 𝑦𝐼)
8887adantl 485 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝑦𝐼)
89 fnfvof 7504 . . . . . . . . . . 11 (((𝑏 Fn 𝐼𝐺 Fn 𝐼) ∧ (𝐼𝑊𝑦𝐼)) → ((𝑏f 𝐺)‘𝑦) = ((𝑏𝑦) (𝐺𝑦)))
9083, 85, 86, 88, 89syl22anc 839 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏f 𝐺)‘𝑦) = ((𝑏𝑦) (𝐺𝑦)))
91 ffvelrn 6921 . . . . . . . . . . . . . 14 ((𝑏:𝐼⟶ℕ0𝑦𝐼) → (𝑏𝑦) ∈ ℕ0)
9270, 87, 91syl2an 599 . . . . . . . . . . . . 13 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝑏𝑦) ∈ ℕ0)
93 elnn0 12117 . . . . . . . . . . . . 13 ((𝑏𝑦) ∈ ℕ0 ↔ ((𝑏𝑦) ∈ ℕ ∨ (𝑏𝑦) = 0))
9492, 93sylib 221 . . . . . . . . . . . 12 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏𝑦) ∈ ℕ ∨ (𝑏𝑦) = 0))
95 eldifn 4057 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ)) → ¬ 𝑦 ∈ (𝑏 “ ℕ))
9695adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ¬ 𝑦 ∈ (𝑏 “ ℕ))
9782ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑏 Fn 𝐼)
9887ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑦𝐼)
99 simpr 488 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → (𝑏𝑦) ∈ ℕ)
10097, 98, 99elpreimad 6898 . . . . . . . . . . . . 13 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑦 ∈ (𝑏 “ ℕ))
10196, 100mtand 816 . . . . . . . . . . . 12 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ¬ (𝑏𝑦) ∈ ℕ)
10294, 101orcnd 879 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝑏𝑦) = 0)
103102oveq1d 7247 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏𝑦) (𝐺𝑦)) = (0 (𝐺𝑦)))
104 ffvelrn 6921 . . . . . . . . . . . 12 ((𝐺:𝐼𝐶𝑦𝐼) → (𝐺𝑦) ∈ 𝐶)
10572, 87, 104syl2an 599 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝐺𝑦) ∈ 𝐶)
10655, 56, 66mulg0 18523 . . . . . . . . . . 11 ((𝐺𝑦) ∈ 𝐶 → (0 (𝐺𝑦)) = (0g𝑇))
107105, 106syl 17 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (0 (𝐺𝑦)) = (0g𝑇))
10890, 103, 1073eqtrd 2782 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏f 𝐺)‘𝑦) = (0g𝑇))
10974, 108suppss 7957 . . . . . . . 8 ((𝜑𝑏𝐷) → ((𝑏f 𝐺) supp (0g𝑇)) ⊆ (𝑏 “ ℕ))
110 suppssfifsupp 9025 . . . . . . . 8 ((((𝑏f 𝐺) ∈ V ∧ Fun (𝑏f 𝐺) ∧ (0g𝑇) ∈ V) ∧ ((𝑏 “ ℕ) ∈ Fin ∧ ((𝑏f 𝐺) supp (0g𝑇)) ⊆ (𝑏 “ ℕ))) → (𝑏f 𝐺) finSupp (0g𝑇))
11176, 77, 78, 81, 109, 110syl32anc 1380 . . . . . . 7 ((𝜑𝑏𝐷) → (𝑏f 𝐺) finSupp (0g𝑇))
11255, 56, 59, 60, 74, 111gsumcl 19328 . . . . . 6 ((𝜑𝑏𝐷) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
113 evlslem3.m . . . . . . 7 · = (.r𝑆)
11435, 113ringcl 19607 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶 ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
11545, 53, 112, 114syl3anc 1373 . . . . 5 ((𝜑𝑏𝐷) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
116115fmpttd 6951 . . . 4 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
117 eldifsnneq 4719 . . . . . . . . . . 11 (𝑏 ∈ (𝐷 ∖ {𝐴}) → ¬ 𝑏 = 𝐴)
118117iffalsed 4465 . . . . . . . . . 10 (𝑏 ∈ (𝐷 ∖ {𝐴}) → if(𝑏 = 𝐴, 𝐻, 0 ) = 0 )
119118adantl 485 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → if(𝑏 = 𝐴, 𝐻, 0 ) = 0 )
120119fveq2d 6740 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (𝐹0 ))
121 rhmghm 19773 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
12246, 121syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
1233, 36ghmid 18656 . . . . . . . . . 10 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹0 ) = (0g𝑆))
124122, 123syl 17 . . . . . . . . 9 (𝜑 → (𝐹0 ) = (0g𝑆))
125124adantr 484 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹0 ) = (0g𝑆))
126120, 125eqtrd 2778 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (0g𝑆))
127126oveq1d 7247 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) = ((0g𝑆) · (𝑇 Σg (𝑏f 𝐺))))
12839adantr 484 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → 𝑆 ∈ Ring)
129 eldifi 4056 . . . . . . . 8 (𝑏 ∈ (𝐷 ∖ {𝐴}) → 𝑏𝐷)
130129, 112sylan2 596 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
13135, 113, 36ringlz 19633 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶) → ((0g𝑆) · (𝑇 Σg (𝑏f 𝐺))) = (0g𝑆))
132128, 130, 131syl2anc 587 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((0g𝑆) · (𝑇 Σg (𝑏f 𝐺))) = (0g𝑆))
133127, 132eqtrd 2778 . . . . 5 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) = (0g𝑆))
134133, 44suppss2 7963 . . . 4 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))) supp (0g𝑆)) ⊆ {𝐴})
13535, 36, 41, 44, 11, 116, 134gsumpt 19375 . . 3 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))) = ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴))
13634, 135eqtrd 2778 . 2 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴))
137 iftrue 4460 . . . . . 6 (𝑏 = 𝐴 → if(𝑏 = 𝐴, 𝐻, 0 ) = 𝐻)
138137fveq2d 6740 . . . . 5 (𝑏 = 𝐴 → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (𝐹𝐻))
139 oveq1 7239 . . . . . 6 (𝑏 = 𝐴 → (𝑏f 𝐺) = (𝐴f 𝐺))
140139oveq2d 7248 . . . . 5 (𝑏 = 𝐴 → (𝑇 Σg (𝑏f 𝐺)) = (𝑇 Σg (𝐴f 𝐺)))
141138, 140oveq12d 7250 . . . 4 (𝑏 = 𝐴 → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
142 eqid 2738 . . . 4 (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))
143 ovex 7265 . . . 4 ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))) ∈ V
144141, 142, 143fvmpt 6837 . . 3 (𝐴𝐷 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
14511, 144syl 17 . 2 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
14621, 136, 1453eqtrd 2782 1 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2111  {crab 3066  Vcvv 3421  cdif 3878  wss 3881  ifcif 4454  {csn 4556   class class class wbr 5068  cmpt 5150  ccnv 5565  cima 5569  Fun wfun 6392   Fn wfn 6393  wf 6394  cfv 6398  (class class class)co 7232  f cof 7486   supp csupp 7924  m cmap 8529  Fincfn 8647   finSupp cfsupp 9010  0cc0 10754  cn 11855  0cn0 12115  Basecbs 16788  .rcmulr 16831  0gc0g 16972   Σg cgsu 16973  Mndcmnd 18201  .gcmg 18516   GrpHom cghm 18647  CMndccmn 19198  mulGrpcmgp 19532  Ringcrg 19590  CRingccrg 19591   RingHom crh 19760   mVar cmvr 20891   mPoly cmpl 20892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-iin 4922  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-se 5525  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-isom 6407  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-of 7488  df-om 7664  df-1st 7780  df-2nd 7781  df-supp 7925  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-er 8412  df-map 8531  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-fsupp 9011  df-oi 9151  df-card 9580  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-nn 11856  df-2 11918  df-3 11919  df-4 11920  df-5 11921  df-6 11922  df-7 11923  df-8 11924  df-9 11925  df-n0 12116  df-z 12202  df-uz 12464  df-fz 13121  df-fzo 13264  df-seq 13602  df-hash 13925  df-struct 16728  df-sets 16745  df-slot 16763  df-ndx 16773  df-base 16789  df-ress 16813  df-plusg 16843  df-mulr 16844  df-sca 16846  df-vsca 16847  df-tset 16849  df-0g 16974  df-gsum 16975  df-mre 17117  df-mrc 17118  df-acs 17120  df-mgm 18142  df-sgrp 18191  df-mnd 18202  df-mhm 18246  df-submnd 18247  df-grp 18396  df-minusg 18397  df-sbg 18398  df-mulg 18517  df-subg 18568  df-ghm 18648  df-cntz 18739  df-cmn 19200  df-mgp 19533  df-ur 19545  df-ring 19592  df-cring 19593  df-rnghom 19763  df-lmod 19929  df-lss 19997  df-psr 20895  df-mpl 20897
This theorem is referenced by:  evlslem1  21069
  Copyright terms: Public domain W3C validator