MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem3 Structured version   Visualization version   GIF version

Theorem evlslem3 21994
Description: Lemma for evlseu 21997. Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlslem3.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem3.b 𝐵 = (Base‘𝑃)
evlslem3.c 𝐶 = (Base‘𝑆)
evlslem3.k 𝐾 = (Base‘𝑅)
evlslem3.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem3.t 𝑇 = (mulGrp‘𝑆)
evlslem3.x = (.g𝑇)
evlslem3.m · = (.r𝑆)
evlslem3.v 𝑉 = (𝐼 mVar 𝑅)
evlslem3.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
evlslem3.i (𝜑𝐼𝑊)
evlslem3.r (𝜑𝑅 ∈ CRing)
evlslem3.s (𝜑𝑆 ∈ CRing)
evlslem3.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem3.g (𝜑𝐺:𝐼𝐶)
evlslem3.z 0 = (0g𝑅)
evlslem3.a (𝜑𝐴𝐷)
evlslem3.q (𝜑𝐻𝐾)
Assertion
Ref Expression
evlslem3 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
Distinct variable groups:   𝑝,𝑏,𝑥, 0   𝐵,𝑝   𝐶,𝑏   𝐷,𝑏,𝑝,𝑥   𝐹,𝑏,𝑝   ,𝑏,𝑝   ,𝑏,𝐴,𝑝,𝑥   ,𝐼   𝑥,𝐾   𝜑,𝑏,𝑥   𝐺,𝑏,𝑝   𝐻,𝑏,𝑝,𝑥   𝑆,𝑏,𝑝   𝑇,𝑏,𝑝   · ,𝑏,𝑝   𝑥,𝑅
Allowed substitution hints:   𝜑(,𝑝)   𝐵(𝑥,,𝑏)   𝐶(𝑥,,𝑝)   𝐷()   𝑃(𝑥,,𝑝,𝑏)   𝑅(,𝑝,𝑏)   𝑆(𝑥,)   𝑇(𝑥,)   · (𝑥,)   𝐸(𝑥,,𝑝,𝑏)   (𝑥,)   𝐹(𝑥,)   𝐺(𝑥,)   𝐻()   𝐼(𝑥,𝑝,𝑏)   𝐾(,𝑝,𝑏)   𝑉(𝑥,,𝑝,𝑏)   𝑊(𝑥,,𝑝,𝑏)   0 ()

Proof of Theorem evlslem3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlslem3.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
2 evlslem3.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 evlslem3.z . . . 4 0 = (0g𝑅)
4 evlslem3.k . . . 4 𝐾 = (Base‘𝑅)
5 evlslem3.i . . . 4 (𝜑𝐼𝑊)
6 evlslem3.r . . . . 5 (𝜑𝑅 ∈ CRing)
7 crngring 20161 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
86, 7syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
9 evlslem3.b . . . 4 𝐵 = (Base‘𝑃)
10 evlslem3.q . . . 4 (𝜑𝐻𝐾)
11 evlslem3.a . . . 4 (𝜑𝐴𝐷)
121, 2, 3, 4, 5, 8, 9, 10, 11mplmon2cl 21982 . . 3 (𝜑 → (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) ∈ 𝐵)
13 fveq1 6860 . . . . . . . 8 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑝𝑏) = ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏))
1413fveq2d 6865 . . . . . . 7 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝐹‘(𝑝𝑏)) = (𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)))
1514oveq1d 7405 . . . . . 6 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))
1615mpteq2dv 5204 . . . . 5 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))))
1716oveq2d 7406 . . . 4 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
18 evlslem3.e . . . 4 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
19 ovex 7423 . . . 4 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) ∈ V
2017, 18, 19fvmpt 6971 . . 3 ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) ∈ 𝐵 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
2112, 20syl 17 . 2 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))))
22 eqid 2730 . . . . . . . 8 (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))
23 eqeq1 2734 . . . . . . . . 9 (𝑥 = 𝑏 → (𝑥 = 𝐴𝑏 = 𝐴))
2423ifbid 4515 . . . . . . . 8 (𝑥 = 𝑏 → if(𝑥 = 𝐴, 𝐻, 0 ) = if(𝑏 = 𝐴, 𝐻, 0 ))
25 simpr 484 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝑏𝐷)
263fvexi 6875 . . . . . . . . . . 11 0 ∈ V
2726a1i 11 . . . . . . . . . 10 (𝜑0 ∈ V)
2810, 27ifexd 4540 . . . . . . . . 9 (𝜑 → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ V)
2928adantr 480 . . . . . . . 8 ((𝜑𝑏𝐷) → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ V)
3022, 24, 25, 29fvmptd3 6994 . . . . . . 7 ((𝜑𝑏𝐷) → ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏) = if(𝑏 = 𝐴, 𝐻, 0 ))
3130fveq2d 6865 . . . . . 6 ((𝜑𝑏𝐷) → (𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) = (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )))
3231oveq1d 7405 . . . . 5 ((𝜑𝑏𝐷) → ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))
3332mpteq2dva 5203 . . . 4 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))))
3433oveq2d 7406 . . 3 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))))
35 evlslem3.c . . . 4 𝐶 = (Base‘𝑆)
36 eqid 2730 . . . 4 (0g𝑆) = (0g𝑆)
37 evlslem3.s . . . . . 6 (𝜑𝑆 ∈ CRing)
38 crngring 20161 . . . . . 6 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
3937, 38syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
40 ringmnd 20159 . . . . 5 (𝑆 ∈ Ring → 𝑆 ∈ Mnd)
4139, 40syl 17 . . . 4 (𝜑𝑆 ∈ Mnd)
42 ovex 7423 . . . . . 6 (ℕ0m 𝐼) ∈ V
432, 42rabex2 5299 . . . . 5 𝐷 ∈ V
4443a1i 11 . . . 4 (𝜑𝐷 ∈ V)
4539adantr 480 . . . . . 6 ((𝜑𝑏𝐷) → 𝑆 ∈ Ring)
46 evlslem3.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
474, 35rhmf 20401 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐾𝐶)
4846, 47syl 17 . . . . . . . 8 (𝜑𝐹:𝐾𝐶)
494, 3ring0cl 20183 . . . . . . . . . 10 (𝑅 ∈ Ring → 0𝐾)
508, 49syl 17 . . . . . . . . 9 (𝜑0𝐾)
5110, 50ifcld 4538 . . . . . . . 8 (𝜑 → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ 𝐾)
5248, 51ffvelcdmd 7060 . . . . . . 7 (𝜑 → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶)
5352adantr 480 . . . . . 6 ((𝜑𝑏𝐷) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶)
54 evlslem3.t . . . . . . . 8 𝑇 = (mulGrp‘𝑆)
5554, 35mgpbas 20061 . . . . . . 7 𝐶 = (Base‘𝑇)
56 eqid 2730 . . . . . . 7 (0g𝑇) = (0g𝑇)
5754crngmgp 20157 . . . . . . . . 9 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
5837, 57syl 17 . . . . . . . 8 (𝜑𝑇 ∈ CMnd)
5958adantr 480 . . . . . . 7 ((𝜑𝑏𝐷) → 𝑇 ∈ CMnd)
605adantr 480 . . . . . . 7 ((𝜑𝑏𝐷) → 𝐼𝑊)
61 evlslem3.x . . . . . . . . 9 = (.g𝑇)
62 cmnmnd 19734 . . . . . . . . . . 11 (𝑇 ∈ CMnd → 𝑇 ∈ Mnd)
6358, 62syl 17 . . . . . . . . . 10 (𝜑𝑇 ∈ Mnd)
6463ad2antrr 726 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑇 ∈ Mnd)
65 simprl 770 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑦 ∈ ℕ0)
66 simprr 772 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑧𝐶)
6755, 61, 64, 65, 66mulgnn0cld 19034 . . . . . . . 8 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → (𝑦 𝑧) ∈ 𝐶)
682psrbagf 21834 . . . . . . . . 9 (𝑏𝐷𝑏:𝐼⟶ℕ0)
6968adantl 481 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝑏:𝐼⟶ℕ0)
70 evlslem3.g . . . . . . . . 9 (𝜑𝐺:𝐼𝐶)
7170adantr 480 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝐺:𝐼𝐶)
72 inidm 4193 . . . . . . . 8 (𝐼𝐼) = 𝐼
7367, 69, 71, 60, 60, 72off 7674 . . . . . . 7 ((𝜑𝑏𝐷) → (𝑏f 𝐺):𝐼𝐶)
74 ovex 7423 . . . . . . . . 9 (𝑏f 𝐺) ∈ V
7574a1i 11 . . . . . . . 8 ((𝜑𝑏𝐷) → (𝑏f 𝐺) ∈ V)
7673ffund 6695 . . . . . . . 8 ((𝜑𝑏𝐷) → Fun (𝑏f 𝐺))
77 fvexd 6876 . . . . . . . 8 ((𝜑𝑏𝐷) → (0g𝑇) ∈ V)
782psrbag 21833 . . . . . . . . . 10 (𝐼𝑊 → (𝑏𝐷 ↔ (𝑏:𝐼⟶ℕ0 ∧ (𝑏 “ ℕ) ∈ Fin)))
795, 78syl 17 . . . . . . . . 9 (𝜑 → (𝑏𝐷 ↔ (𝑏:𝐼⟶ℕ0 ∧ (𝑏 “ ℕ) ∈ Fin)))
8079simplbda 499 . . . . . . . 8 ((𝜑𝑏𝐷) → (𝑏 “ ℕ) ∈ Fin)
8169ffnd 6692 . . . . . . . . . . . 12 ((𝜑𝑏𝐷) → 𝑏 Fn 𝐼)
8281adantr 480 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝑏 Fn 𝐼)
8370ffnd 6692 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝐼)
8483ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝐺 Fn 𝐼)
855ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝐼𝑊)
86 eldifi 4097 . . . . . . . . . . . 12 (𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ)) → 𝑦𝐼)
8786adantl 481 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝑦𝐼)
88 fnfvof 7673 . . . . . . . . . . 11 (((𝑏 Fn 𝐼𝐺 Fn 𝐼) ∧ (𝐼𝑊𝑦𝐼)) → ((𝑏f 𝐺)‘𝑦) = ((𝑏𝑦) (𝐺𝑦)))
8982, 84, 85, 87, 88syl22anc 838 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏f 𝐺)‘𝑦) = ((𝑏𝑦) (𝐺𝑦)))
90 ffvelcdm 7056 . . . . . . . . . . . . . 14 ((𝑏:𝐼⟶ℕ0𝑦𝐼) → (𝑏𝑦) ∈ ℕ0)
9169, 86, 90syl2an 596 . . . . . . . . . . . . 13 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝑏𝑦) ∈ ℕ0)
92 elnn0 12451 . . . . . . . . . . . . 13 ((𝑏𝑦) ∈ ℕ0 ↔ ((𝑏𝑦) ∈ ℕ ∨ (𝑏𝑦) = 0))
9391, 92sylib 218 . . . . . . . . . . . 12 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏𝑦) ∈ ℕ ∨ (𝑏𝑦) = 0))
94 eldifn 4098 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ)) → ¬ 𝑦 ∈ (𝑏 “ ℕ))
9594adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ¬ 𝑦 ∈ (𝑏 “ ℕ))
9681ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑏 Fn 𝐼)
9786ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑦𝐼)
98 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → (𝑏𝑦) ∈ ℕ)
9996, 97, 98elpreimad 7034 . . . . . . . . . . . . 13 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑦 ∈ (𝑏 “ ℕ))
10095, 99mtand 815 . . . . . . . . . . . 12 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ¬ (𝑏𝑦) ∈ ℕ)
10193, 100orcnd 878 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝑏𝑦) = 0)
102101oveq1d 7405 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏𝑦) (𝐺𝑦)) = (0 (𝐺𝑦)))
103 ffvelcdm 7056 . . . . . . . . . . . 12 ((𝐺:𝐼𝐶𝑦𝐼) → (𝐺𝑦) ∈ 𝐶)
10471, 86, 103syl2an 596 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝐺𝑦) ∈ 𝐶)
10555, 56, 61mulg0 19013 . . . . . . . . . . 11 ((𝐺𝑦) ∈ 𝐶 → (0 (𝐺𝑦)) = (0g𝑇))
106104, 105syl 17 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (0 (𝐺𝑦)) = (0g𝑇))
10789, 102, 1063eqtrd 2769 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏f 𝐺)‘𝑦) = (0g𝑇))
10873, 107suppss 8176 . . . . . . . 8 ((𝜑𝑏𝐷) → ((𝑏f 𝐺) supp (0g𝑇)) ⊆ (𝑏 “ ℕ))
109 suppssfifsupp 9338 . . . . . . . 8 ((((𝑏f 𝐺) ∈ V ∧ Fun (𝑏f 𝐺) ∧ (0g𝑇) ∈ V) ∧ ((𝑏 “ ℕ) ∈ Fin ∧ ((𝑏f 𝐺) supp (0g𝑇)) ⊆ (𝑏 “ ℕ))) → (𝑏f 𝐺) finSupp (0g𝑇))
11075, 76, 77, 80, 108, 109syl32anc 1380 . . . . . . 7 ((𝜑𝑏𝐷) → (𝑏f 𝐺) finSupp (0g𝑇))
11155, 56, 59, 60, 73, 110gsumcl 19852 . . . . . 6 ((𝜑𝑏𝐷) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
112 evlslem3.m . . . . . . 7 · = (.r𝑆)
11335, 112ringcl 20166 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶 ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
11445, 53, 111, 113syl3anc 1373 . . . . 5 ((𝜑𝑏𝐷) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) ∈ 𝐶)
115114fmpttd 7090 . . . 4 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))):𝐷𝐶)
116 eldifsnneq 4758 . . . . . . . . . . 11 (𝑏 ∈ (𝐷 ∖ {𝐴}) → ¬ 𝑏 = 𝐴)
117116iffalsed 4502 . . . . . . . . . 10 (𝑏 ∈ (𝐷 ∖ {𝐴}) → if(𝑏 = 𝐴, 𝐻, 0 ) = 0 )
118117adantl 481 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → if(𝑏 = 𝐴, 𝐻, 0 ) = 0 )
119118fveq2d 6865 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (𝐹0 ))
120 rhmghm 20400 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
12146, 120syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
1223, 36ghmid 19161 . . . . . . . . . 10 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹0 ) = (0g𝑆))
123121, 122syl 17 . . . . . . . . 9 (𝜑 → (𝐹0 ) = (0g𝑆))
124123adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹0 ) = (0g𝑆))
125119, 124eqtrd 2765 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (0g𝑆))
126125oveq1d 7405 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) = ((0g𝑆) · (𝑇 Σg (𝑏f 𝐺))))
12739adantr 480 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → 𝑆 ∈ Ring)
128 eldifi 4097 . . . . . . . 8 (𝑏 ∈ (𝐷 ∖ {𝐴}) → 𝑏𝐷)
129128, 111sylan2 593 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶)
13035, 112, 36ringlz 20209 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝑇 Σg (𝑏f 𝐺)) ∈ 𝐶) → ((0g𝑆) · (𝑇 Σg (𝑏f 𝐺))) = (0g𝑆))
131127, 129, 130syl2anc 584 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((0g𝑆) · (𝑇 Σg (𝑏f 𝐺))) = (0g𝑆))
132126, 131eqtrd 2765 . . . . 5 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) = (0g𝑆))
133132, 44suppss2 8182 . . . 4 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))) supp (0g𝑆)) ⊆ {𝐴})
13435, 36, 41, 44, 11, 115, 133gsumpt 19899 . . 3 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))) = ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴))
13534, 134eqtrd 2765 . 2 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏f 𝐺))))) = ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴))
136 iftrue 4497 . . . . . 6 (𝑏 = 𝐴 → if(𝑏 = 𝐴, 𝐻, 0 ) = 𝐻)
137136fveq2d 6865 . . . . 5 (𝑏 = 𝐴 → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (𝐹𝐻))
138 oveq1 7397 . . . . . 6 (𝑏 = 𝐴 → (𝑏f 𝐺) = (𝐴f 𝐺))
139138oveq2d 7406 . . . . 5 (𝑏 = 𝐴 → (𝑇 Σg (𝑏f 𝐺)) = (𝑇 Σg (𝐴f 𝐺)))
140137, 139oveq12d 7408 . . . 4 (𝑏 = 𝐴 → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
141 eqid 2730 . . . 4 (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))
142 ovex 7423 . . . 4 ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))) ∈ V
143140, 141, 142fvmpt 6971 . . 3 (𝐴𝐷 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
14411, 143syl 17 . 2 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏f 𝐺))))‘𝐴) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
14521, 135, 1443eqtrd 2769 1 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹𝐻) · (𝑇 Σg (𝐴f 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  ccnv 5640  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  0cc0 11075  cn 12193  0cn0 12449  Basecbs 17186  .rcmulr 17228  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  .gcmg 19006   GrpHom cghm 19151  CMndccmn 19717  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385   mVar cmvr 21821   mPoly cmpl 21822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-rhm 20388  df-lmod 20775  df-lss 20845  df-psr 21825  df-mpl 21827
This theorem is referenced by:  evlslem1  21996
  Copyright terms: Public domain W3C validator