Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlmaxv Structured version   Visualization version   GIF version

Theorem mxidlmaxv 33476
Description: An ideal 𝐼 strictly containing a maximal ideal 𝑀 is the whole ring 𝐵. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
mxidlmaxv.1 𝐵 = (Base‘𝑅)
mxidlmaxv.2 (𝜑𝑅 ∈ Ring)
mxidlmaxv.3 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
mxidlmaxv.4 (𝜑𝐼 ∈ (LIdeal‘𝑅))
mxidlmaxv.5 (𝜑𝑀𝐼)
mxidlmaxv.6 (𝜑𝑋 ∈ (𝐼𝑀))
Assertion
Ref Expression
mxidlmaxv (𝜑𝐼 = 𝐵)

Proof of Theorem mxidlmaxv
StepHypRef Expression
1 mxidlmaxv.2 . . 3 (𝜑𝑅 ∈ Ring)
2 mxidlmaxv.3 . . 3 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
3 mxidlmaxv.4 . . 3 (𝜑𝐼 ∈ (LIdeal‘𝑅))
4 mxidlmaxv.5 . . 3 (𝜑𝑀𝐼)
5 mxidlmaxv.1 . . . 4 𝐵 = (Base‘𝑅)
65mxidlmax 33473 . . 3 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝐵))
71, 2, 3, 4, 6syl22anc 839 . 2 (𝜑 → (𝐼 = 𝑀𝐼 = 𝐵))
8 mxidlmaxv.6 . . . . 5 (𝜑𝑋 ∈ (𝐼𝑀))
98eldifad 3975 . . . 4 (𝜑𝑋𝐼)
108eldifbd 3976 . . . 4 (𝜑 → ¬ 𝑋𝑀)
11 nelne1 3037 . . . 4 ((𝑋𝐼 ∧ ¬ 𝑋𝑀) → 𝐼𝑀)
129, 10, 11syl2anc 584 . . 3 (𝜑𝐼𝑀)
1312neneqd 2943 . 2 (𝜑 → ¬ 𝐼 = 𝑀)
147, 13orcnd 878 1 (𝜑𝐼 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1537  wcel 2106  wne 2938  cdif 3960  wss 3963  cfv 6563  Basecbs 17245  Ringcrg 20251  LIdealclidl 21234  MaxIdealcmxidl 33467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-mxidl 33468
This theorem is referenced by:  mxidlirredi  33479  qsdrngilem  33502
  Copyright terms: Public domain W3C validator