![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mxidlmaxv | Structured version Visualization version GIF version |
Description: An ideal 𝐼 strictly containing a maximal ideal 𝑀 is the whole ring 𝐵. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
Ref | Expression |
---|---|
mxidlmaxv.1 | ⊢ 𝐵 = (Base‘𝑅) |
mxidlmaxv.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mxidlmaxv.3 | ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) |
mxidlmaxv.4 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
mxidlmaxv.5 | ⊢ (𝜑 → 𝑀 ⊆ 𝐼) |
mxidlmaxv.6 | ⊢ (𝜑 → 𝑋 ∈ (𝐼 ∖ 𝑀)) |
Ref | Expression |
---|---|
mxidlmaxv | ⊢ (𝜑 → 𝐼 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mxidlmaxv.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | mxidlmaxv.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) | |
3 | mxidlmaxv.4 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
4 | mxidlmaxv.5 | . . 3 ⊢ (𝜑 → 𝑀 ⊆ 𝐼) | |
5 | mxidlmaxv.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 5 | mxidlmax 32539 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) |
7 | 1, 2, 3, 4, 6 | syl22anc 838 | . 2 ⊢ (𝜑 → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) |
8 | mxidlmaxv.6 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐼 ∖ 𝑀)) | |
9 | 8 | eldifad 3959 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
10 | 8 | eldifbd 3960 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑀) |
11 | nelne1 3040 | . . . 4 ⊢ ((𝑋 ∈ 𝐼 ∧ ¬ 𝑋 ∈ 𝑀) → 𝐼 ≠ 𝑀) | |
12 | 9, 10, 11 | syl2anc 585 | . . 3 ⊢ (𝜑 → 𝐼 ≠ 𝑀) |
13 | 12 | neneqd 2946 | . 2 ⊢ (𝜑 → ¬ 𝐼 = 𝑀) |
14 | 7, 13 | orcnd 878 | 1 ⊢ (𝜑 → 𝐼 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∖ cdif 3944 ⊆ wss 3947 ‘cfv 6540 Basecbs 17140 Ringcrg 20047 LIdealclidl 20771 MaxIdealcmxidl 32533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-mxidl 32534 |
This theorem is referenced by: qsdrngilem 32561 |
Copyright terms: Public domain | W3C validator |