![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mxidlmaxv | Structured version Visualization version GIF version |
Description: An ideal 𝐼 strictly containing a maximal ideal 𝑀 is the whole ring 𝐵. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
Ref | Expression |
---|---|
mxidlmaxv.1 | ⊢ 𝐵 = (Base‘𝑅) |
mxidlmaxv.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mxidlmaxv.3 | ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) |
mxidlmaxv.4 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
mxidlmaxv.5 | ⊢ (𝜑 → 𝑀 ⊆ 𝐼) |
mxidlmaxv.6 | ⊢ (𝜑 → 𝑋 ∈ (𝐼 ∖ 𝑀)) |
Ref | Expression |
---|---|
mxidlmaxv | ⊢ (𝜑 → 𝐼 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mxidlmaxv.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | mxidlmaxv.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) | |
3 | mxidlmaxv.4 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
4 | mxidlmaxv.5 | . . 3 ⊢ (𝜑 → 𝑀 ⊆ 𝐼) | |
5 | mxidlmaxv.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 5 | mxidlmax 33458 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) |
7 | 1, 2, 3, 4, 6 | syl22anc 838 | . 2 ⊢ (𝜑 → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) |
8 | mxidlmaxv.6 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐼 ∖ 𝑀)) | |
9 | 8 | eldifad 3988 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
10 | 8 | eldifbd 3989 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑀) |
11 | nelne1 3045 | . . . 4 ⊢ ((𝑋 ∈ 𝐼 ∧ ¬ 𝑋 ∈ 𝑀) → 𝐼 ≠ 𝑀) | |
12 | 9, 10, 11 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝐼 ≠ 𝑀) |
13 | 12 | neneqd 2951 | . 2 ⊢ (𝜑 → ¬ 𝐼 = 𝑀) |
14 | 7, 13 | orcnd 877 | 1 ⊢ (𝜑 → 𝐼 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 ⊆ wss 3976 ‘cfv 6573 Basecbs 17258 Ringcrg 20260 LIdealclidl 21239 MaxIdealcmxidl 33452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-mxidl 33453 |
This theorem is referenced by: mxidlirredi 33464 qsdrngilem 33487 |
Copyright terms: Public domain | W3C validator |