Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlmaxv Structured version   Visualization version   GIF version

Theorem mxidlmaxv 33440
Description: An ideal 𝐼 strictly containing a maximal ideal 𝑀 is the whole ring 𝐵. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
mxidlmaxv.1 𝐵 = (Base‘𝑅)
mxidlmaxv.2 (𝜑𝑅 ∈ Ring)
mxidlmaxv.3 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
mxidlmaxv.4 (𝜑𝐼 ∈ (LIdeal‘𝑅))
mxidlmaxv.5 (𝜑𝑀𝐼)
mxidlmaxv.6 (𝜑𝑋 ∈ (𝐼𝑀))
Assertion
Ref Expression
mxidlmaxv (𝜑𝐼 = 𝐵)

Proof of Theorem mxidlmaxv
StepHypRef Expression
1 mxidlmaxv.2 . . 3 (𝜑𝑅 ∈ Ring)
2 mxidlmaxv.3 . . 3 (𝜑𝑀 ∈ (MaxIdeal‘𝑅))
3 mxidlmaxv.4 . . 3 (𝜑𝐼 ∈ (LIdeal‘𝑅))
4 mxidlmaxv.5 . . 3 (𝜑𝑀𝐼)
5 mxidlmaxv.1 . . . 4 𝐵 = (Base‘𝑅)
65mxidlmax 33437 . . 3 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀𝐼)) → (𝐼 = 𝑀𝐼 = 𝐵))
71, 2, 3, 4, 6syl22anc 838 . 2 (𝜑 → (𝐼 = 𝑀𝐼 = 𝐵))
8 mxidlmaxv.6 . . . . 5 (𝜑𝑋 ∈ (𝐼𝑀))
98eldifad 3910 . . . 4 (𝜑𝑋𝐼)
108eldifbd 3911 . . . 4 (𝜑 → ¬ 𝑋𝑀)
11 nelne1 3026 . . . 4 ((𝑋𝐼 ∧ ¬ 𝑋𝑀) → 𝐼𝑀)
129, 10, 11syl2anc 584 . . 3 (𝜑𝐼𝑀)
1312neneqd 2934 . 2 (𝜑 → ¬ 𝐼 = 𝑀)
147, 13orcnd 878 1 (𝜑𝐼 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1541  wcel 2113  wne 2929  cdif 3895  wss 3898  cfv 6486  Basecbs 17122  Ringcrg 20153  LIdealclidl 21145  MaxIdealcmxidl 33431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-mxidl 33432
This theorem is referenced by:  mxidlirredi  33443  qsdrngilem  33466
  Copyright terms: Public domain W3C validator