| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mxidlmaxv | Structured version Visualization version GIF version | ||
| Description: An ideal 𝐼 strictly containing a maximal ideal 𝑀 is the whole ring 𝐵. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| mxidlmaxv.1 | ⊢ 𝐵 = (Base‘𝑅) |
| mxidlmaxv.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mxidlmaxv.3 | ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) |
| mxidlmaxv.4 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| mxidlmaxv.5 | ⊢ (𝜑 → 𝑀 ⊆ 𝐼) |
| mxidlmaxv.6 | ⊢ (𝜑 → 𝑋 ∈ (𝐼 ∖ 𝑀)) |
| Ref | Expression |
|---|---|
| mxidlmaxv | ⊢ (𝜑 → 𝐼 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mxidlmaxv.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | mxidlmaxv.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) | |
| 3 | mxidlmaxv.4 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
| 4 | mxidlmaxv.5 | . . 3 ⊢ (𝜑 → 𝑀 ⊆ 𝐼) | |
| 5 | mxidlmaxv.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 5 | mxidlmax 33437 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) |
| 7 | 1, 2, 3, 4, 6 | syl22anc 838 | . 2 ⊢ (𝜑 → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) |
| 8 | mxidlmaxv.6 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐼 ∖ 𝑀)) | |
| 9 | 8 | eldifad 3910 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| 10 | 8 | eldifbd 3911 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑀) |
| 11 | nelne1 3026 | . . . 4 ⊢ ((𝑋 ∈ 𝐼 ∧ ¬ 𝑋 ∈ 𝑀) → 𝐼 ≠ 𝑀) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐼 ≠ 𝑀) |
| 13 | 12 | neneqd 2934 | . 2 ⊢ (𝜑 → ¬ 𝐼 = 𝑀) |
| 14 | 7, 13 | orcnd 878 | 1 ⊢ (𝜑 → 𝐼 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 ⊆ wss 3898 ‘cfv 6486 Basecbs 17122 Ringcrg 20153 LIdealclidl 21145 MaxIdealcmxidl 33431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-mxidl 33432 |
| This theorem is referenced by: mxidlirredi 33443 qsdrngilem 33466 |
| Copyright terms: Public domain | W3C validator |