| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mxidlmaxv | Structured version Visualization version GIF version | ||
| Description: An ideal 𝐼 strictly containing a maximal ideal 𝑀 is the whole ring 𝐵. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| mxidlmaxv.1 | ⊢ 𝐵 = (Base‘𝑅) |
| mxidlmaxv.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mxidlmaxv.3 | ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) |
| mxidlmaxv.4 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| mxidlmaxv.5 | ⊢ (𝜑 → 𝑀 ⊆ 𝐼) |
| mxidlmaxv.6 | ⊢ (𝜑 → 𝑋 ∈ (𝐼 ∖ 𝑀)) |
| Ref | Expression |
|---|---|
| mxidlmaxv | ⊢ (𝜑 → 𝐼 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mxidlmaxv.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | mxidlmaxv.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) | |
| 3 | mxidlmaxv.4 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
| 4 | mxidlmaxv.5 | . . 3 ⊢ (𝜑 → 𝑀 ⊆ 𝐼) | |
| 5 | mxidlmaxv.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 5 | mxidlmax 33428 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) |
| 7 | 1, 2, 3, 4, 6 | syl22anc 838 | . 2 ⊢ (𝜑 → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) |
| 8 | mxidlmaxv.6 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐼 ∖ 𝑀)) | |
| 9 | 8 | eldifad 3914 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| 10 | 8 | eldifbd 3915 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑀) |
| 11 | nelne1 3025 | . . . 4 ⊢ ((𝑋 ∈ 𝐼 ∧ ¬ 𝑋 ∈ 𝑀) → 𝐼 ≠ 𝑀) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐼 ≠ 𝑀) |
| 13 | 12 | neneqd 2933 | . 2 ⊢ (𝜑 → ¬ 𝐼 = 𝑀) |
| 14 | 7, 13 | orcnd 878 | 1 ⊢ (𝜑 → 𝐼 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 ⊆ wss 3902 ‘cfv 6481 Basecbs 17120 Ringcrg 20152 LIdealclidl 21144 MaxIdealcmxidl 33422 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-mxidl 33423 |
| This theorem is referenced by: mxidlirredi 33434 qsdrngilem 33457 |
| Copyright terms: Public domain | W3C validator |