Step | Hyp | Ref
| Expression |
1 | | crngring 19710 |
. . 3
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
2 | 1 | adantr 480 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑅 ∈ Ring) |
3 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
4 | 3 | mxidlidl 31537 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅)) |
5 | 1, 4 | sylan 579 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅)) |
6 | 3 | mxidlnr 31538 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅)) |
7 | 1, 6 | sylan 579 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅)) |
8 | | simpllr 772 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) |
9 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑘 = (𝑎(.r‘𝑅)𝑥)) |
10 | 9 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑢(+g‘𝑅)𝑘) = (𝑢(+g‘𝑅)(𝑎(.r‘𝑅)𝑥))) |
11 | 8, 10 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (1r‘𝑅) = (𝑢(+g‘𝑅)(𝑎(.r‘𝑅)𝑥))) |
12 | 11 | oveq1d 7270 |
. . . . . . . . . . 11
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = ((𝑢(+g‘𝑅)(𝑎(.r‘𝑅)𝑥))(.r‘𝑅)𝑦)) |
13 | 2 | ad4antr 728 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑅 ∈ Ring) |
14 | 13 | ad5antr 730 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑅 ∈ Ring) |
15 | | simp-8r 788 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑦 ∈ (Base‘𝑅)) |
16 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(.r‘𝑅) = (.r‘𝑅) |
17 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(1r‘𝑅) = (1r‘𝑅) |
18 | 3, 16, 17 | ringlidm 19725 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
19 | 14, 15, 18 | syl2anc 583 |
. . . . . . . . . . 11
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
20 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
21 | 3, 20 | lidlss 20394 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ (LIdeal‘𝑅) → 𝑀 ⊆ (Base‘𝑅)) |
22 | 5, 21 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ⊆ (Base‘𝑅)) |
23 | 22 | ad4antr 728 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ⊆ (Base‘𝑅)) |
24 | 23 | ad5antr 730 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑀 ⊆ (Base‘𝑅)) |
25 | | simp-5r 782 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑢 ∈ 𝑀) |
26 | 24, 25 | sseldd 3918 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑢 ∈ (Base‘𝑅)) |
27 | | simplr 765 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑎 ∈ (Base‘𝑅)) |
28 | | simp-4r 780 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑥 ∈ (Base‘𝑅)) |
29 | 28 | ad5antr 730 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑥 ∈ (Base‘𝑅)) |
30 | 3, 16 | ringcl 19715 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑎(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
31 | 14, 27, 29, 30 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑎(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
32 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑅) = (+g‘𝑅) |
33 | 3, 32, 16 | ringdir 19721 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑢 ∈ (Base‘𝑅) ∧ (𝑎(.r‘𝑅)𝑥) ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑢(+g‘𝑅)(𝑎(.r‘𝑅)𝑥))(.r‘𝑅)𝑦) = ((𝑢(.r‘𝑅)𝑦)(+g‘𝑅)((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦))) |
34 | 14, 26, 31, 15, 33 | syl13anc 1370 |
. . . . . . . . . . 11
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → ((𝑢(+g‘𝑅)(𝑎(.r‘𝑅)𝑥))(.r‘𝑅)𝑦) = ((𝑢(.r‘𝑅)𝑦)(+g‘𝑅)((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦))) |
35 | 12, 19, 34 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑦 = ((𝑢(.r‘𝑅)𝑦)(+g‘𝑅)((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦))) |
36 | | simp-5r 782 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ∈ (MaxIdeal‘𝑅)) |
37 | 13, 36, 4 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ∈ (LIdeal‘𝑅)) |
38 | 37 | ad5antr 730 |
. . . . . . . . . . 11
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑀 ∈ (LIdeal‘𝑅)) |
39 | | simp-10l 791 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑅 ∈ CRing) |
40 | 3, 16 | crngcom 19716 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑢) = (𝑢(.r‘𝑅)𝑦)) |
41 | 39, 15, 26, 40 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑦(.r‘𝑅)𝑢) = (𝑢(.r‘𝑅)𝑦)) |
42 | 20, 3, 16 | lidlmcl 20401 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑢 ∈ 𝑀)) → (𝑦(.r‘𝑅)𝑢) ∈ 𝑀) |
43 | 14, 38, 15, 25, 42 | syl22anc 835 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑦(.r‘𝑅)𝑢) ∈ 𝑀) |
44 | 41, 43 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑢(.r‘𝑅)𝑦) ∈ 𝑀) |
45 | 3, 16 | ringass 19718 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (𝑎(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
46 | 14, 27, 29, 15, 45 | syl13anc 1370 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → ((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (𝑎(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
47 | | simp-7r 786 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) |
48 | 20, 3, 16 | lidlmcl 20401 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀)) → (𝑎(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) ∈ 𝑀) |
49 | 14, 38, 27, 47, 48 | syl22anc 835 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑎(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) ∈ 𝑀) |
50 | 46, 49 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → ((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) ∈ 𝑀) |
51 | 20, 32 | lidlacl 20397 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ ((𝑢(.r‘𝑅)𝑦) ∈ 𝑀 ∧ ((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) ∈ 𝑀)) → ((𝑢(.r‘𝑅)𝑦)(+g‘𝑅)((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦)) ∈ 𝑀) |
52 | 14, 38, 44, 50, 51 | syl22anc 835 |
. . . . . . . . . 10
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → ((𝑢(.r‘𝑅)𝑦)(+g‘𝑅)((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦)) ∈ 𝑀) |
53 | 35, 52 | eqeltrd 2839 |
. . . . . . . . 9
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑦 ∈ 𝑀) |
54 | | simplr 765 |
. . . . . . . . . 10
⊢
(((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) → 𝑘 ∈ ((Base‘𝑅) × {𝑥})) |
55 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
56 | 55, 3 | mgpbas 19641 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅)) |
57 | 55, 16 | mgpplusg 19639 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
58 | | mxidlprm.1 |
. . . . . . . . . . . 12
⊢ × =
(LSSum‘(mulGrp‘𝑅)) |
59 | | fvexd 6771 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (mulGrp‘𝑅) ∈ V) |
60 | | ssidd 3940 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (Base‘𝑅) ⊆ (Base‘𝑅)) |
61 | 56, 57, 58, 59, 60, 28 | elgrplsmsn 31480 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑘 ∈ ((Base‘𝑅) × {𝑥}) ↔ ∃𝑎 ∈ (Base‘𝑅)𝑘 = (𝑎(.r‘𝑅)𝑥))) |
62 | 61 | ad3antrrr 726 |
. . . . . . . . . 10
⊢
(((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) → (𝑘 ∈ ((Base‘𝑅) × {𝑥}) ↔ ∃𝑎 ∈ (Base‘𝑅)𝑘 = (𝑎(.r‘𝑅)𝑥))) |
63 | 54, 62 | mpbid 231 |
. . . . . . . . 9
⊢
(((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) → ∃𝑎 ∈ (Base‘𝑅)𝑘 = (𝑎(.r‘𝑅)𝑥)) |
64 | 53, 63 | r19.29a 3217 |
. . . . . . . 8
⊢
(((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) → 𝑦 ∈ 𝑀) |
65 | 3, 17 | ringidcl 19722 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
66 | 13, 65 | syl 17 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (1r‘𝑅) ∈ (Base‘𝑅)) |
67 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(LSSum‘𝑅) =
(LSSum‘𝑅) |
68 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(RSpan‘𝑅) =
(RSpan‘𝑅) |
69 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(LPIdeal‘𝑅) =
(LPIdeal‘𝑅) |
70 | 69, 20 | lpiss 20434 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ Ring →
(LPIdeal‘𝑅) ⊆
(LIdeal‘𝑅)) |
71 | 13, 70 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (LPIdeal‘𝑅) ⊆ (LIdeal‘𝑅)) |
72 | 3, 55, 58, 68, 13, 28 | lsmsnidl 31489 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((Base‘𝑅) × {𝑥}) ∈ (LPIdeal‘𝑅)) |
73 | 71, 72 | sseldd 3918 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((Base‘𝑅) × {𝑥}) ∈ (LIdeal‘𝑅)) |
74 | 3, 67, 68, 13, 37, 73 | lsmidl 31491 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ∈ (LIdeal‘𝑅)) |
75 | | rlmlmod 20388 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring →
(ringLMod‘𝑅) ∈
LMod) |
76 | 13, 75 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (ringLMod‘𝑅) ∈ LMod) |
77 | | rlmbas 20378 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝑅) =
(Base‘(ringLMod‘𝑅)) |
78 | | rspval 20376 |
. . . . . . . . . . . . . . . 16
⊢
(RSpan‘𝑅) =
(LSpan‘(ringLMod‘𝑅)) |
79 | 77, 78 | lspssid 20162 |
. . . . . . . . . . . . . . 15
⊢
(((ringLMod‘𝑅)
∈ LMod ∧ 𝑀 ⊆
(Base‘𝑅)) →
𝑀 ⊆
((RSpan‘𝑅)‘𝑀)) |
80 | 76, 23, 79 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ⊆ ((RSpan‘𝑅)‘𝑀)) |
81 | 28 | snssd 4739 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → {𝑥} ⊆ (Base‘𝑅)) |
82 | 3, 55, 58, 13, 60, 81 | ringlsmss 31485 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((Base‘𝑅) × {𝑥}) ⊆ (Base‘𝑅)) |
83 | 23, 82 | unssd 4116 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑀 ∪ ((Base‘𝑅) × {𝑥})) ⊆ (Base‘𝑅)) |
84 | | ssun1 4102 |
. . . . . . . . . . . . . . . 16
⊢ 𝑀 ⊆ (𝑀 ∪ ((Base‘𝑅) × {𝑥})) |
85 | 84 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ⊆ (𝑀 ∪ ((Base‘𝑅) × {𝑥}))) |
86 | 77, 78 | lspss 20161 |
. . . . . . . . . . . . . . 15
⊢
(((ringLMod‘𝑅)
∈ LMod ∧ (𝑀 ∪
((Base‘𝑅) × {𝑥})) ⊆ (Base‘𝑅) ∧ 𝑀 ⊆ (𝑀 ∪ ((Base‘𝑅) × {𝑥}))) → ((RSpan‘𝑅)‘𝑀) ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥})))) |
87 | 76, 83, 85, 86 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((RSpan‘𝑅)‘𝑀) ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥})))) |
88 | 80, 87 | sstrd 3927 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥})))) |
89 | 3, 67, 68, 13, 37, 73 | lsmidllsp 31490 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥})))) |
90 | 88, 89 | sseqtrrd 3958 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ⊆ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥}))) |
91 | 3 | mxidlmax 31539 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ ((𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})))) → ((𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = 𝑀 ∨ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = (Base‘𝑅))) |
92 | 13, 36, 74, 90, 91 | syl22anc 835 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = 𝑀 ∨ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = (Base‘𝑅))) |
93 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘𝑅) = (0g‘𝑅) |
94 | 20, 93 | lidl0cl 20396 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) →
(0g‘𝑅)
∈ 𝑀) |
95 | 13, 37, 94 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (0g‘𝑅) ∈ 𝑀) |
96 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (0g‘𝑅) → (𝑎(+g‘𝑅)𝑏) = ((0g‘𝑅)(+g‘𝑅)𝑏)) |
97 | 96 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (0g‘𝑅) → (𝑥 = (𝑎(+g‘𝑅)𝑏) ↔ 𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑏))) |
98 | 97 | rexbidv 3225 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = (0g‘𝑅) → (∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g‘𝑅)𝑏) ↔ ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑏))) |
99 | 98 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑎 = (0g‘𝑅)) → (∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g‘𝑅)𝑏) ↔ ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑏))) |
100 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = (1r‘𝑅) → (𝑎(.r‘𝑅)𝑥) = ((1r‘𝑅)(.r‘𝑅)𝑥)) |
101 | 100 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = (1r‘𝑅) → (𝑥 = (𝑎(.r‘𝑅)𝑥) ↔ 𝑥 = ((1r‘𝑅)(.r‘𝑅)𝑥))) |
102 | 101 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑎 = (1r‘𝑅)) → (𝑥 = (𝑎(.r‘𝑅)𝑥) ↔ 𝑥 = ((1r‘𝑅)(.r‘𝑅)𝑥))) |
103 | 3, 16, 17 | ringlidm 19725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
104 | 13, 28, 103 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
105 | 104 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑥 = ((1r‘𝑅)(.r‘𝑅)𝑥)) |
106 | 66, 102, 105 | rspcedvd 3555 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ∃𝑎 ∈ (Base‘𝑅)𝑥 = (𝑎(.r‘𝑅)𝑥)) |
107 | 56, 57, 58, 59, 60, 28 | elgrplsmsn 31480 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑥 ∈ ((Base‘𝑅) × {𝑥}) ↔ ∃𝑎 ∈ (Base‘𝑅)𝑥 = (𝑎(.r‘𝑅)𝑥))) |
108 | 106, 107 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑥 ∈ ((Base‘𝑅) × {𝑥})) |
109 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑥 → ((0g‘𝑅)(+g‘𝑅)𝑏) = ((0g‘𝑅)(+g‘𝑅)𝑥)) |
110 | 109 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑥 → (𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑏) ↔ 𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑥))) |
111 | 110 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑏 = 𝑥) → (𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑏) ↔ 𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑥))) |
112 | | ringgrp 19703 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
113 | 13, 112 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑅 ∈ Grp) |
114 | 3, 32, 93 | grplid 18524 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) →
((0g‘𝑅)(+g‘𝑅)𝑥) = 𝑥) |
115 | 113, 28, 114 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((0g‘𝑅)(+g‘𝑅)𝑥) = 𝑥) |
116 | 115 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑥)) |
117 | 108, 111,
116 | rspcedvd 3555 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑏)) |
118 | 95, 99, 117 | rspcedvd 3555 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ∃𝑎 ∈ 𝑀 ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g‘𝑅)𝑏)) |
119 | | simp-5l 781 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑅 ∈ CRing) |
120 | 3, 32, 67 | lsmelvalx 19160 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ⊆ (Base‘𝑅) ∧ ((Base‘𝑅) × {𝑥}) ⊆ (Base‘𝑅)) → (𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑎 ∈ 𝑀 ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g‘𝑅)𝑏))) |
121 | 119, 23, 82, 120 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑎 ∈ 𝑀 ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g‘𝑅)𝑏))) |
122 | 118, 121 | mpbird 256 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥}))) |
123 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ¬ 𝑥 ∈ 𝑀) |
124 | | nelne1 3040 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ≠ 𝑀) |
125 | 122, 123,
124 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ≠ 𝑀) |
126 | 125 | neneqd 2947 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ¬ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = 𝑀) |
127 | 92, 126 | orcnd 875 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = (Base‘𝑅)) |
128 | 66, 127 | eleqtrrd 2842 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (1r‘𝑅) ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥}))) |
129 | 3, 32, 67 | lsmelvalx 19160 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ⊆ (Base‘𝑅) ∧ ((Base‘𝑅) × {𝑥}) ⊆ (Base‘𝑅)) → ((1r‘𝑅) ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑢 ∈ 𝑀 ∃𝑘 ∈ ((Base‘𝑅) × {𝑥})(1r‘𝑅) = (𝑢(+g‘𝑅)𝑘))) |
130 | 119, 23, 82, 129 | syl3anc 1369 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((1r‘𝑅) ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑢 ∈ 𝑀 ∃𝑘 ∈ ((Base‘𝑅) × {𝑥})(1r‘𝑅) = (𝑢(+g‘𝑅)𝑘))) |
131 | 128, 130 | mpbid 231 |
. . . . . . . 8
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ∃𝑢 ∈ 𝑀 ∃𝑘 ∈ ((Base‘𝑅) × {𝑥})(1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) |
132 | 64, 131 | r19.29vva 3263 |
. . . . . . 7
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑦 ∈ 𝑀) |
133 | 132 | ex 412 |
. . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) → (¬ 𝑥 ∈ 𝑀 → 𝑦 ∈ 𝑀)) |
134 | 133 | orrd 859 |
. . . . 5
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) → (𝑥 ∈ 𝑀 ∨ 𝑦 ∈ 𝑀)) |
135 | 134 | ex 412 |
. . . 4
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑦) ∈ 𝑀 → (𝑥 ∈ 𝑀 ∨ 𝑦 ∈ 𝑀))) |
136 | 135 | anasss 466 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑅)𝑦) ∈ 𝑀 → (𝑥 ∈ 𝑀 ∨ 𝑦 ∈ 𝑀))) |
137 | 136 | ralrimivva 3114 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ 𝑀 → (𝑥 ∈ 𝑀 ∨ 𝑦 ∈ 𝑀))) |
138 | 3, 16 | prmidl2 31518 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ (𝑀 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ 𝑀 → (𝑥 ∈ 𝑀 ∨ 𝑦 ∈ 𝑀)))) → 𝑀 ∈ (PrmIdeal‘𝑅)) |
139 | 2, 5, 7, 137, 138 | syl22anc 835 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅)) |