Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlprm Structured version   Visualization version   GIF version

Theorem mxidlprm 33448
Description: Every maximal ideal is prime. Statement in [Lang] p. 92. (Contributed by Thierry Arnoux, 21-Jan-2024.)
Hypothesis
Ref Expression
mxidlprm.1 × = (LSSum‘(mulGrp‘𝑅))
Assertion
Ref Expression
mxidlprm ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅))

Proof of Theorem mxidlprm
Dummy variables 𝑎 𝑘 𝑢 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20161 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21adantr 480 . 2 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑅 ∈ Ring)
3 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
43mxidlidl 33441 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
51, 4sylan 580 . 2 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
63mxidlnr 33442 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅))
71, 6sylan 580 . 2 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅))
8 simpllr 775 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (1r𝑅) = (𝑢(+g𝑅)𝑘))
9 simpr 484 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑘 = (𝑎(.r𝑅)𝑥))
109oveq2d 7406 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑢(+g𝑅)𝑘) = (𝑢(+g𝑅)(𝑎(.r𝑅)𝑥)))
118, 10eqtrd 2765 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (1r𝑅) = (𝑢(+g𝑅)(𝑎(.r𝑅)𝑥)))
1211oveq1d 7405 . . . . . . . . . . 11 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → ((1r𝑅)(.r𝑅)𝑦) = ((𝑢(+g𝑅)(𝑎(.r𝑅)𝑥))(.r𝑅)𝑦))
132ad4antr 732 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑅 ∈ Ring)
1413ad5antr 734 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑅 ∈ Ring)
15 simp-8r 791 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑦 ∈ (Base‘𝑅))
16 eqid 2730 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
17 eqid 2730 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
183, 16, 17ringlidm 20185 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑦) = 𝑦)
1914, 15, 18syl2anc 584 . . . . . . . . . . 11 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → ((1r𝑅)(.r𝑅)𝑦) = 𝑦)
20 eqid 2730 . . . . . . . . . . . . . . . . 17 (LIdeal‘𝑅) = (LIdeal‘𝑅)
213, 20lidlss 21129 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (LIdeal‘𝑅) → 𝑀 ⊆ (Base‘𝑅))
225, 21syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ⊆ (Base‘𝑅))
2322ad4antr 732 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ⊆ (Base‘𝑅))
2423ad5antr 734 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑀 ⊆ (Base‘𝑅))
25 simp-5r 785 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑢𝑀)
2624, 25sseldd 3950 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑢 ∈ (Base‘𝑅))
27 simplr 768 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑎 ∈ (Base‘𝑅))
28 simp-4r 783 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑥 ∈ (Base‘𝑅))
2928ad5antr 734 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑥 ∈ (Base‘𝑅))
303, 16ringcl 20166 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑎(.r𝑅)𝑥) ∈ (Base‘𝑅))
3114, 27, 29, 30syl3anc 1373 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑎(.r𝑅)𝑥) ∈ (Base‘𝑅))
32 eqid 2730 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
333, 32, 16ringdir 20178 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑢 ∈ (Base‘𝑅) ∧ (𝑎(.r𝑅)𝑥) ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑢(+g𝑅)(𝑎(.r𝑅)𝑥))(.r𝑅)𝑦) = ((𝑢(.r𝑅)𝑦)(+g𝑅)((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦)))
3414, 26, 31, 15, 33syl13anc 1374 . . . . . . . . . . 11 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → ((𝑢(+g𝑅)(𝑎(.r𝑅)𝑥))(.r𝑅)𝑦) = ((𝑢(.r𝑅)𝑦)(+g𝑅)((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦)))
3512, 19, 343eqtr3d 2773 . . . . . . . . . 10 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑦 = ((𝑢(.r𝑅)𝑦)(+g𝑅)((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦)))
36 simp-5r 785 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ∈ (MaxIdeal‘𝑅))
3713, 36, 4syl2anc 584 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ∈ (LIdeal‘𝑅))
3837ad5antr 734 . . . . . . . . . . 11 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑀 ∈ (LIdeal‘𝑅))
39 simp-10l 794 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑅 ∈ CRing)
403, 16crngcom 20167 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑢) = (𝑢(.r𝑅)𝑦))
4139, 15, 26, 40syl3anc 1373 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑦(.r𝑅)𝑢) = (𝑢(.r𝑅)𝑦))
4220, 3, 16lidlmcl 21142 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑢𝑀)) → (𝑦(.r𝑅)𝑢) ∈ 𝑀)
4314, 38, 15, 25, 42syl22anc 838 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑦(.r𝑅)𝑢) ∈ 𝑀)
4441, 43eqeltrrd 2830 . . . . . . . . . . 11 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑢(.r𝑅)𝑦) ∈ 𝑀)
453, 16ringass 20169 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦) = (𝑎(.r𝑅)(𝑥(.r𝑅)𝑦)))
4614, 27, 29, 15, 45syl13anc 1374 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → ((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦) = (𝑎(.r𝑅)(𝑥(.r𝑅)𝑦)))
47 simp-7r 789 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑥(.r𝑅)𝑦) ∈ 𝑀)
4820, 3, 16lidlmcl 21142 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀)) → (𝑎(.r𝑅)(𝑥(.r𝑅)𝑦)) ∈ 𝑀)
4914, 38, 27, 47, 48syl22anc 838 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑎(.r𝑅)(𝑥(.r𝑅)𝑦)) ∈ 𝑀)
5046, 49eqeltrd 2829 . . . . . . . . . . 11 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → ((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦) ∈ 𝑀)
5120, 32lidlacl 21138 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ ((𝑢(.r𝑅)𝑦) ∈ 𝑀 ∧ ((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦) ∈ 𝑀)) → ((𝑢(.r𝑅)𝑦)(+g𝑅)((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦)) ∈ 𝑀)
5214, 38, 44, 50, 51syl22anc 838 . . . . . . . . . 10 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → ((𝑢(.r𝑅)𝑦)(+g𝑅)((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦)) ∈ 𝑀)
5335, 52eqeltrd 2829 . . . . . . . . 9 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑦𝑀)
54 simplr 768 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) → 𝑘 ∈ ((Base‘𝑅) × {𝑥}))
55 eqid 2730 . . . . . . . . . . . . 13 (mulGrp‘𝑅) = (mulGrp‘𝑅)
5655, 3mgpbas 20061 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
5755, 16mgpplusg 20060 . . . . . . . . . . . 12 (.r𝑅) = (+g‘(mulGrp‘𝑅))
58 mxidlprm.1 . . . . . . . . . . . 12 × = (LSSum‘(mulGrp‘𝑅))
59 fvexd 6876 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (mulGrp‘𝑅) ∈ V)
60 ssidd 3973 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (Base‘𝑅) ⊆ (Base‘𝑅))
6156, 57, 58, 59, 60, 28elgrplsmsn 33368 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑘 ∈ ((Base‘𝑅) × {𝑥}) ↔ ∃𝑎 ∈ (Base‘𝑅)𝑘 = (𝑎(.r𝑅)𝑥)))
6261ad3antrrr 730 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) → (𝑘 ∈ ((Base‘𝑅) × {𝑥}) ↔ ∃𝑎 ∈ (Base‘𝑅)𝑘 = (𝑎(.r𝑅)𝑥)))
6354, 62mpbid 232 . . . . . . . . 9 (((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) → ∃𝑎 ∈ (Base‘𝑅)𝑘 = (𝑎(.r𝑅)𝑥))
6453, 63r19.29a 3142 . . . . . . . 8 (((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) → 𝑦𝑀)
653, 17ringidcl 20181 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
6613, 65syl 17 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (1r𝑅) ∈ (Base‘𝑅))
67 eqid 2730 . . . . . . . . . . . . 13 (LSSum‘𝑅) = (LSSum‘𝑅)
68 eqid 2730 . . . . . . . . . . . . 13 (RSpan‘𝑅) = (RSpan‘𝑅)
69 eqid 2730 . . . . . . . . . . . . . . . 16 (LPIdeal‘𝑅) = (LPIdeal‘𝑅)
7069, 20lpiss 21246 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → (LPIdeal‘𝑅) ⊆ (LIdeal‘𝑅))
7113, 70syl 17 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (LPIdeal‘𝑅) ⊆ (LIdeal‘𝑅))
723, 55, 58, 68, 13, 28lsmsnidl 33377 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((Base‘𝑅) × {𝑥}) ∈ (LPIdeal‘𝑅))
7371, 72sseldd 3950 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((Base‘𝑅) × {𝑥}) ∈ (LIdeal‘𝑅))
743, 67, 68, 13, 37, 73lsmidl 33379 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ∈ (LIdeal‘𝑅))
75 rlmlmod 21117 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
7613, 75syl 17 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (ringLMod‘𝑅) ∈ LMod)
77 rlmbas 21107 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
78 rspval 21128 . . . . . . . . . . . . . . . 16 (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))
7977, 78lspssid 20898 . . . . . . . . . . . . . . 15 (((ringLMod‘𝑅) ∈ LMod ∧ 𝑀 ⊆ (Base‘𝑅)) → 𝑀 ⊆ ((RSpan‘𝑅)‘𝑀))
8076, 23, 79syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ⊆ ((RSpan‘𝑅)‘𝑀))
8128snssd 4776 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → {𝑥} ⊆ (Base‘𝑅))
823, 55, 58, 13, 60, 81ringlsmss 33373 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((Base‘𝑅) × {𝑥}) ⊆ (Base‘𝑅))
8323, 82unssd 4158 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑀 ∪ ((Base‘𝑅) × {𝑥})) ⊆ (Base‘𝑅))
84 ssun1 4144 . . . . . . . . . . . . . . . 16 𝑀 ⊆ (𝑀 ∪ ((Base‘𝑅) × {𝑥}))
8584a1i 11 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ⊆ (𝑀 ∪ ((Base‘𝑅) × {𝑥})))
8677, 78lspss 20897 . . . . . . . . . . . . . . 15 (((ringLMod‘𝑅) ∈ LMod ∧ (𝑀 ∪ ((Base‘𝑅) × {𝑥})) ⊆ (Base‘𝑅) ∧ 𝑀 ⊆ (𝑀 ∪ ((Base‘𝑅) × {𝑥}))) → ((RSpan‘𝑅)‘𝑀) ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥}))))
8776, 83, 85, 86syl3anc 1373 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((RSpan‘𝑅)‘𝑀) ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥}))))
8880, 87sstrd 3960 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥}))))
893, 67, 68, 13, 37, 73lsmidllsp 33378 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥}))))
9088, 89sseqtrrd 3987 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ⊆ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})))
913mxidlmax 33443 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ ((𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})))) → ((𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = 𝑀 ∨ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = (Base‘𝑅)))
9213, 36, 74, 90, 91syl22anc 838 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = 𝑀 ∨ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = (Base‘𝑅)))
93 eqid 2730 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
9420, 93lidl0cl 21137 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝑀)
9513, 37, 94syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (0g𝑅) ∈ 𝑀)
96 oveq1 7397 . . . . . . . . . . . . . . . . . 18 (𝑎 = (0g𝑅) → (𝑎(+g𝑅)𝑏) = ((0g𝑅)(+g𝑅)𝑏))
9796eqeq2d 2741 . . . . . . . . . . . . . . . . 17 (𝑎 = (0g𝑅) → (𝑥 = (𝑎(+g𝑅)𝑏) ↔ 𝑥 = ((0g𝑅)(+g𝑅)𝑏)))
9897rexbidv 3158 . . . . . . . . . . . . . . . 16 (𝑎 = (0g𝑅) → (∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g𝑅)𝑏) ↔ ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = ((0g𝑅)(+g𝑅)𝑏)))
9998adantl 481 . . . . . . . . . . . . . . 15 (((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑎 = (0g𝑅)) → (∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g𝑅)𝑏) ↔ ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = ((0g𝑅)(+g𝑅)𝑏)))
100 oveq1 7397 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (1r𝑅) → (𝑎(.r𝑅)𝑥) = ((1r𝑅)(.r𝑅)𝑥))
101100eqeq2d 2741 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (1r𝑅) → (𝑥 = (𝑎(.r𝑅)𝑥) ↔ 𝑥 = ((1r𝑅)(.r𝑅)𝑥)))
102101adantl 481 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑎 = (1r𝑅)) → (𝑥 = (𝑎(.r𝑅)𝑥) ↔ 𝑥 = ((1r𝑅)(.r𝑅)𝑥)))
1033, 16, 17ringlidm 20185 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
10413, 28, 103syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
105104eqcomd 2736 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑥 = ((1r𝑅)(.r𝑅)𝑥))
10666, 102, 105rspcedvd 3593 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ∃𝑎 ∈ (Base‘𝑅)𝑥 = (𝑎(.r𝑅)𝑥))
10756, 57, 58, 59, 60, 28elgrplsmsn 33368 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑥 ∈ ((Base‘𝑅) × {𝑥}) ↔ ∃𝑎 ∈ (Base‘𝑅)𝑥 = (𝑎(.r𝑅)𝑥)))
108106, 107mpbird 257 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑥 ∈ ((Base‘𝑅) × {𝑥}))
109 oveq2 7398 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → ((0g𝑅)(+g𝑅)𝑏) = ((0g𝑅)(+g𝑅)𝑥))
110109eqeq2d 2741 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (𝑥 = ((0g𝑅)(+g𝑅)𝑏) ↔ 𝑥 = ((0g𝑅)(+g𝑅)𝑥)))
111110adantl 481 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑏 = 𝑥) → (𝑥 = ((0g𝑅)(+g𝑅)𝑏) ↔ 𝑥 = ((0g𝑅)(+g𝑅)𝑥)))
112 ringgrp 20154 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
11313, 112syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑅 ∈ Grp)
1143, 32, 93grplid 18906 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑥) = 𝑥)
115113, 28, 114syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((0g𝑅)(+g𝑅)𝑥) = 𝑥)
116115eqcomd 2736 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑥 = ((0g𝑅)(+g𝑅)𝑥))
117108, 111, 116rspcedvd 3593 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = ((0g𝑅)(+g𝑅)𝑏))
11895, 99, 117rspcedvd 3593 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ∃𝑎𝑀𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g𝑅)𝑏))
119 simp-5l 784 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑅 ∈ CRing)
1203, 32, 67lsmelvalx 19577 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑀 ⊆ (Base‘𝑅) ∧ ((Base‘𝑅) × {𝑥}) ⊆ (Base‘𝑅)) → (𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑎𝑀𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g𝑅)𝑏)))
121119, 23, 82, 120syl3anc 1373 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑎𝑀𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g𝑅)𝑏)))
122118, 121mpbird 257 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})))
123 simpr 484 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ¬ 𝑥𝑀)
124 nelne1 3023 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ∧ ¬ 𝑥𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ≠ 𝑀)
125122, 123, 124syl2anc 584 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ≠ 𝑀)
126125neneqd 2931 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ¬ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = 𝑀)
12792, 126orcnd 878 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = (Base‘𝑅))
12866, 127eleqtrrd 2832 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (1r𝑅) ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})))
1293, 32, 67lsmelvalx 19577 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑀 ⊆ (Base‘𝑅) ∧ ((Base‘𝑅) × {𝑥}) ⊆ (Base‘𝑅)) → ((1r𝑅) ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑢𝑀𝑘 ∈ ((Base‘𝑅) × {𝑥})(1r𝑅) = (𝑢(+g𝑅)𝑘)))
130119, 23, 82, 129syl3anc 1373 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((1r𝑅) ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑢𝑀𝑘 ∈ ((Base‘𝑅) × {𝑥})(1r𝑅) = (𝑢(+g𝑅)𝑘)))
131128, 130mpbid 232 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ∃𝑢𝑀𝑘 ∈ ((Base‘𝑅) × {𝑥})(1r𝑅) = (𝑢(+g𝑅)𝑘))
13264, 131r19.29vva 3198 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑦𝑀)
133132ex 412 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) → (¬ 𝑥𝑀𝑦𝑀))
134133orrd 863 . . . . 5 (((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) → (𝑥𝑀𝑦𝑀))
135134ex 412 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) ∈ 𝑀 → (𝑥𝑀𝑦𝑀)))
136135anasss 466 . . 3 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦) ∈ 𝑀 → (𝑥𝑀𝑦𝑀)))
137136ralrimivva 3181 . 2 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝑀 → (𝑥𝑀𝑦𝑀)))
1383, 16prmidl2 33419 . 2 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ (𝑀 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝑀 → (𝑥𝑀𝑦𝑀)))) → 𝑀 ∈ (PrmIdeal‘𝑅))
1392, 5, 7, 137, 138syl22anc 838 1 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cun 3915  wss 3917  {csn 4592  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409  Grpcgrp 18872  LSSumclsm 19571  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150  LModclmod 20773  ringLModcrglmod 21086  LIdealclidl 21123  RSpancrsp 21124  LPIdealclpidl 21237  PrmIdealcprmidl 33413  MaxIdealcmxidl 33437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-lpidl 21239  df-prmidl 33414  df-mxidl 33438
This theorem is referenced by:  rprmirredb  33510  1arithufdlem1  33522  zarcls1  33866  zarclssn  33870  zarmxt1  33877
  Copyright terms: Public domain W3C validator