| Step | Hyp | Ref
| Expression |
| 1 | | crngring 20242 |
. . 3
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 2 | 1 | adantr 480 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑅 ∈ Ring) |
| 3 | | eqid 2737 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 4 | 3 | mxidlidl 33491 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅)) |
| 5 | 1, 4 | sylan 580 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅)) |
| 6 | 3 | mxidlnr 33492 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅)) |
| 7 | 1, 6 | sylan 580 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅)) |
| 8 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) |
| 9 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑘 = (𝑎(.r‘𝑅)𝑥)) |
| 10 | 9 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑢(+g‘𝑅)𝑘) = (𝑢(+g‘𝑅)(𝑎(.r‘𝑅)𝑥))) |
| 11 | 8, 10 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (1r‘𝑅) = (𝑢(+g‘𝑅)(𝑎(.r‘𝑅)𝑥))) |
| 12 | 11 | oveq1d 7446 |
. . . . . . . . . . 11
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = ((𝑢(+g‘𝑅)(𝑎(.r‘𝑅)𝑥))(.r‘𝑅)𝑦)) |
| 13 | 2 | ad4antr 732 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑅 ∈ Ring) |
| 14 | 13 | ad5antr 734 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑅 ∈ Ring) |
| 15 | | simp-8r 792 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑦 ∈ (Base‘𝑅)) |
| 16 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 17 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 18 | 3, 16, 17 | ringlidm 20266 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
| 19 | 14, 15, 18 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
| 20 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
| 21 | 3, 20 | lidlss 21222 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ (LIdeal‘𝑅) → 𝑀 ⊆ (Base‘𝑅)) |
| 22 | 5, 21 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ⊆ (Base‘𝑅)) |
| 23 | 22 | ad4antr 732 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ⊆ (Base‘𝑅)) |
| 24 | 23 | ad5antr 734 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑀 ⊆ (Base‘𝑅)) |
| 25 | | simp-5r 786 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑢 ∈ 𝑀) |
| 26 | 24, 25 | sseldd 3984 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑢 ∈ (Base‘𝑅)) |
| 27 | | simplr 769 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑎 ∈ (Base‘𝑅)) |
| 28 | | simp-4r 784 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑥 ∈ (Base‘𝑅)) |
| 29 | 28 | ad5antr 734 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑥 ∈ (Base‘𝑅)) |
| 30 | 3, 16 | ringcl 20247 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑎(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
| 31 | 14, 27, 29, 30 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑎(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
| 32 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 33 | 3, 32, 16 | ringdir 20259 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑢 ∈ (Base‘𝑅) ∧ (𝑎(.r‘𝑅)𝑥) ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑢(+g‘𝑅)(𝑎(.r‘𝑅)𝑥))(.r‘𝑅)𝑦) = ((𝑢(.r‘𝑅)𝑦)(+g‘𝑅)((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦))) |
| 34 | 14, 26, 31, 15, 33 | syl13anc 1374 |
. . . . . . . . . . 11
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → ((𝑢(+g‘𝑅)(𝑎(.r‘𝑅)𝑥))(.r‘𝑅)𝑦) = ((𝑢(.r‘𝑅)𝑦)(+g‘𝑅)((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦))) |
| 35 | 12, 19, 34 | 3eqtr3d 2785 |
. . . . . . . . . 10
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑦 = ((𝑢(.r‘𝑅)𝑦)(+g‘𝑅)((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦))) |
| 36 | | simp-5r 786 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ∈ (MaxIdeal‘𝑅)) |
| 37 | 13, 36, 4 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ∈ (LIdeal‘𝑅)) |
| 38 | 37 | ad5antr 734 |
. . . . . . . . . . 11
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑀 ∈ (LIdeal‘𝑅)) |
| 39 | | simp-10l 795 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑅 ∈ CRing) |
| 40 | 3, 16 | crngcom 20248 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑢) = (𝑢(.r‘𝑅)𝑦)) |
| 41 | 39, 15, 26, 40 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑦(.r‘𝑅)𝑢) = (𝑢(.r‘𝑅)𝑦)) |
| 42 | 20, 3, 16 | lidlmcl 21235 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑢 ∈ 𝑀)) → (𝑦(.r‘𝑅)𝑢) ∈ 𝑀) |
| 43 | 14, 38, 15, 25, 42 | syl22anc 839 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑦(.r‘𝑅)𝑢) ∈ 𝑀) |
| 44 | 41, 43 | eqeltrrd 2842 |
. . . . . . . . . . 11
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑢(.r‘𝑅)𝑦) ∈ 𝑀) |
| 45 | 3, 16 | ringass 20250 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (𝑎(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
| 46 | 14, 27, 29, 15, 45 | syl13anc 1374 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → ((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (𝑎(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
| 47 | | simp-7r 790 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) |
| 48 | 20, 3, 16 | lidlmcl 21235 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀)) → (𝑎(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) ∈ 𝑀) |
| 49 | 14, 38, 27, 47, 48 | syl22anc 839 |
. . . . . . . . . . . 12
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → (𝑎(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) ∈ 𝑀) |
| 50 | 46, 49 | eqeltrd 2841 |
. . . . . . . . . . 11
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → ((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) ∈ 𝑀) |
| 51 | 20, 32 | lidlacl 21231 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ ((𝑢(.r‘𝑅)𝑦) ∈ 𝑀 ∧ ((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) ∈ 𝑀)) → ((𝑢(.r‘𝑅)𝑦)(+g‘𝑅)((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦)) ∈ 𝑀) |
| 52 | 14, 38, 44, 50, 51 | syl22anc 839 |
. . . . . . . . . 10
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → ((𝑢(.r‘𝑅)𝑦)(+g‘𝑅)((𝑎(.r‘𝑅)𝑥)(.r‘𝑅)𝑦)) ∈ 𝑀) |
| 53 | 35, 52 | eqeltrd 2841 |
. . . . . . . . 9
⊢
(((((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r‘𝑅)𝑥)) → 𝑦 ∈ 𝑀) |
| 54 | | simplr 769 |
. . . . . . . . . 10
⊢
(((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) → 𝑘 ∈ ((Base‘𝑅) × {𝑥})) |
| 55 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 56 | 55, 3 | mgpbas 20142 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅)) |
| 57 | 55, 16 | mgpplusg 20141 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
| 58 | | mxidlprm.1 |
. . . . . . . . . . . 12
⊢ × =
(LSSum‘(mulGrp‘𝑅)) |
| 59 | | fvexd 6921 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (mulGrp‘𝑅) ∈ V) |
| 60 | | ssidd 4007 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (Base‘𝑅) ⊆ (Base‘𝑅)) |
| 61 | 56, 57, 58, 59, 60, 28 | elgrplsmsn 33418 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑘 ∈ ((Base‘𝑅) × {𝑥}) ↔ ∃𝑎 ∈ (Base‘𝑅)𝑘 = (𝑎(.r‘𝑅)𝑥))) |
| 62 | 61 | ad3antrrr 730 |
. . . . . . . . . 10
⊢
(((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) → (𝑘 ∈ ((Base‘𝑅) × {𝑥}) ↔ ∃𝑎 ∈ (Base‘𝑅)𝑘 = (𝑎(.r‘𝑅)𝑥))) |
| 63 | 54, 62 | mpbid 232 |
. . . . . . . . 9
⊢
(((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) → ∃𝑎 ∈ (Base‘𝑅)𝑘 = (𝑎(.r‘𝑅)𝑥)) |
| 64 | 53, 63 | r19.29a 3162 |
. . . . . . . 8
⊢
(((((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑢 ∈ 𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) → 𝑦 ∈ 𝑀) |
| 65 | 3, 17 | ringidcl 20262 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
| 66 | 13, 65 | syl 17 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 67 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(LSSum‘𝑅) =
(LSSum‘𝑅) |
| 68 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(RSpan‘𝑅) =
(RSpan‘𝑅) |
| 69 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(LPIdeal‘𝑅) =
(LPIdeal‘𝑅) |
| 70 | 69, 20 | lpiss 21339 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ Ring →
(LPIdeal‘𝑅) ⊆
(LIdeal‘𝑅)) |
| 71 | 13, 70 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (LPIdeal‘𝑅) ⊆ (LIdeal‘𝑅)) |
| 72 | 3, 55, 58, 68, 13, 28 | lsmsnidl 33427 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((Base‘𝑅) × {𝑥}) ∈ (LPIdeal‘𝑅)) |
| 73 | 71, 72 | sseldd 3984 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((Base‘𝑅) × {𝑥}) ∈ (LIdeal‘𝑅)) |
| 74 | 3, 67, 68, 13, 37, 73 | lsmidl 33429 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ∈ (LIdeal‘𝑅)) |
| 75 | | rlmlmod 21210 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring →
(ringLMod‘𝑅) ∈
LMod) |
| 76 | 13, 75 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (ringLMod‘𝑅) ∈ LMod) |
| 77 | | rlmbas 21200 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝑅) =
(Base‘(ringLMod‘𝑅)) |
| 78 | | rspval 21221 |
. . . . . . . . . . . . . . . 16
⊢
(RSpan‘𝑅) =
(LSpan‘(ringLMod‘𝑅)) |
| 79 | 77, 78 | lspssid 20983 |
. . . . . . . . . . . . . . 15
⊢
(((ringLMod‘𝑅)
∈ LMod ∧ 𝑀 ⊆
(Base‘𝑅)) →
𝑀 ⊆
((RSpan‘𝑅)‘𝑀)) |
| 80 | 76, 23, 79 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ⊆ ((RSpan‘𝑅)‘𝑀)) |
| 81 | 28 | snssd 4809 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → {𝑥} ⊆ (Base‘𝑅)) |
| 82 | 3, 55, 58, 13, 60, 81 | ringlsmss 33423 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((Base‘𝑅) × {𝑥}) ⊆ (Base‘𝑅)) |
| 83 | 23, 82 | unssd 4192 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑀 ∪ ((Base‘𝑅) × {𝑥})) ⊆ (Base‘𝑅)) |
| 84 | | ssun1 4178 |
. . . . . . . . . . . . . . . 16
⊢ 𝑀 ⊆ (𝑀 ∪ ((Base‘𝑅) × {𝑥})) |
| 85 | 84 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ⊆ (𝑀 ∪ ((Base‘𝑅) × {𝑥}))) |
| 86 | 77, 78 | lspss 20982 |
. . . . . . . . . . . . . . 15
⊢
(((ringLMod‘𝑅)
∈ LMod ∧ (𝑀 ∪
((Base‘𝑅) × {𝑥})) ⊆ (Base‘𝑅) ∧ 𝑀 ⊆ (𝑀 ∪ ((Base‘𝑅) × {𝑥}))) → ((RSpan‘𝑅)‘𝑀) ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥})))) |
| 87 | 76, 83, 85, 86 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((RSpan‘𝑅)‘𝑀) ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥})))) |
| 88 | 80, 87 | sstrd 3994 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥})))) |
| 89 | 3, 67, 68, 13, 37, 73 | lsmidllsp 33428 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥})))) |
| 90 | 88, 89 | sseqtrrd 4021 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑀 ⊆ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥}))) |
| 91 | 3 | mxidlmax 33493 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ ((𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})))) → ((𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = 𝑀 ∨ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = (Base‘𝑅))) |
| 92 | 13, 36, 74, 90, 91 | syl22anc 839 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = 𝑀 ∨ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = (Base‘𝑅))) |
| 93 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 94 | 20, 93 | lidl0cl 21230 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) →
(0g‘𝑅)
∈ 𝑀) |
| 95 | 13, 37, 94 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (0g‘𝑅) ∈ 𝑀) |
| 96 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (0g‘𝑅) → (𝑎(+g‘𝑅)𝑏) = ((0g‘𝑅)(+g‘𝑅)𝑏)) |
| 97 | 96 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (0g‘𝑅) → (𝑥 = (𝑎(+g‘𝑅)𝑏) ↔ 𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑏))) |
| 98 | 97 | rexbidv 3179 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = (0g‘𝑅) → (∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g‘𝑅)𝑏) ↔ ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑏))) |
| 99 | 98 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑎 = (0g‘𝑅)) → (∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g‘𝑅)𝑏) ↔ ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑏))) |
| 100 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = (1r‘𝑅) → (𝑎(.r‘𝑅)𝑥) = ((1r‘𝑅)(.r‘𝑅)𝑥)) |
| 101 | 100 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = (1r‘𝑅) → (𝑥 = (𝑎(.r‘𝑅)𝑥) ↔ 𝑥 = ((1r‘𝑅)(.r‘𝑅)𝑥))) |
| 102 | 101 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑎 = (1r‘𝑅)) → (𝑥 = (𝑎(.r‘𝑅)𝑥) ↔ 𝑥 = ((1r‘𝑅)(.r‘𝑅)𝑥))) |
| 103 | 3, 16, 17 | ringlidm 20266 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
| 104 | 13, 28, 103 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
| 105 | 104 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑥 = ((1r‘𝑅)(.r‘𝑅)𝑥)) |
| 106 | 66, 102, 105 | rspcedvd 3624 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ∃𝑎 ∈ (Base‘𝑅)𝑥 = (𝑎(.r‘𝑅)𝑥)) |
| 107 | 56, 57, 58, 59, 60, 28 | elgrplsmsn 33418 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑥 ∈ ((Base‘𝑅) × {𝑥}) ↔ ∃𝑎 ∈ (Base‘𝑅)𝑥 = (𝑎(.r‘𝑅)𝑥))) |
| 108 | 106, 107 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑥 ∈ ((Base‘𝑅) × {𝑥})) |
| 109 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑥 → ((0g‘𝑅)(+g‘𝑅)𝑏) = ((0g‘𝑅)(+g‘𝑅)𝑥)) |
| 110 | 109 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑥 → (𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑏) ↔ 𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑥))) |
| 111 | 110 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑅 ∈
CRing ∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) ∧ 𝑏 = 𝑥) → (𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑏) ↔ 𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑥))) |
| 112 | | ringgrp 20235 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 113 | 13, 112 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑅 ∈ Grp) |
| 114 | 3, 32, 93 | grplid 18985 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) →
((0g‘𝑅)(+g‘𝑅)𝑥) = 𝑥) |
| 115 | 113, 28, 114 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((0g‘𝑅)(+g‘𝑅)𝑥) = 𝑥) |
| 116 | 115 | eqcomd 2743 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑥)) |
| 117 | 108, 111,
116 | rspcedvd 3624 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = ((0g‘𝑅)(+g‘𝑅)𝑏)) |
| 118 | 95, 99, 117 | rspcedvd 3624 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ∃𝑎 ∈ 𝑀 ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g‘𝑅)𝑏)) |
| 119 | | simp-5l 785 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑅 ∈ CRing) |
| 120 | 3, 32, 67 | lsmelvalx 19658 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ⊆ (Base‘𝑅) ∧ ((Base‘𝑅) × {𝑥}) ⊆ (Base‘𝑅)) → (𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑎 ∈ 𝑀 ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g‘𝑅)𝑏))) |
| 121 | 119, 23, 82, 120 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑎 ∈ 𝑀 ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g‘𝑅)𝑏))) |
| 122 | 118, 121 | mpbird 257 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥}))) |
| 123 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ¬ 𝑥 ∈ 𝑀) |
| 124 | | nelne1 3039 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ≠ 𝑀) |
| 125 | 122, 123,
124 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ≠ 𝑀) |
| 126 | 125 | neneqd 2945 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ¬ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = 𝑀) |
| 127 | 92, 126 | orcnd 879 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = (Base‘𝑅)) |
| 128 | 66, 127 | eleqtrrd 2844 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → (1r‘𝑅) ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥}))) |
| 129 | 3, 32, 67 | lsmelvalx 19658 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ⊆ (Base‘𝑅) ∧ ((Base‘𝑅) × {𝑥}) ⊆ (Base‘𝑅)) → ((1r‘𝑅) ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑢 ∈ 𝑀 ∃𝑘 ∈ ((Base‘𝑅) × {𝑥})(1r‘𝑅) = (𝑢(+g‘𝑅)𝑘))) |
| 130 | 119, 23, 82, 129 | syl3anc 1373 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ((1r‘𝑅) ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑢 ∈ 𝑀 ∃𝑘 ∈ ((Base‘𝑅) × {𝑥})(1r‘𝑅) = (𝑢(+g‘𝑅)𝑘))) |
| 131 | 128, 130 | mpbid 232 |
. . . . . . . 8
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → ∃𝑢 ∈ 𝑀 ∃𝑘 ∈ ((Base‘𝑅) × {𝑥})(1r‘𝑅) = (𝑢(+g‘𝑅)𝑘)) |
| 132 | 64, 131 | r19.29vva 3216 |
. . . . . . 7
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥 ∈ 𝑀) → 𝑦 ∈ 𝑀) |
| 133 | 132 | ex 412 |
. . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) → (¬ 𝑥 ∈ 𝑀 → 𝑦 ∈ 𝑀)) |
| 134 | 133 | orrd 864 |
. . . . 5
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈
(MaxIdeal‘𝑅)) ∧
𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝑀) → (𝑥 ∈ 𝑀 ∨ 𝑦 ∈ 𝑀)) |
| 135 | 134 | ex 412 |
. . . 4
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑦) ∈ 𝑀 → (𝑥 ∈ 𝑀 ∨ 𝑦 ∈ 𝑀))) |
| 136 | 135 | anasss 466 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑅)𝑦) ∈ 𝑀 → (𝑥 ∈ 𝑀 ∨ 𝑦 ∈ 𝑀))) |
| 137 | 136 | ralrimivva 3202 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ 𝑀 → (𝑥 ∈ 𝑀 ∨ 𝑦 ∈ 𝑀))) |
| 138 | 3, 16 | prmidl2 33469 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ (𝑀 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ 𝑀 → (𝑥 ∈ 𝑀 ∨ 𝑦 ∈ 𝑀)))) → 𝑀 ∈ (PrmIdeal‘𝑅)) |
| 139 | 2, 5, 7, 137, 138 | syl22anc 839 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅)) |