Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlprm Structured version   Visualization version   GIF version

Theorem mxidlprm 31626
Description: Every maximal ideal is prime. Statement in [Lang] p. 92. (Contributed by Thierry Arnoux, 21-Jan-2024.)
Hypothesis
Ref Expression
mxidlprm.1 × = (LSSum‘(mulGrp‘𝑅))
Assertion
Ref Expression
mxidlprm ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅))

Proof of Theorem mxidlprm
Dummy variables 𝑎 𝑘 𝑢 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19783 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21adantr 481 . 2 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑅 ∈ Ring)
3 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
43mxidlidl 31621 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
51, 4sylan 580 . 2 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅))
63mxidlnr 31622 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅))
71, 6sylan 580 . 2 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ (Base‘𝑅))
8 simpllr 773 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (1r𝑅) = (𝑢(+g𝑅)𝑘))
9 simpr 485 . . . . . . . . . . . . . 14 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑘 = (𝑎(.r𝑅)𝑥))
109oveq2d 7284 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑢(+g𝑅)𝑘) = (𝑢(+g𝑅)(𝑎(.r𝑅)𝑥)))
118, 10eqtrd 2778 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (1r𝑅) = (𝑢(+g𝑅)(𝑎(.r𝑅)𝑥)))
1211oveq1d 7283 . . . . . . . . . . 11 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → ((1r𝑅)(.r𝑅)𝑦) = ((𝑢(+g𝑅)(𝑎(.r𝑅)𝑥))(.r𝑅)𝑦))
132ad4antr 729 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑅 ∈ Ring)
1413ad5antr 731 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑅 ∈ Ring)
15 simp-8r 789 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑦 ∈ (Base‘𝑅))
16 eqid 2738 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
17 eqid 2738 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
183, 16, 17ringlidm 19798 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑦) = 𝑦)
1914, 15, 18syl2anc 584 . . . . . . . . . . 11 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → ((1r𝑅)(.r𝑅)𝑦) = 𝑦)
20 eqid 2738 . . . . . . . . . . . . . . . . 17 (LIdeal‘𝑅) = (LIdeal‘𝑅)
213, 20lidlss 20469 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (LIdeal‘𝑅) → 𝑀 ⊆ (Base‘𝑅))
225, 21syl 17 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ⊆ (Base‘𝑅))
2322ad4antr 729 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ⊆ (Base‘𝑅))
2423ad5antr 731 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑀 ⊆ (Base‘𝑅))
25 simp-5r 783 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑢𝑀)
2624, 25sseldd 3922 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑢 ∈ (Base‘𝑅))
27 simplr 766 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑎 ∈ (Base‘𝑅))
28 simp-4r 781 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑥 ∈ (Base‘𝑅))
2928ad5antr 731 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑥 ∈ (Base‘𝑅))
303, 16ringcl 19788 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑎(.r𝑅)𝑥) ∈ (Base‘𝑅))
3114, 27, 29, 30syl3anc 1370 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑎(.r𝑅)𝑥) ∈ (Base‘𝑅))
32 eqid 2738 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
333, 32, 16ringdir 19794 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑢 ∈ (Base‘𝑅) ∧ (𝑎(.r𝑅)𝑥) ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑢(+g𝑅)(𝑎(.r𝑅)𝑥))(.r𝑅)𝑦) = ((𝑢(.r𝑅)𝑦)(+g𝑅)((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦)))
3414, 26, 31, 15, 33syl13anc 1371 . . . . . . . . . . 11 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → ((𝑢(+g𝑅)(𝑎(.r𝑅)𝑥))(.r𝑅)𝑦) = ((𝑢(.r𝑅)𝑦)(+g𝑅)((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦)))
3512, 19, 343eqtr3d 2786 . . . . . . . . . 10 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑦 = ((𝑢(.r𝑅)𝑦)(+g𝑅)((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦)))
36 simp-5r 783 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ∈ (MaxIdeal‘𝑅))
3713, 36, 4syl2anc 584 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ∈ (LIdeal‘𝑅))
3837ad5antr 731 . . . . . . . . . . 11 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑀 ∈ (LIdeal‘𝑅))
39 simp-10l 792 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑅 ∈ CRing)
403, 16crngcom 19789 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑢) = (𝑢(.r𝑅)𝑦))
4139, 15, 26, 40syl3anc 1370 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑦(.r𝑅)𝑢) = (𝑢(.r𝑅)𝑦))
4220, 3, 16lidlmcl 20476 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑢𝑀)) → (𝑦(.r𝑅)𝑢) ∈ 𝑀)
4314, 38, 15, 25, 42syl22anc 836 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑦(.r𝑅)𝑢) ∈ 𝑀)
4441, 43eqeltrrd 2840 . . . . . . . . . . 11 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑢(.r𝑅)𝑦) ∈ 𝑀)
453, 16ringass 19791 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦) = (𝑎(.r𝑅)(𝑥(.r𝑅)𝑦)))
4614, 27, 29, 15, 45syl13anc 1371 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → ((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦) = (𝑎(.r𝑅)(𝑥(.r𝑅)𝑦)))
47 simp-7r 787 . . . . . . . . . . . . 13 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑥(.r𝑅)𝑦) ∈ 𝑀)
4820, 3, 16lidlmcl 20476 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀)) → (𝑎(.r𝑅)(𝑥(.r𝑅)𝑦)) ∈ 𝑀)
4914, 38, 27, 47, 48syl22anc 836 . . . . . . . . . . . 12 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → (𝑎(.r𝑅)(𝑥(.r𝑅)𝑦)) ∈ 𝑀)
5046, 49eqeltrd 2839 . . . . . . . . . . 11 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → ((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦) ∈ 𝑀)
5120, 32lidlacl 20472 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ ((𝑢(.r𝑅)𝑦) ∈ 𝑀 ∧ ((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦) ∈ 𝑀)) → ((𝑢(.r𝑅)𝑦)(+g𝑅)((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦)) ∈ 𝑀)
5214, 38, 44, 50, 51syl22anc 836 . . . . . . . . . 10 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → ((𝑢(.r𝑅)𝑦)(+g𝑅)((𝑎(.r𝑅)𝑥)(.r𝑅)𝑦)) ∈ 𝑀)
5335, 52eqeltrd 2839 . . . . . . . . 9 (((((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑘 = (𝑎(.r𝑅)𝑥)) → 𝑦𝑀)
54 simplr 766 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) → 𝑘 ∈ ((Base‘𝑅) × {𝑥}))
55 eqid 2738 . . . . . . . . . . . . 13 (mulGrp‘𝑅) = (mulGrp‘𝑅)
5655, 3mgpbas 19714 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
5755, 16mgpplusg 19712 . . . . . . . . . . . 12 (.r𝑅) = (+g‘(mulGrp‘𝑅))
58 mxidlprm.1 . . . . . . . . . . . 12 × = (LSSum‘(mulGrp‘𝑅))
59 fvexd 6782 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (mulGrp‘𝑅) ∈ V)
60 ssidd 3944 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (Base‘𝑅) ⊆ (Base‘𝑅))
6156, 57, 58, 59, 60, 28elgrplsmsn 31564 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑘 ∈ ((Base‘𝑅) × {𝑥}) ↔ ∃𝑎 ∈ (Base‘𝑅)𝑘 = (𝑎(.r𝑅)𝑥)))
6261ad3antrrr 727 . . . . . . . . . 10 (((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) → (𝑘 ∈ ((Base‘𝑅) × {𝑥}) ↔ ∃𝑎 ∈ (Base‘𝑅)𝑘 = (𝑎(.r𝑅)𝑥)))
6354, 62mpbid 231 . . . . . . . . 9 (((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) → ∃𝑎 ∈ (Base‘𝑅)𝑘 = (𝑎(.r𝑅)𝑥))
6453, 63r19.29a 3216 . . . . . . . 8 (((((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑢𝑀) ∧ 𝑘 ∈ ((Base‘𝑅) × {𝑥})) ∧ (1r𝑅) = (𝑢(+g𝑅)𝑘)) → 𝑦𝑀)
653, 17ringidcl 19795 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
6613, 65syl 17 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (1r𝑅) ∈ (Base‘𝑅))
67 eqid 2738 . . . . . . . . . . . . 13 (LSSum‘𝑅) = (LSSum‘𝑅)
68 eqid 2738 . . . . . . . . . . . . 13 (RSpan‘𝑅) = (RSpan‘𝑅)
69 eqid 2738 . . . . . . . . . . . . . . . 16 (LPIdeal‘𝑅) = (LPIdeal‘𝑅)
7069, 20lpiss 20509 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → (LPIdeal‘𝑅) ⊆ (LIdeal‘𝑅))
7113, 70syl 17 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (LPIdeal‘𝑅) ⊆ (LIdeal‘𝑅))
723, 55, 58, 68, 13, 28lsmsnidl 31573 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((Base‘𝑅) × {𝑥}) ∈ (LPIdeal‘𝑅))
7371, 72sseldd 3922 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((Base‘𝑅) × {𝑥}) ∈ (LIdeal‘𝑅))
743, 67, 68, 13, 37, 73lsmidl 31575 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ∈ (LIdeal‘𝑅))
75 rlmlmod 20463 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
7613, 75syl 17 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (ringLMod‘𝑅) ∈ LMod)
77 rlmbas 20453 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
78 rspval 20451 . . . . . . . . . . . . . . . 16 (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))
7977, 78lspssid 20235 . . . . . . . . . . . . . . 15 (((ringLMod‘𝑅) ∈ LMod ∧ 𝑀 ⊆ (Base‘𝑅)) → 𝑀 ⊆ ((RSpan‘𝑅)‘𝑀))
8076, 23, 79syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ⊆ ((RSpan‘𝑅)‘𝑀))
8128snssd 4743 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → {𝑥} ⊆ (Base‘𝑅))
823, 55, 58, 13, 60, 81ringlsmss 31569 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((Base‘𝑅) × {𝑥}) ⊆ (Base‘𝑅))
8323, 82unssd 4120 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑀 ∪ ((Base‘𝑅) × {𝑥})) ⊆ (Base‘𝑅))
84 ssun1 4106 . . . . . . . . . . . . . . . 16 𝑀 ⊆ (𝑀 ∪ ((Base‘𝑅) × {𝑥}))
8584a1i 11 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ⊆ (𝑀 ∪ ((Base‘𝑅) × {𝑥})))
8677, 78lspss 20234 . . . . . . . . . . . . . . 15 (((ringLMod‘𝑅) ∈ LMod ∧ (𝑀 ∪ ((Base‘𝑅) × {𝑥})) ⊆ (Base‘𝑅) ∧ 𝑀 ⊆ (𝑀 ∪ ((Base‘𝑅) × {𝑥}))) → ((RSpan‘𝑅)‘𝑀) ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥}))))
8776, 83, 85, 86syl3anc 1370 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((RSpan‘𝑅)‘𝑀) ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥}))))
8880, 87sstrd 3931 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ⊆ ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥}))))
893, 67, 68, 13, 37, 73lsmidllsp 31574 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = ((RSpan‘𝑅)‘(𝑀 ∪ ((Base‘𝑅) × {𝑥}))))
9088, 89sseqtrrd 3962 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑀 ⊆ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})))
913mxidlmax 31623 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ ((𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})))) → ((𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = 𝑀 ∨ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = (Base‘𝑅)))
9213, 36, 74, 90, 91syl22anc 836 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = 𝑀 ∨ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = (Base‘𝑅)))
93 eqid 2738 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
9420, 93lidl0cl 20471 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝑀)
9513, 37, 94syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (0g𝑅) ∈ 𝑀)
96 oveq1 7275 . . . . . . . . . . . . . . . . . 18 (𝑎 = (0g𝑅) → (𝑎(+g𝑅)𝑏) = ((0g𝑅)(+g𝑅)𝑏))
9796eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑎 = (0g𝑅) → (𝑥 = (𝑎(+g𝑅)𝑏) ↔ 𝑥 = ((0g𝑅)(+g𝑅)𝑏)))
9897rexbidv 3224 . . . . . . . . . . . . . . . 16 (𝑎 = (0g𝑅) → (∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g𝑅)𝑏) ↔ ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = ((0g𝑅)(+g𝑅)𝑏)))
9998adantl 482 . . . . . . . . . . . . . . 15 (((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑎 = (0g𝑅)) → (∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g𝑅)𝑏) ↔ ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = ((0g𝑅)(+g𝑅)𝑏)))
100 oveq1 7275 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (1r𝑅) → (𝑎(.r𝑅)𝑥) = ((1r𝑅)(.r𝑅)𝑥))
101100eqeq2d 2749 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (1r𝑅) → (𝑥 = (𝑎(.r𝑅)𝑥) ↔ 𝑥 = ((1r𝑅)(.r𝑅)𝑥)))
102101adantl 482 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑎 = (1r𝑅)) → (𝑥 = (𝑎(.r𝑅)𝑥) ↔ 𝑥 = ((1r𝑅)(.r𝑅)𝑥)))
1033, 16, 17ringlidm 19798 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
10413, 28, 103syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
105104eqcomd 2744 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑥 = ((1r𝑅)(.r𝑅)𝑥))
10666, 102, 105rspcedvd 3563 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ∃𝑎 ∈ (Base‘𝑅)𝑥 = (𝑎(.r𝑅)𝑥))
10756, 57, 58, 59, 60, 28elgrplsmsn 31564 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑥 ∈ ((Base‘𝑅) × {𝑥}) ↔ ∃𝑎 ∈ (Base‘𝑅)𝑥 = (𝑎(.r𝑅)𝑥)))
108106, 107mpbird 256 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑥 ∈ ((Base‘𝑅) × {𝑥}))
109 oveq2 7276 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → ((0g𝑅)(+g𝑅)𝑏) = ((0g𝑅)(+g𝑅)𝑥))
110109eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (𝑥 = ((0g𝑅)(+g𝑅)𝑏) ↔ 𝑥 = ((0g𝑅)(+g𝑅)𝑥)))
111110adantl 482 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) ∧ 𝑏 = 𝑥) → (𝑥 = ((0g𝑅)(+g𝑅)𝑏) ↔ 𝑥 = ((0g𝑅)(+g𝑅)𝑥)))
112 ringgrp 19776 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
11313, 112syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑅 ∈ Grp)
1143, 32, 93grplid 18597 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑥) = 𝑥)
115113, 28, 114syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((0g𝑅)(+g𝑅)𝑥) = 𝑥)
116115eqcomd 2744 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑥 = ((0g𝑅)(+g𝑅)𝑥))
117108, 111, 116rspcedvd 3563 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ∃𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = ((0g𝑅)(+g𝑅)𝑏))
11895, 99, 117rspcedvd 3563 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ∃𝑎𝑀𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g𝑅)𝑏))
119 simp-5l 782 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑅 ∈ CRing)
1203, 32, 67lsmelvalx 19233 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑀 ⊆ (Base‘𝑅) ∧ ((Base‘𝑅) × {𝑥}) ⊆ (Base‘𝑅)) → (𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑎𝑀𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g𝑅)𝑏)))
121119, 23, 82, 120syl3anc 1370 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑎𝑀𝑏 ∈ ((Base‘𝑅) × {𝑥})𝑥 = (𝑎(+g𝑅)𝑏)))
122118, 121mpbird 256 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})))
123 simpr 485 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ¬ 𝑥𝑀)
124 nelne1 3041 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ∧ ¬ 𝑥𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ≠ 𝑀)
125122, 123, 124syl2anc 584 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ≠ 𝑀)
126125neneqd 2948 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ¬ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = 𝑀)
12792, 126orcnd 876 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) = (Base‘𝑅))
12866, 127eleqtrrd 2842 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → (1r𝑅) ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})))
1293, 32, 67lsmelvalx 19233 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑀 ⊆ (Base‘𝑅) ∧ ((Base‘𝑅) × {𝑥}) ⊆ (Base‘𝑅)) → ((1r𝑅) ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑢𝑀𝑘 ∈ ((Base‘𝑅) × {𝑥})(1r𝑅) = (𝑢(+g𝑅)𝑘)))
130119, 23, 82, 129syl3anc 1370 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ((1r𝑅) ∈ (𝑀(LSSum‘𝑅)((Base‘𝑅) × {𝑥})) ↔ ∃𝑢𝑀𝑘 ∈ ((Base‘𝑅) × {𝑥})(1r𝑅) = (𝑢(+g𝑅)𝑘)))
131128, 130mpbid 231 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → ∃𝑢𝑀𝑘 ∈ ((Base‘𝑅) × {𝑥})(1r𝑅) = (𝑢(+g𝑅)𝑘))
13264, 131r19.29vva 3264 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) ∧ ¬ 𝑥𝑀) → 𝑦𝑀)
133132ex 413 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) → (¬ 𝑥𝑀𝑦𝑀))
134133orrd 860 . . . . 5 (((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝑀) → (𝑥𝑀𝑦𝑀))
135134ex 413 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) ∈ 𝑀 → (𝑥𝑀𝑦𝑀)))
136135anasss 467 . . 3 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦) ∈ 𝑀 → (𝑥𝑀𝑦𝑀)))
137136ralrimivva 3120 . 2 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝑀 → (𝑥𝑀𝑦𝑀)))
1383, 16prmidl2 31602 . 2 (((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) ∧ (𝑀 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝑀 → (𝑥𝑀𝑦𝑀)))) → 𝑀 ∈ (PrmIdeal‘𝑅))
1392, 5, 7, 137, 138syl22anc 836 1 ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3430  cun 3885  wss 3887  {csn 4562  cfv 6427  (class class class)co 7268  Basecbs 16900  +gcplusg 16950  .rcmulr 16951  0gc0g 17138  Grpcgrp 18565  LSSumclsm 19227  mulGrpcmgp 19708  1rcur 19725  Ringcrg 19771  CRingccrg 19772  LModclmod 20111  ringLModcrglmod 20419  LIdealclidl 20420  RSpancrsp 20421  LPIdealclpidl 20500  PrmIdealcprmidl 31596  MaxIdealcmxidl 31617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-nn 11962  df-2 12024  df-3 12025  df-4 12026  df-5 12027  df-6 12028  df-7 12029  df-8 12030  df-sets 16853  df-slot 16871  df-ndx 16883  df-base 16901  df-ress 16930  df-plusg 16963  df-mulr 16964  df-sca 16966  df-vsca 16967  df-ip 16968  df-0g 17140  df-mgm 18314  df-sgrp 18363  df-mnd 18374  df-submnd 18419  df-grp 18568  df-minusg 18569  df-sbg 18570  df-subg 18740  df-cntz 18911  df-lsm 19229  df-cmn 19376  df-abl 19377  df-mgp 19709  df-ur 19726  df-ring 19773  df-cring 19774  df-subrg 20010  df-lmod 20113  df-lss 20182  df-lsp 20222  df-sra 20422  df-rgmod 20423  df-lidl 20424  df-rsp 20425  df-lpidl 20502  df-prmidl 31597  df-mxidl 31618
This theorem is referenced by:  zarcls1  31805  zarclssn  31809  zarmxt1  31816
  Copyright terms: Public domain W3C validator