MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leibpilem2 Structured version   Visualization version   GIF version

Theorem leibpilem2 27002
Description: The Leibniz formula for π. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
leibpi.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
leibpilem2.2 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
leibpilem2.3 𝐴 ∈ V
Assertion
Ref Expression
leibpilem2 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
Distinct variable groups:   𝑘,𝑛   𝑛,𝐺
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐹(𝑘,𝑛)   𝐺(𝑘)

Proof of Theorem leibpilem2
StepHypRef Expression
1 leibpi.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
2 2cn 12368 . . . . . . . . . . . 12 2 ∈ ℂ
3 nn0cn 12563 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
4 mulcl 11268 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
52, 3, 4sylancr 586 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℂ)
6 ax-1cn 11242 . . . . . . . . . . 11 1 ∈ ℂ
7 pncan 11542 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
85, 6, 7sylancl 585 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
98oveq1d 7463 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((((2 · 𝑛) + 1) − 1) / 2) = ((2 · 𝑛) / 2))
10 2ne0 12397 . . . . . . . . . . 11 2 ≠ 0
11 divcan3 11975 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑛) / 2) = 𝑛)
122, 10, 11mp3an23 1453 . . . . . . . . . 10 (𝑛 ∈ ℂ → ((2 · 𝑛) / 2) = 𝑛)
133, 12syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((2 · 𝑛) / 2) = 𝑛)
149, 13eqtrd 2780 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((((2 · 𝑛) + 1) − 1) / 2) = 𝑛)
1514oveq2d 7464 . . . . . . 7 (𝑛 ∈ ℕ0 → (-1↑((((2 · 𝑛) + 1) − 1) / 2)) = (-1↑𝑛))
1615oveq1d 7463 . . . . . 6 (𝑛 ∈ ℕ0 → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) = ((-1↑𝑛) / ((2 · 𝑛) + 1)))
1716mpteq2ia 5269 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
181, 17eqtr4i 2771 . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))
19 seqeq3 14057 . . . 4 (𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))) → seq0( + , 𝐹) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))))
2018, 19ax-mp 5 . . 3 seq0( + , 𝐹) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))))
2120breq1i 5173 . 2 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴)
22 neg1rr 12408 . . . . . . . . 9 -1 ∈ ℝ
23 reexpcl 14129 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℝ)
2422, 23mpan 689 . . . . . . . 8 (𝑛 ∈ ℕ0 → (-1↑𝑛) ∈ ℝ)
25 2nn0 12570 . . . . . . . . . 10 2 ∈ ℕ0
26 nn0mulcl 12589 . . . . . . . . . 10 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
2725, 26mpan 689 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
28 nn0p1nn 12592 . . . . . . . . 9 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
2927, 28syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
3024, 29nndivred 12347 . . . . . . 7 (𝑛 ∈ ℕ0 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ ℝ)
3130recnd 11318 . . . . . 6 (𝑛 ∈ ℕ0 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ ℂ)
3216, 31eqeltrd 2844 . . . . 5 (𝑛 ∈ ℕ0 → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) ∈ ℂ)
3332adantl 481 . . . 4 ((⊤ ∧ 𝑛 ∈ ℕ0) → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) ∈ ℂ)
34 oveq1 7455 . . . . . . 7 (𝑘 = ((2 · 𝑛) + 1) → (𝑘 − 1) = (((2 · 𝑛) + 1) − 1))
3534oveq1d 7463 . . . . . 6 (𝑘 = ((2 · 𝑛) + 1) → ((𝑘 − 1) / 2) = ((((2 · 𝑛) + 1) − 1) / 2))
3635oveq2d 7464 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → (-1↑((𝑘 − 1) / 2)) = (-1↑((((2 · 𝑛) + 1) − 1) / 2)))
37 id 22 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → 𝑘 = ((2 · 𝑛) + 1))
3836, 37oveq12d 7466 . . . 4 (𝑘 = ((2 · 𝑛) + 1) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) = ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))
3933, 38iserodd 16882 . . 3 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴))
4039mptru 1544 . 2 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴)
41 addlid 11473 . . . . . . . 8 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
4241adantl 481 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
43 0cnd 11283 . . . . . . 7 (⊤ → 0 ∈ ℂ)
44 1eluzge0 12957 . . . . . . . 8 1 ∈ (ℤ‘0)
4544a1i 11 . . . . . . 7 (⊤ → 1 ∈ (ℤ‘0))
46 1nn0 12569 . . . . . . . 8 1 ∈ ℕ0
47 leibpilem2.2 . . . . . . . . . 10 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
48 0cnd 11283 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → 0 ∈ ℂ)
49 ioran 984 . . . . . . . . . . . 12 (¬ (𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘))
50 leibpilem1 27001 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (𝑘 ∈ ℕ ∧ ((𝑘 − 1) / 2) ∈ ℕ0))
5150simprd 495 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((𝑘 − 1) / 2) ∈ ℕ0)
52 reexpcl 14129 . . . . . . . . . . . . . . 15 ((-1 ∈ ℝ ∧ ((𝑘 − 1) / 2) ∈ ℕ0) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
5322, 51, 52sylancr 586 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
5450simpld 494 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ)
5553, 54nndivred 12347 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℝ)
5655recnd 11318 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
5749, 56sylan2b 593 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
5848, 57ifclda 4583 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ ℂ)
5947, 58fmpti 7146 . . . . . . . . 9 𝐺:ℕ0⟶ℂ
6059ffvelcdmi 7117 . . . . . . . 8 (1 ∈ ℕ0 → (𝐺‘1) ∈ ℂ)
6146, 60mp1i 13 . . . . . . 7 (⊤ → (𝐺‘1) ∈ ℂ)
62 simpr 484 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 ∈ (0...(1 − 1)))
63 1m1e0 12365 . . . . . . . . . . . 12 (1 − 1) = 0
6463oveq2i 7459 . . . . . . . . . . 11 (0...(1 − 1)) = (0...0)
6562, 64eleqtrdi 2854 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 ∈ (0...0))
66 elfz1eq 13595 . . . . . . . . . 10 (𝑛 ∈ (0...0) → 𝑛 = 0)
6765, 66syl 17 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 = 0)
6867fveq2d 6924 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → (𝐺𝑛) = (𝐺‘0))
69 0nn0 12568 . . . . . . . . 9 0 ∈ ℕ0
70 iftrue 4554 . . . . . . . . . . 11 ((𝑘 = 0 ∨ 2 ∥ 𝑘) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = 0)
7170orcs 874 . . . . . . . . . 10 (𝑘 = 0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = 0)
72 c0ex 11284 . . . . . . . . . 10 0 ∈ V
7371, 47, 72fvmpt 7029 . . . . . . . . 9 (0 ∈ ℕ0 → (𝐺‘0) = 0)
7469, 73ax-mp 5 . . . . . . . 8 (𝐺‘0) = 0
7568, 74eqtrdi 2796 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → (𝐺𝑛) = 0)
7642, 43, 45, 61, 75seqid 14098 . . . . . 6 (⊤ → (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , 𝐺))
77 1zzd 12674 . . . . . . 7 (⊤ → 1 ∈ ℤ)
78 simpr 484 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ (ℤ‘1))
79 nnuz 12946 . . . . . . . . 9 ℕ = (ℤ‘1)
8078, 79eleqtrrdi 2855 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
81 nnne0 12327 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
8281neneqd 2951 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
83 biorf 935 . . . . . . . . . . 11 𝑛 = 0 → (2 ∥ 𝑛 ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
8482, 83syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 ∥ 𝑛 ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
8584ifbid 4571 . . . . . . . . 9 (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
86 breq2 5170 . . . . . . . . . . 11 (𝑘 = 𝑛 → (2 ∥ 𝑘 ↔ 2 ∥ 𝑛))
87 oveq1 7455 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
8887oveq1d 7463 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝑘 − 1) / 2) = ((𝑛 − 1) / 2))
8988oveq2d 7464 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (-1↑((𝑘 − 1) / 2)) = (-1↑((𝑛 − 1) / 2)))
90 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑛𝑘 = 𝑛)
9189, 90oveq12d 7466 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((-1↑((𝑘 − 1) / 2)) / 𝑘) = ((-1↑((𝑛 − 1) / 2)) / 𝑛))
9286, 91ifbieq2d 4574 . . . . . . . . . 10 (𝑘 = 𝑛 → if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
93 eqid 2740 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) = (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
94 ovex 7481 . . . . . . . . . . 11 ((-1↑((𝑛 − 1) / 2)) / 𝑛) ∈ V
9572, 94ifex 4598 . . . . . . . . . 10 if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) ∈ V
9692, 93, 95fvmpt 7029 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
97 nnnn0 12560 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
98 eqeq1 2744 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0))
9998, 86orbi12d 917 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
10099, 91ifbieq2d 4574 . . . . . . . . . . 11 (𝑘 = 𝑛 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10172, 94ifex 4598 . . . . . . . . . . 11 if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) ∈ V
102100, 47, 101fvmpt 7029 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝐺𝑛) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10397, 102syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐺𝑛) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10485, 96, 1033eqtr4d 2790 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = (𝐺𝑛))
10580, 104syl 17 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = (𝐺𝑛))
10677, 105seqfeq 14078 . . . . . 6 (⊤ → seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) = seq1( + , 𝐺))
10776, 106eqtr4d 2783 . . . . 5 (⊤ → (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))))
108107mptru 1544 . . . 4 (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))))
109108breq1i 5173 . . 3 ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴)
110 1z 12673 . . . 4 1 ∈ ℤ
111 seqex 14054 . . . 4 seq0( + , 𝐺) ∈ V
112 climres 15621 . . . 4 ((1 ∈ ℤ ∧ seq0( + , 𝐺) ∈ V) → ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴))
113110, 111, 112mp2an 691 . . 3 ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
114109, 113bitr3i 277 . 2 (seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
11521, 40, 1143bitri 297 1 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 846   = wceq 1537  wtru 1538  wcel 2108  wne 2946  Vcvv 3488  ifcif 4548   class class class wbr 5166  cmpt 5249  cres 5702  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  seqcseq 14052  cexp 14112  cli 15530  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-dvds 16303
This theorem is referenced by:  leibpi  27003
  Copyright terms: Public domain W3C validator