Step | Hyp | Ref
| Expression |
1 | | leibpi.1 |
. . . . 5
β’ πΉ = (π β β0 β¦
((-1βπ) / ((2 Β·
π) + 1))) |
2 | | 2cn 12291 |
. . . . . . . . . . . 12
β’ 2 β
β |
3 | | nn0cn 12486 |
. . . . . . . . . . . 12
β’ (π β β0
β π β
β) |
4 | | mulcl 11196 |
. . . . . . . . . . . 12
β’ ((2
β β β§ π
β β) β (2 Β· π) β β) |
5 | 2, 3, 4 | sylancr 585 |
. . . . . . . . . . 11
β’ (π β β0
β (2 Β· π)
β β) |
6 | | ax-1cn 11170 |
. . . . . . . . . . 11
β’ 1 β
β |
7 | | pncan 11470 |
. . . . . . . . . . 11
β’ (((2
Β· π) β β
β§ 1 β β) β (((2 Β· π) + 1) β 1) = (2 Β· π)) |
8 | 5, 6, 7 | sylancl 584 |
. . . . . . . . . 10
β’ (π β β0
β (((2 Β· π) +
1) β 1) = (2 Β· π)) |
9 | 8 | oveq1d 7426 |
. . . . . . . . 9
β’ (π β β0
β ((((2 Β· π) +
1) β 1) / 2) = ((2 Β· π) / 2)) |
10 | | 2ne0 12320 |
. . . . . . . . . . 11
β’ 2 β
0 |
11 | | divcan3 11902 |
. . . . . . . . . . 11
β’ ((π β β β§ 2 β
β β§ 2 β 0) β ((2 Β· π) / 2) = π) |
12 | 2, 10, 11 | mp3an23 1451 |
. . . . . . . . . 10
β’ (π β β β ((2
Β· π) / 2) = π) |
13 | 3, 12 | syl 17 |
. . . . . . . . 9
β’ (π β β0
β ((2 Β· π) / 2)
= π) |
14 | 9, 13 | eqtrd 2770 |
. . . . . . . 8
β’ (π β β0
β ((((2 Β· π) +
1) β 1) / 2) = π) |
15 | 14 | oveq2d 7427 |
. . . . . . 7
β’ (π β β0
β (-1β((((2 Β· π) + 1) β 1) / 2)) = (-1βπ)) |
16 | 15 | oveq1d 7426 |
. . . . . 6
β’ (π β β0
β ((-1β((((2 Β· π) + 1) β 1) / 2)) / ((2 Β· π) + 1)) = ((-1βπ) / ((2 Β· π) + 1))) |
17 | 16 | mpteq2ia 5250 |
. . . . 5
β’ (π β β0
β¦ ((-1β((((2 Β· π) + 1) β 1) / 2)) / ((2 Β· π) + 1))) = (π β β0 β¦
((-1βπ) / ((2 Β·
π) + 1))) |
18 | 1, 17 | eqtr4i 2761 |
. . . 4
β’ πΉ = (π β β0 β¦
((-1β((((2 Β· π)
+ 1) β 1) / 2)) / ((2 Β· π) + 1))) |
19 | | seqeq3 13975 |
. . . 4
β’ (πΉ = (π β β0 β¦
((-1β((((2 Β· π)
+ 1) β 1) / 2)) / ((2 Β· π) + 1))) β seq0( + , πΉ) = seq0( + , (π β β0 β¦
((-1β((((2 Β· π)
+ 1) β 1) / 2)) / ((2 Β· π) + 1))))) |
20 | 18, 19 | ax-mp 5 |
. . 3
β’ seq0( + ,
πΉ) = seq0( + , (π β β0
β¦ ((-1β((((2 Β· π) + 1) β 1) / 2)) / ((2 Β· π) + 1)))) |
21 | 20 | breq1i 5154 |
. 2
β’ (seq0( +
, πΉ) β π΄ β seq0( + , (π β β0
β¦ ((-1β((((2 Β· π) + 1) β 1) / 2)) / ((2 Β· π) + 1)))) β π΄) |
22 | | neg1rr 12331 |
. . . . . . . . 9
β’ -1 β
β |
23 | | reexpcl 14048 |
. . . . . . . . 9
β’ ((-1
β β β§ π
β β0) β (-1βπ) β β) |
24 | 22, 23 | mpan 686 |
. . . . . . . 8
β’ (π β β0
β (-1βπ) β
β) |
25 | | 2nn0 12493 |
. . . . . . . . . 10
β’ 2 β
β0 |
26 | | nn0mulcl 12512 |
. . . . . . . . . 10
β’ ((2
β β0 β§ π β β0) β (2
Β· π) β
β0) |
27 | 25, 26 | mpan 686 |
. . . . . . . . 9
β’ (π β β0
β (2 Β· π)
β β0) |
28 | | nn0p1nn 12515 |
. . . . . . . . 9
β’ ((2
Β· π) β
β0 β ((2 Β· π) + 1) β β) |
29 | 27, 28 | syl 17 |
. . . . . . . 8
β’ (π β β0
β ((2 Β· π) + 1)
β β) |
30 | 24, 29 | nndivred 12270 |
. . . . . . 7
β’ (π β β0
β ((-1βπ) / ((2
Β· π) + 1)) β
β) |
31 | 30 | recnd 11246 |
. . . . . 6
β’ (π β β0
β ((-1βπ) / ((2
Β· π) + 1)) β
β) |
32 | 16, 31 | eqeltrd 2831 |
. . . . 5
β’ (π β β0
β ((-1β((((2 Β· π) + 1) β 1) / 2)) / ((2 Β· π) + 1)) β
β) |
33 | 32 | adantl 480 |
. . . 4
β’
((β€ β§ π
β β0) β ((-1β((((2 Β· π) + 1) β 1) / 2)) / ((2 Β· π) + 1)) β
β) |
34 | | oveq1 7418 |
. . . . . . 7
β’ (π = ((2 Β· π) + 1) β (π β 1) = (((2 Β·
π) + 1) β
1)) |
35 | 34 | oveq1d 7426 |
. . . . . 6
β’ (π = ((2 Β· π) + 1) β ((π β 1) / 2) = ((((2
Β· π) + 1) β 1)
/ 2)) |
36 | 35 | oveq2d 7427 |
. . . . 5
β’ (π = ((2 Β· π) + 1) β (-1β((π β 1) / 2)) =
(-1β((((2 Β· π)
+ 1) β 1) / 2))) |
37 | | id 22 |
. . . . 5
β’ (π = ((2 Β· π) + 1) β π = ((2 Β· π) + 1)) |
38 | 36, 37 | oveq12d 7429 |
. . . 4
β’ (π = ((2 Β· π) + 1) β ((-1β((π β 1) / 2)) / π) = ((-1β((((2 Β·
π) + 1) β 1) / 2)) /
((2 Β· π) +
1))) |
39 | 33, 38 | iserodd 16772 |
. . 3
β’ (β€
β (seq0( + , (π β
β0 β¦ ((-1β((((2 Β· π) + 1) β 1) / 2)) / ((2 Β· π) + 1)))) β π΄ β seq1( + , (π β β β¦ if(2
β₯ π, 0,
((-1β((π β 1) /
2)) / π)))) β π΄)) |
40 | 39 | mptru 1546 |
. 2
β’ (seq0( +
, (π β
β0 β¦ ((-1β((((2 Β· π) + 1) β 1) / 2)) / ((2 Β· π) + 1)))) β π΄ β seq1( + , (π β β β¦ if(2
β₯ π, 0,
((-1β((π β 1) /
2)) / π)))) β π΄) |
41 | | addlid 11401 |
. . . . . . . 8
β’ (π β β β (0 +
π) = π) |
42 | 41 | adantl 480 |
. . . . . . 7
β’
((β€ β§ π
β β) β (0 + π) = π) |
43 | | 0cnd 11211 |
. . . . . . 7
β’ (β€
β 0 β β) |
44 | | 1eluzge0 12880 |
. . . . . . . 8
β’ 1 β
(β€β₯β0) |
45 | 44 | a1i 11 |
. . . . . . 7
β’ (β€
β 1 β (β€β₯β0)) |
46 | | 1nn0 12492 |
. . . . . . . 8
β’ 1 β
β0 |
47 | | leibpilem2.2 |
. . . . . . . . . 10
β’ πΊ = (π β β0 β¦ if((π = 0 β¨ 2 β₯ π), 0, ((-1β((π β 1) / 2)) / π))) |
48 | | 0cnd 11211 |
. . . . . . . . . . 11
β’ ((π β β0
β§ (π = 0 β¨ 2 β₯
π)) β 0 β
β) |
49 | | ioran 980 |
. . . . . . . . . . . 12
β’ (Β¬
(π = 0 β¨ 2 β₯ π) β (Β¬ π = 0 β§ Β¬ 2 β₯ π)) |
50 | | leibpilem1 26681 |
. . . . . . . . . . . . . . . 16
β’ ((π β β0
β§ (Β¬ π = 0 β§
Β¬ 2 β₯ π)) β
(π β β β§
((π β 1) / 2) β
β0)) |
51 | 50 | simprd 494 |
. . . . . . . . . . . . . . 15
β’ ((π β β0
β§ (Β¬ π = 0 β§
Β¬ 2 β₯ π)) β
((π β 1) / 2) β
β0) |
52 | | reexpcl 14048 |
. . . . . . . . . . . . . . 15
β’ ((-1
β β β§ ((π
β 1) / 2) β β0) β (-1β((π β 1) / 2)) β
β) |
53 | 22, 51, 52 | sylancr 585 |
. . . . . . . . . . . . . 14
β’ ((π β β0
β§ (Β¬ π = 0 β§
Β¬ 2 β₯ π)) β
(-1β((π β 1) /
2)) β β) |
54 | 50 | simpld 493 |
. . . . . . . . . . . . . 14
β’ ((π β β0
β§ (Β¬ π = 0 β§
Β¬ 2 β₯ π)) β
π β
β) |
55 | 53, 54 | nndivred 12270 |
. . . . . . . . . . . . 13
β’ ((π β β0
β§ (Β¬ π = 0 β§
Β¬ 2 β₯ π)) β
((-1β((π β 1) /
2)) / π) β
β) |
56 | 55 | recnd 11246 |
. . . . . . . . . . . 12
β’ ((π β β0
β§ (Β¬ π = 0 β§
Β¬ 2 β₯ π)) β
((-1β((π β 1) /
2)) / π) β
β) |
57 | 49, 56 | sylan2b 592 |
. . . . . . . . . . 11
β’ ((π β β0
β§ Β¬ (π = 0 β¨ 2
β₯ π)) β
((-1β((π β 1) /
2)) / π) β
β) |
58 | 48, 57 | ifclda 4562 |
. . . . . . . . . 10
β’ (π β β0
β if((π = 0 β¨ 2
β₯ π), 0,
((-1β((π β 1) /
2)) / π)) β
β) |
59 | 47, 58 | fmpti 7112 |
. . . . . . . . 9
β’ πΊ:β0βΆβ |
60 | 59 | ffvelcdmi 7084 |
. . . . . . . 8
β’ (1 β
β0 β (πΊβ1) β β) |
61 | 46, 60 | mp1i 13 |
. . . . . . 7
β’ (β€
β (πΊβ1) β
β) |
62 | | simpr 483 |
. . . . . . . . . . 11
β’
((β€ β§ π
β (0...(1 β 1))) β π β (0...(1 β 1))) |
63 | | 1m1e0 12288 |
. . . . . . . . . . . 12
β’ (1
β 1) = 0 |
64 | 63 | oveq2i 7422 |
. . . . . . . . . . 11
β’ (0...(1
β 1)) = (0...0) |
65 | 62, 64 | eleqtrdi 2841 |
. . . . . . . . . 10
β’
((β€ β§ π
β (0...(1 β 1))) β π β (0...0)) |
66 | | elfz1eq 13516 |
. . . . . . . . . 10
β’ (π β (0...0) β π = 0) |
67 | 65, 66 | syl 17 |
. . . . . . . . 9
β’
((β€ β§ π
β (0...(1 β 1))) β π = 0) |
68 | 67 | fveq2d 6894 |
. . . . . . . 8
β’
((β€ β§ π
β (0...(1 β 1))) β (πΊβπ) = (πΊβ0)) |
69 | | 0nn0 12491 |
. . . . . . . . 9
β’ 0 β
β0 |
70 | | iftrue 4533 |
. . . . . . . . . . 11
β’ ((π = 0 β¨ 2 β₯ π) β if((π = 0 β¨ 2 β₯ π), 0, ((-1β((π β 1) / 2)) / π)) = 0) |
71 | 70 | orcs 871 |
. . . . . . . . . 10
β’ (π = 0 β if((π = 0 β¨ 2 β₯ π), 0, ((-1β((π β 1) / 2)) / π)) = 0) |
72 | | c0ex 11212 |
. . . . . . . . . 10
β’ 0 β
V |
73 | 71, 47, 72 | fvmpt 6997 |
. . . . . . . . 9
β’ (0 β
β0 β (πΊβ0) = 0) |
74 | 69, 73 | ax-mp 5 |
. . . . . . . 8
β’ (πΊβ0) = 0 |
75 | 68, 74 | eqtrdi 2786 |
. . . . . . 7
β’
((β€ β§ π
β (0...(1 β 1))) β (πΊβπ) = 0) |
76 | 42, 43, 45, 61, 75 | seqid 14017 |
. . . . . 6
β’ (β€
β (seq0( + , πΊ)
βΎ (β€β₯β1)) = seq1( + , πΊ)) |
77 | | 1zzd 12597 |
. . . . . . 7
β’ (β€
β 1 β β€) |
78 | | simpr 483 |
. . . . . . . . 9
β’
((β€ β§ π
β (β€β₯β1)) β π β
(β€β₯β1)) |
79 | | nnuz 12869 |
. . . . . . . . 9
β’ β =
(β€β₯β1) |
80 | 78, 79 | eleqtrrdi 2842 |
. . . . . . . 8
β’
((β€ β§ π
β (β€β₯β1)) β π β β) |
81 | | nnne0 12250 |
. . . . . . . . . . . 12
β’ (π β β β π β 0) |
82 | 81 | neneqd 2943 |
. . . . . . . . . . 11
β’ (π β β β Β¬
π = 0) |
83 | | biorf 933 |
. . . . . . . . . . 11
β’ (Β¬
π = 0 β (2 β₯
π β (π = 0 β¨ 2 β₯ π))) |
84 | 82, 83 | syl 17 |
. . . . . . . . . 10
β’ (π β β β (2
β₯ π β (π = 0 β¨ 2 β₯ π))) |
85 | 84 | ifbid 4550 |
. . . . . . . . 9
β’ (π β β β if(2
β₯ π, 0,
((-1β((π β 1) /
2)) / π)) = if((π = 0 β¨ 2 β₯ π), 0, ((-1β((π β 1) / 2)) / π))) |
86 | | breq2 5151 |
. . . . . . . . . . 11
β’ (π = π β (2 β₯ π β 2 β₯ π)) |
87 | | oveq1 7418 |
. . . . . . . . . . . . . 14
β’ (π = π β (π β 1) = (π β 1)) |
88 | 87 | oveq1d 7426 |
. . . . . . . . . . . . 13
β’ (π = π β ((π β 1) / 2) = ((π β 1) / 2)) |
89 | 88 | oveq2d 7427 |
. . . . . . . . . . . 12
β’ (π = π β (-1β((π β 1) / 2)) = (-1β((π β 1) /
2))) |
90 | | id 22 |
. . . . . . . . . . . 12
β’ (π = π β π = π) |
91 | 89, 90 | oveq12d 7429 |
. . . . . . . . . . 11
β’ (π = π β ((-1β((π β 1) / 2)) / π) = ((-1β((π β 1) / 2)) / π)) |
92 | 86, 91 | ifbieq2d 4553 |
. . . . . . . . . 10
β’ (π = π β if(2 β₯ π, 0, ((-1β((π β 1) / 2)) / π)) = if(2 β₯ π, 0, ((-1β((π β 1) / 2)) / π))) |
93 | | eqid 2730 |
. . . . . . . . . 10
β’ (π β β β¦ if(2
β₯ π, 0,
((-1β((π β 1) /
2)) / π))) = (π β β β¦ if(2
β₯ π, 0,
((-1β((π β 1) /
2)) / π))) |
94 | | ovex 7444 |
. . . . . . . . . . 11
β’
((-1β((π
β 1) / 2)) / π)
β V |
95 | 72, 94 | ifex 4577 |
. . . . . . . . . 10
β’ if(2
β₯ π, 0,
((-1β((π β 1) /
2)) / π)) β
V |
96 | 92, 93, 95 | fvmpt 6997 |
. . . . . . . . 9
β’ (π β β β ((π β β β¦ if(2
β₯ π, 0,
((-1β((π β 1) /
2)) / π)))βπ) = if(2 β₯ π, 0, ((-1β((π β 1) / 2)) / π))) |
97 | | nnnn0 12483 |
. . . . . . . . . 10
β’ (π β β β π β
β0) |
98 | | eqeq1 2734 |
. . . . . . . . . . . . 13
β’ (π = π β (π = 0 β π = 0)) |
99 | 98, 86 | orbi12d 915 |
. . . . . . . . . . . 12
β’ (π = π β ((π = 0 β¨ 2 β₯ π) β (π = 0 β¨ 2 β₯ π))) |
100 | 99, 91 | ifbieq2d 4553 |
. . . . . . . . . . 11
β’ (π = π β if((π = 0 β¨ 2 β₯ π), 0, ((-1β((π β 1) / 2)) / π)) = if((π = 0 β¨ 2 β₯ π), 0, ((-1β((π β 1) / 2)) / π))) |
101 | 72, 94 | ifex 4577 |
. . . . . . . . . . 11
β’ if((π = 0 β¨ 2 β₯ π), 0, ((-1β((π β 1) / 2)) / π)) β V |
102 | 100, 47, 101 | fvmpt 6997 |
. . . . . . . . . 10
β’ (π β β0
β (πΊβπ) = if((π = 0 β¨ 2 β₯ π), 0, ((-1β((π β 1) / 2)) / π))) |
103 | 97, 102 | syl 17 |
. . . . . . . . 9
β’ (π β β β (πΊβπ) = if((π = 0 β¨ 2 β₯ π), 0, ((-1β((π β 1) / 2)) / π))) |
104 | 85, 96, 103 | 3eqtr4d 2780 |
. . . . . . . 8
β’ (π β β β ((π β β β¦ if(2
β₯ π, 0,
((-1β((π β 1) /
2)) / π)))βπ) = (πΊβπ)) |
105 | 80, 104 | syl 17 |
. . . . . . 7
β’
((β€ β§ π
β (β€β₯β1)) β ((π β β β¦ if(2 β₯ π, 0, ((-1β((π β 1) / 2)) / π)))βπ) = (πΊβπ)) |
106 | 77, 105 | seqfeq 13997 |
. . . . . 6
β’ (β€
β seq1( + , (π β
β β¦ if(2 β₯ π, 0, ((-1β((π β 1) / 2)) / π)))) = seq1( + , πΊ)) |
107 | 76, 106 | eqtr4d 2773 |
. . . . 5
β’ (β€
β (seq0( + , πΊ)
βΎ (β€β₯β1)) = seq1( + , (π β β β¦ if(2 β₯ π, 0, ((-1β((π β 1) / 2)) / π))))) |
108 | 107 | mptru 1546 |
. . . 4
β’ (seq0( +
, πΊ) βΎ
(β€β₯β1)) = seq1( + , (π β β β¦ if(2 β₯ π, 0, ((-1β((π β 1) / 2)) / π)))) |
109 | 108 | breq1i 5154 |
. . 3
β’ ((seq0( +
, πΊ) βΎ
(β€β₯β1)) β π΄ β seq1( + , (π β β β¦ if(2 β₯ π, 0, ((-1β((π β 1) / 2)) / π)))) β π΄) |
110 | | 1z 12596 |
. . . 4
β’ 1 β
β€ |
111 | | seqex 13972 |
. . . 4
β’ seq0( + ,
πΊ) β
V |
112 | | climres 15523 |
. . . 4
β’ ((1
β β€ β§ seq0( + , πΊ) β V) β ((seq0( + , πΊ) βΎ
(β€β₯β1)) β π΄ β seq0( + , πΊ) β π΄)) |
113 | 110, 111,
112 | mp2an 688 |
. . 3
β’ ((seq0( +
, πΊ) βΎ
(β€β₯β1)) β π΄ β seq0( + , πΊ) β π΄) |
114 | 109, 113 | bitr3i 276 |
. 2
β’ (seq1( +
, (π β β β¦
if(2 β₯ π, 0,
((-1β((π β 1) /
2)) / π)))) β π΄ β seq0( + , πΊ) β π΄) |
115 | 21, 40, 114 | 3bitri 296 |
1
β’ (seq0( +
, πΉ) β π΄ β seq0( + , πΊ) β π΄) |