Proof of Theorem leibpilem2
Step | Hyp | Ref
| Expression |
1 | | leibpi.1 |
. . . . 5
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦
((-1↑𝑛) / ((2 ·
𝑛) + 1))) |
2 | | 2cn 11978 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℂ |
3 | | nn0cn 12173 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℂ) |
4 | | mulcl 10886 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℂ ∧ 𝑛
∈ ℂ) → (2 · 𝑛) ∈ ℂ) |
5 | 2, 3, 4 | sylancr 586 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ (2 · 𝑛)
∈ ℂ) |
6 | | ax-1cn 10860 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
7 | | pncan 11157 |
. . . . . . . . . . 11
⊢ (((2
· 𝑛) ∈ ℂ
∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛)) |
8 | 5, 6, 7 | sylancl 585 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (((2 · 𝑛) +
1) − 1) = (2 · 𝑛)) |
9 | 8 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ ((((2 · 𝑛) +
1) − 1) / 2) = ((2 · 𝑛) / 2)) |
10 | | 2ne0 12007 |
. . . . . . . . . . 11
⊢ 2 ≠
0 |
11 | | divcan3 11589 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → ((2 · 𝑛) / 2) = 𝑛) |
12 | 2, 10, 11 | mp3an23 1451 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℂ → ((2
· 𝑛) / 2) = 𝑛) |
13 | 3, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ ((2 · 𝑛) / 2)
= 𝑛) |
14 | 9, 13 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ ((((2 · 𝑛) +
1) − 1) / 2) = 𝑛) |
15 | 14 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ (-1↑((((2 · 𝑛) + 1) − 1) / 2)) = (-1↑𝑛)) |
16 | 15 | oveq1d 7270 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) = ((-1↑𝑛) / ((2 · 𝑛) + 1))) |
17 | 16 | mpteq2ia 5173 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ0 ↦
((-1↑𝑛) / ((2 ·
𝑛) + 1))) |
18 | 1, 17 | eqtr4i 2769 |
. . . 4
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦
((-1↑((((2 · 𝑛)
+ 1) − 1) / 2)) / ((2 · 𝑛) + 1))) |
19 | | seqeq3 13654 |
. . . 4
⊢ (𝐹 = (𝑛 ∈ ℕ0 ↦
((-1↑((((2 · 𝑛)
+ 1) − 1) / 2)) / ((2 · 𝑛) + 1))) → seq0( + , 𝐹) = seq0( + , (𝑛 ∈ ℕ0 ↦
((-1↑((((2 · 𝑛)
+ 1) − 1) / 2)) / ((2 · 𝑛) + 1))))) |
20 | 18, 19 | ax-mp 5 |
. . 3
⊢ seq0( + ,
𝐹) = seq0( + , (𝑛 ∈ ℕ0
↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) |
21 | 20 | breq1i 5077 |
. 2
⊢ (seq0( +
, 𝐹) ⇝ 𝐴 ↔ seq0( + , (𝑛 ∈ ℕ0
↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴) |
22 | | neg1rr 12018 |
. . . . . . . . 9
⊢ -1 ∈
ℝ |
23 | | reexpcl 13727 |
. . . . . . . . 9
⊢ ((-1
∈ ℝ ∧ 𝑛
∈ ℕ0) → (-1↑𝑛) ∈ ℝ) |
24 | 22, 23 | mpan 686 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (-1↑𝑛) ∈
ℝ) |
25 | | 2nn0 12180 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ0 |
26 | | nn0mulcl 12199 |
. . . . . . . . . 10
⊢ ((2
∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (2
· 𝑛) ∈
ℕ0) |
27 | 25, 26 | mpan 686 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ (2 · 𝑛)
∈ ℕ0) |
28 | | nn0p1nn 12202 |
. . . . . . . . 9
⊢ ((2
· 𝑛) ∈
ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ) |
29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ ((2 · 𝑛) + 1)
∈ ℕ) |
30 | 24, 29 | nndivred 11957 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ ((-1↑𝑛) / ((2
· 𝑛) + 1)) ∈
ℝ) |
31 | 30 | recnd 10934 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ ((-1↑𝑛) / ((2
· 𝑛) + 1)) ∈
ℂ) |
32 | 16, 31 | eqeltrd 2839 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) ∈
ℂ) |
33 | 32 | adantl 481 |
. . . 4
⊢
((⊤ ∧ 𝑛
∈ ℕ0) → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) ∈
ℂ) |
34 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑘 = ((2 · 𝑛) + 1) → (𝑘 − 1) = (((2 ·
𝑛) + 1) −
1)) |
35 | 34 | oveq1d 7270 |
. . . . . 6
⊢ (𝑘 = ((2 · 𝑛) + 1) → ((𝑘 − 1) / 2) = ((((2
· 𝑛) + 1) − 1)
/ 2)) |
36 | 35 | oveq2d 7271 |
. . . . 5
⊢ (𝑘 = ((2 · 𝑛) + 1) → (-1↑((𝑘 − 1) / 2)) =
(-1↑((((2 · 𝑛)
+ 1) − 1) / 2))) |
37 | | id 22 |
. . . . 5
⊢ (𝑘 = ((2 · 𝑛) + 1) → 𝑘 = ((2 · 𝑛) + 1)) |
38 | 36, 37 | oveq12d 7273 |
. . . 4
⊢ (𝑘 = ((2 · 𝑛) + 1) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) = ((-1↑((((2 ·
𝑛) + 1) − 1) / 2)) /
((2 · 𝑛) +
1))) |
39 | 33, 38 | iserodd 16464 |
. . 3
⊢ (⊤
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2
∥ 𝑘, 0,
((-1↑((𝑘 − 1) /
2)) / 𝑘)))) ⇝ 𝐴)) |
40 | 39 | mptru 1546 |
. 2
⊢ (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2
∥ 𝑘, 0,
((-1↑((𝑘 − 1) /
2)) / 𝑘)))) ⇝ 𝐴) |
41 | | addid2 11088 |
. . . . . . . 8
⊢ (𝑛 ∈ ℂ → (0 +
𝑛) = 𝑛) |
42 | 41 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ 𝑛
∈ ℂ) → (0 + 𝑛) = 𝑛) |
43 | | 0cnd 10899 |
. . . . . . 7
⊢ (⊤
→ 0 ∈ ℂ) |
44 | | 1eluzge0 12561 |
. . . . . . . 8
⊢ 1 ∈
(ℤ≥‘0) |
45 | 44 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 1 ∈ (ℤ≥‘0)) |
46 | | 1nn0 12179 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
47 | | leibpilem2.2 |
. . . . . . . . . 10
⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) |
48 | | 0cnd 10899 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ0
∧ (𝑘 = 0 ∨ 2 ∥
𝑘)) → 0 ∈
ℂ) |
49 | | ioran 980 |
. . . . . . . . . . . 12
⊢ (¬
(𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) |
50 | | leibpilem1 25995 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ (¬ 𝑘 = 0 ∧
¬ 2 ∥ 𝑘)) →
(𝑘 ∈ ℕ ∧
((𝑘 − 1) / 2) ∈
ℕ0)) |
51 | 50 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ0
∧ (¬ 𝑘 = 0 ∧
¬ 2 ∥ 𝑘)) →
((𝑘 − 1) / 2) ∈
ℕ0) |
52 | | reexpcl 13727 |
. . . . . . . . . . . . . . 15
⊢ ((-1
∈ ℝ ∧ ((𝑘
− 1) / 2) ∈ ℕ0) → (-1↑((𝑘 − 1) / 2)) ∈
ℝ) |
53 | 22, 51, 52 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ0
∧ (¬ 𝑘 = 0 ∧
¬ 2 ∥ 𝑘)) →
(-1↑((𝑘 − 1) /
2)) ∈ ℝ) |
54 | 50 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ0
∧ (¬ 𝑘 = 0 ∧
¬ 2 ∥ 𝑘)) →
𝑘 ∈
ℕ) |
55 | 53, 54 | nndivred 11957 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ0
∧ (¬ 𝑘 = 0 ∧
¬ 2 ∥ 𝑘)) →
((-1↑((𝑘 − 1) /
2)) / 𝑘) ∈
ℝ) |
56 | 55 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ0
∧ (¬ 𝑘 = 0 ∧
¬ 2 ∥ 𝑘)) →
((-1↑((𝑘 − 1) /
2)) / 𝑘) ∈
ℂ) |
57 | 49, 56 | sylan2b 593 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ0
∧ ¬ (𝑘 = 0 ∨ 2
∥ 𝑘)) →
((-1↑((𝑘 − 1) /
2)) / 𝑘) ∈
ℂ) |
58 | 48, 57 | ifclda 4491 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ if((𝑘 = 0 ∨ 2
∥ 𝑘), 0,
((-1↑((𝑘 − 1) /
2)) / 𝑘)) ∈
ℂ) |
59 | 47, 58 | fmpti 6968 |
. . . . . . . . 9
⊢ 𝐺:ℕ0⟶ℂ |
60 | 59 | ffvelrni 6942 |
. . . . . . . 8
⊢ (1 ∈
ℕ0 → (𝐺‘1) ∈ ℂ) |
61 | 46, 60 | mp1i 13 |
. . . . . . 7
⊢ (⊤
→ (𝐺‘1) ∈
ℂ) |
62 | | simpr 484 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑛
∈ (0...(1 − 1))) → 𝑛 ∈ (0...(1 − 1))) |
63 | | 1m1e0 11975 |
. . . . . . . . . . . 12
⊢ (1
− 1) = 0 |
64 | 63 | oveq2i 7266 |
. . . . . . . . . . 11
⊢ (0...(1
− 1)) = (0...0) |
65 | 62, 64 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑛
∈ (0...(1 − 1))) → 𝑛 ∈ (0...0)) |
66 | | elfz1eq 13196 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (0...0) → 𝑛 = 0) |
67 | 65, 66 | syl 17 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑛
∈ (0...(1 − 1))) → 𝑛 = 0) |
68 | 67 | fveq2d 6760 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑛
∈ (0...(1 − 1))) → (𝐺‘𝑛) = (𝐺‘0)) |
69 | | 0nn0 12178 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
70 | | iftrue 4462 |
. . . . . . . . . . 11
⊢ ((𝑘 = 0 ∨ 2 ∥ 𝑘) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = 0) |
71 | 70 | orcs 871 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = 0) |
72 | | c0ex 10900 |
. . . . . . . . . 10
⊢ 0 ∈
V |
73 | 71, 47, 72 | fvmpt 6857 |
. . . . . . . . 9
⊢ (0 ∈
ℕ0 → (𝐺‘0) = 0) |
74 | 69, 73 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐺‘0) = 0 |
75 | 68, 74 | eqtrdi 2795 |
. . . . . . 7
⊢
((⊤ ∧ 𝑛
∈ (0...(1 − 1))) → (𝐺‘𝑛) = 0) |
76 | 42, 43, 45, 61, 75 | seqid 13696 |
. . . . . 6
⊢ (⊤
→ (seq0( + , 𝐺)
↾ (ℤ≥‘1)) = seq1( + , 𝐺)) |
77 | | 1zzd 12281 |
. . . . . . 7
⊢ (⊤
→ 1 ∈ ℤ) |
78 | | simpr 484 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑛
∈ (ℤ≥‘1)) → 𝑛 ∈
(ℤ≥‘1)) |
79 | | nnuz 12550 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
80 | 78, 79 | eleqtrrdi 2850 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑛
∈ (ℤ≥‘1)) → 𝑛 ∈ ℕ) |
81 | | nnne0 11937 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) |
82 | 81 | neneqd 2947 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ¬
𝑛 = 0) |
83 | | biorf 933 |
. . . . . . . . . . 11
⊢ (¬
𝑛 = 0 → (2 ∥
𝑛 ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛))) |
84 | 82, 83 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (2
∥ 𝑛 ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛))) |
85 | 84 | ifbid 4479 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → if(2
∥ 𝑛, 0,
((-1↑((𝑛 − 1) /
2)) / 𝑛)) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛))) |
86 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → (2 ∥ 𝑘 ↔ 2 ∥ 𝑛)) |
87 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1)) |
88 | 87 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → ((𝑘 − 1) / 2) = ((𝑛 − 1) / 2)) |
89 | 88 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → (-1↑((𝑘 − 1) / 2)) = (-1↑((𝑛 − 1) /
2))) |
90 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → 𝑘 = 𝑛) |
91 | 89, 90 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → ((-1↑((𝑘 − 1) / 2)) / 𝑘) = ((-1↑((𝑛 − 1) / 2)) / 𝑛)) |
92 | 86, 91 | ifbieq2d 4482 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛))) |
93 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ ↦ if(2
∥ 𝑘, 0,
((-1↑((𝑘 − 1) /
2)) / 𝑘))) = (𝑘 ∈ ℕ ↦ if(2
∥ 𝑘, 0,
((-1↑((𝑘 − 1) /
2)) / 𝑘))) |
94 | | ovex 7288 |
. . . . . . . . . . 11
⊢
((-1↑((𝑛
− 1) / 2)) / 𝑛)
∈ V |
95 | 72, 94 | ifex 4506 |
. . . . . . . . . 10
⊢ if(2
∥ 𝑛, 0,
((-1↑((𝑛 − 1) /
2)) / 𝑛)) ∈
V |
96 | 92, 93, 95 | fvmpt 6857 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2
∥ 𝑘, 0,
((-1↑((𝑘 − 1) /
2)) / 𝑘)))‘𝑛) = if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛))) |
97 | | nnnn0 12170 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
98 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0)) |
99 | 98, 86 | orbi12d 915 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → ((𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛))) |
100 | 99, 91 | ifbieq2d 4482 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛))) |
101 | 72, 94 | ifex 4506 |
. . . . . . . . . . 11
⊢ if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) ∈ V |
102 | 100, 47, 101 | fvmpt 6857 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (𝐺‘𝑛) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛))) |
103 | 97, 102 | syl 17 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛))) |
104 | 85, 96, 103 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2
∥ 𝑘, 0,
((-1↑((𝑘 − 1) /
2)) / 𝑘)))‘𝑛) = (𝐺‘𝑛)) |
105 | 80, 104 | syl 17 |
. . . . . . 7
⊢
((⊤ ∧ 𝑛
∈ (ℤ≥‘1)) → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = (𝐺‘𝑛)) |
106 | 77, 105 | seqfeq 13676 |
. . . . . 6
⊢ (⊤
→ seq1( + , (𝑘 ∈
ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) = seq1( + , 𝐺)) |
107 | 76, 106 | eqtr4d 2781 |
. . . . 5
⊢ (⊤
→ (seq0( + , 𝐺)
↾ (ℤ≥‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))))) |
108 | 107 | mptru 1546 |
. . . 4
⊢ (seq0( +
, 𝐺) ↾
(ℤ≥‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) |
109 | 108 | breq1i 5077 |
. . 3
⊢ ((seq0( +
, 𝐺) ↾
(ℤ≥‘1)) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴) |
110 | | 1z 12280 |
. . . 4
⊢ 1 ∈
ℤ |
111 | | seqex 13651 |
. . . 4
⊢ seq0( + ,
𝐺) ∈
V |
112 | | climres 15212 |
. . . 4
⊢ ((1
∈ ℤ ∧ seq0( + , 𝐺) ∈ V) → ((seq0( + , 𝐺) ↾
(ℤ≥‘1)) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)) |
113 | 110, 111,
112 | mp2an 688 |
. . 3
⊢ ((seq0( +
, 𝐺) ↾
(ℤ≥‘1)) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴) |
114 | 109, 113 | bitr3i 276 |
. 2
⊢ (seq1( +
, (𝑘 ∈ ℕ ↦
if(2 ∥ 𝑘, 0,
((-1↑((𝑘 − 1) /
2)) / 𝑘)))) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴) |
115 | 21, 40, 114 | 3bitri 296 |
1
⊢ (seq0( +
, 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴) |