MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leibpilem2 Structured version   Visualization version   GIF version

Theorem leibpilem2 26999
Description: The Leibniz formula for π. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
leibpi.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
leibpilem2.2 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
leibpilem2.3 𝐴 ∈ V
Assertion
Ref Expression
leibpilem2 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
Distinct variable groups:   𝑘,𝑛   𝑛,𝐺
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐹(𝑘,𝑛)   𝐺(𝑘)

Proof of Theorem leibpilem2
StepHypRef Expression
1 leibpi.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
2 2cn 12339 . . . . . . . . . . . 12 2 ∈ ℂ
3 nn0cn 12534 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
4 mulcl 11237 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
52, 3, 4sylancr 587 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℂ)
6 ax-1cn 11211 . . . . . . . . . . 11 1 ∈ ℂ
7 pncan 11512 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
85, 6, 7sylancl 586 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
98oveq1d 7446 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((((2 · 𝑛) + 1) − 1) / 2) = ((2 · 𝑛) / 2))
10 2ne0 12368 . . . . . . . . . . 11 2 ≠ 0
11 divcan3 11946 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑛) / 2) = 𝑛)
122, 10, 11mp3an23 1452 . . . . . . . . . 10 (𝑛 ∈ ℂ → ((2 · 𝑛) / 2) = 𝑛)
133, 12syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((2 · 𝑛) / 2) = 𝑛)
149, 13eqtrd 2775 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((((2 · 𝑛) + 1) − 1) / 2) = 𝑛)
1514oveq2d 7447 . . . . . . 7 (𝑛 ∈ ℕ0 → (-1↑((((2 · 𝑛) + 1) − 1) / 2)) = (-1↑𝑛))
1615oveq1d 7446 . . . . . 6 (𝑛 ∈ ℕ0 → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) = ((-1↑𝑛) / ((2 · 𝑛) + 1)))
1716mpteq2ia 5251 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
181, 17eqtr4i 2766 . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))
19 seqeq3 14044 . . . 4 (𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))) → seq0( + , 𝐹) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))))
2018, 19ax-mp 5 . . 3 seq0( + , 𝐹) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))))
2120breq1i 5155 . 2 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴)
22 neg1rr 12379 . . . . . . . . 9 -1 ∈ ℝ
23 reexpcl 14116 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℝ)
2422, 23mpan 690 . . . . . . . 8 (𝑛 ∈ ℕ0 → (-1↑𝑛) ∈ ℝ)
25 2nn0 12541 . . . . . . . . . 10 2 ∈ ℕ0
26 nn0mulcl 12560 . . . . . . . . . 10 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
2725, 26mpan 690 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
28 nn0p1nn 12563 . . . . . . . . 9 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
2927, 28syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
3024, 29nndivred 12318 . . . . . . 7 (𝑛 ∈ ℕ0 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ ℝ)
3130recnd 11287 . . . . . 6 (𝑛 ∈ ℕ0 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ ℂ)
3216, 31eqeltrd 2839 . . . . 5 (𝑛 ∈ ℕ0 → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) ∈ ℂ)
3332adantl 481 . . . 4 ((⊤ ∧ 𝑛 ∈ ℕ0) → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) ∈ ℂ)
34 oveq1 7438 . . . . . . 7 (𝑘 = ((2 · 𝑛) + 1) → (𝑘 − 1) = (((2 · 𝑛) + 1) − 1))
3534oveq1d 7446 . . . . . 6 (𝑘 = ((2 · 𝑛) + 1) → ((𝑘 − 1) / 2) = ((((2 · 𝑛) + 1) − 1) / 2))
3635oveq2d 7447 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → (-1↑((𝑘 − 1) / 2)) = (-1↑((((2 · 𝑛) + 1) − 1) / 2)))
37 id 22 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → 𝑘 = ((2 · 𝑛) + 1))
3836, 37oveq12d 7449 . . . 4 (𝑘 = ((2 · 𝑛) + 1) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) = ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))
3933, 38iserodd 16869 . . 3 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴))
4039mptru 1544 . 2 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴)
41 addlid 11442 . . . . . . . 8 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
4241adantl 481 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
43 0cnd 11252 . . . . . . 7 (⊤ → 0 ∈ ℂ)
44 1eluzge0 12932 . . . . . . . 8 1 ∈ (ℤ‘0)
4544a1i 11 . . . . . . 7 (⊤ → 1 ∈ (ℤ‘0))
46 1nn0 12540 . . . . . . . 8 1 ∈ ℕ0
47 leibpilem2.2 . . . . . . . . . 10 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
48 0cnd 11252 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → 0 ∈ ℂ)
49 ioran 985 . . . . . . . . . . . 12 (¬ (𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘))
50 leibpilem1 26998 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (𝑘 ∈ ℕ ∧ ((𝑘 − 1) / 2) ∈ ℕ0))
5150simprd 495 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((𝑘 − 1) / 2) ∈ ℕ0)
52 reexpcl 14116 . . . . . . . . . . . . . . 15 ((-1 ∈ ℝ ∧ ((𝑘 − 1) / 2) ∈ ℕ0) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
5322, 51, 52sylancr 587 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
5450simpld 494 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ)
5553, 54nndivred 12318 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℝ)
5655recnd 11287 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
5749, 56sylan2b 594 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
5848, 57ifclda 4566 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ ℂ)
5947, 58fmpti 7132 . . . . . . . . 9 𝐺:ℕ0⟶ℂ
6059ffvelcdmi 7103 . . . . . . . 8 (1 ∈ ℕ0 → (𝐺‘1) ∈ ℂ)
6146, 60mp1i 13 . . . . . . 7 (⊤ → (𝐺‘1) ∈ ℂ)
62 simpr 484 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 ∈ (0...(1 − 1)))
63 1m1e0 12336 . . . . . . . . . . . 12 (1 − 1) = 0
6463oveq2i 7442 . . . . . . . . . . 11 (0...(1 − 1)) = (0...0)
6562, 64eleqtrdi 2849 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 ∈ (0...0))
66 elfz1eq 13572 . . . . . . . . . 10 (𝑛 ∈ (0...0) → 𝑛 = 0)
6765, 66syl 17 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 = 0)
6867fveq2d 6911 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → (𝐺𝑛) = (𝐺‘0))
69 0nn0 12539 . . . . . . . . 9 0 ∈ ℕ0
70 iftrue 4537 . . . . . . . . . . 11 ((𝑘 = 0 ∨ 2 ∥ 𝑘) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = 0)
7170orcs 875 . . . . . . . . . 10 (𝑘 = 0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = 0)
72 c0ex 11253 . . . . . . . . . 10 0 ∈ V
7371, 47, 72fvmpt 7016 . . . . . . . . 9 (0 ∈ ℕ0 → (𝐺‘0) = 0)
7469, 73ax-mp 5 . . . . . . . 8 (𝐺‘0) = 0
7568, 74eqtrdi 2791 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → (𝐺𝑛) = 0)
7642, 43, 45, 61, 75seqid 14085 . . . . . 6 (⊤ → (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , 𝐺))
77 1zzd 12646 . . . . . . 7 (⊤ → 1 ∈ ℤ)
78 simpr 484 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ (ℤ‘1))
79 nnuz 12919 . . . . . . . . 9 ℕ = (ℤ‘1)
8078, 79eleqtrrdi 2850 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
81 nnne0 12298 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
8281neneqd 2943 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
83 biorf 936 . . . . . . . . . . 11 𝑛 = 0 → (2 ∥ 𝑛 ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
8482, 83syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 ∥ 𝑛 ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
8584ifbid 4554 . . . . . . . . 9 (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
86 breq2 5152 . . . . . . . . . . 11 (𝑘 = 𝑛 → (2 ∥ 𝑘 ↔ 2 ∥ 𝑛))
87 oveq1 7438 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
8887oveq1d 7446 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝑘 − 1) / 2) = ((𝑛 − 1) / 2))
8988oveq2d 7447 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (-1↑((𝑘 − 1) / 2)) = (-1↑((𝑛 − 1) / 2)))
90 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑛𝑘 = 𝑛)
9189, 90oveq12d 7449 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((-1↑((𝑘 − 1) / 2)) / 𝑘) = ((-1↑((𝑛 − 1) / 2)) / 𝑛))
9286, 91ifbieq2d 4557 . . . . . . . . . 10 (𝑘 = 𝑛 → if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
93 eqid 2735 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) = (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
94 ovex 7464 . . . . . . . . . . 11 ((-1↑((𝑛 − 1) / 2)) / 𝑛) ∈ V
9572, 94ifex 4581 . . . . . . . . . 10 if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) ∈ V
9692, 93, 95fvmpt 7016 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
97 nnnn0 12531 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
98 eqeq1 2739 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0))
9998, 86orbi12d 918 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
10099, 91ifbieq2d 4557 . . . . . . . . . . 11 (𝑘 = 𝑛 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10172, 94ifex 4581 . . . . . . . . . . 11 if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) ∈ V
102100, 47, 101fvmpt 7016 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝐺𝑛) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10397, 102syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐺𝑛) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10485, 96, 1033eqtr4d 2785 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = (𝐺𝑛))
10580, 104syl 17 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = (𝐺𝑛))
10677, 105seqfeq 14065 . . . . . 6 (⊤ → seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) = seq1( + , 𝐺))
10776, 106eqtr4d 2778 . . . . 5 (⊤ → (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))))
108107mptru 1544 . . . 4 (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))))
109108breq1i 5155 . . 3 ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴)
110 1z 12645 . . . 4 1 ∈ ℤ
111 seqex 14041 . . . 4 seq0( + , 𝐺) ∈ V
112 climres 15608 . . . 4 ((1 ∈ ℤ ∧ seq0( + , 𝐺) ∈ V) → ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴))
113110, 111, 112mp2an 692 . . 3 ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
114109, 113bitr3i 277 . 2 (seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
11521, 40, 1143bitri 297 1 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1537  wtru 1538  wcel 2106  wne 2938  Vcvv 3478  ifcif 4531   class class class wbr 5148  cmpt 5231  cres 5691  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  cz 12611  cuz 12876  ...cfz 13544  seqcseq 14039  cexp 14099  cli 15517  cdvds 16287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-dvds 16288
This theorem is referenced by:  leibpi  27000
  Copyright terms: Public domain W3C validator