MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leibpilem2 Structured version   Visualization version   GIF version

Theorem leibpilem2 26851
Description: The Leibniz formula for π. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
leibpi.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
leibpilem2.2 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
leibpilem2.3 𝐴 ∈ V
Assertion
Ref Expression
leibpilem2 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
Distinct variable groups:   𝑘,𝑛   𝑛,𝐺
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐹(𝑘,𝑛)   𝐺(𝑘)

Proof of Theorem leibpilem2
StepHypRef Expression
1 leibpi.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
2 2cn 12261 . . . . . . . . . . . 12 2 ∈ ℂ
3 nn0cn 12452 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
4 mulcl 11152 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
52, 3, 4sylancr 587 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℂ)
6 ax-1cn 11126 . . . . . . . . . . 11 1 ∈ ℂ
7 pncan 11427 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
85, 6, 7sylancl 586 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
98oveq1d 7402 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((((2 · 𝑛) + 1) − 1) / 2) = ((2 · 𝑛) / 2))
10 2ne0 12290 . . . . . . . . . . 11 2 ≠ 0
11 divcan3 11863 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑛) / 2) = 𝑛)
122, 10, 11mp3an23 1455 . . . . . . . . . 10 (𝑛 ∈ ℂ → ((2 · 𝑛) / 2) = 𝑛)
133, 12syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((2 · 𝑛) / 2) = 𝑛)
149, 13eqtrd 2764 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((((2 · 𝑛) + 1) − 1) / 2) = 𝑛)
1514oveq2d 7403 . . . . . . 7 (𝑛 ∈ ℕ0 → (-1↑((((2 · 𝑛) + 1) − 1) / 2)) = (-1↑𝑛))
1615oveq1d 7402 . . . . . 6 (𝑛 ∈ ℕ0 → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) = ((-1↑𝑛) / ((2 · 𝑛) + 1)))
1716mpteq2ia 5202 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
181, 17eqtr4i 2755 . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))
19 seqeq3 13971 . . . 4 (𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))) → seq0( + , 𝐹) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))))
2018, 19ax-mp 5 . . 3 seq0( + , 𝐹) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))))
2120breq1i 5114 . 2 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴)
22 neg1rr 12172 . . . . . . . . 9 -1 ∈ ℝ
23 reexpcl 14043 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℝ)
2422, 23mpan 690 . . . . . . . 8 (𝑛 ∈ ℕ0 → (-1↑𝑛) ∈ ℝ)
25 2nn0 12459 . . . . . . . . . 10 2 ∈ ℕ0
26 nn0mulcl 12478 . . . . . . . . . 10 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
2725, 26mpan 690 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
28 nn0p1nn 12481 . . . . . . . . 9 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
2927, 28syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
3024, 29nndivred 12240 . . . . . . 7 (𝑛 ∈ ℕ0 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ ℝ)
3130recnd 11202 . . . . . 6 (𝑛 ∈ ℕ0 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ ℂ)
3216, 31eqeltrd 2828 . . . . 5 (𝑛 ∈ ℕ0 → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) ∈ ℂ)
3332adantl 481 . . . 4 ((⊤ ∧ 𝑛 ∈ ℕ0) → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) ∈ ℂ)
34 oveq1 7394 . . . . . . 7 (𝑘 = ((2 · 𝑛) + 1) → (𝑘 − 1) = (((2 · 𝑛) + 1) − 1))
3534oveq1d 7402 . . . . . 6 (𝑘 = ((2 · 𝑛) + 1) → ((𝑘 − 1) / 2) = ((((2 · 𝑛) + 1) − 1) / 2))
3635oveq2d 7403 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → (-1↑((𝑘 − 1) / 2)) = (-1↑((((2 · 𝑛) + 1) − 1) / 2)))
37 id 22 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → 𝑘 = ((2 · 𝑛) + 1))
3836, 37oveq12d 7405 . . . 4 (𝑘 = ((2 · 𝑛) + 1) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) = ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))
3933, 38iserodd 16806 . . 3 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴))
4039mptru 1547 . 2 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴)
41 addlid 11357 . . . . . . . 8 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
4241adantl 481 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
43 0cnd 11167 . . . . . . 7 (⊤ → 0 ∈ ℂ)
44 1eluzge0 12839 . . . . . . . 8 1 ∈ (ℤ‘0)
4544a1i 11 . . . . . . 7 (⊤ → 1 ∈ (ℤ‘0))
46 1nn0 12458 . . . . . . . 8 1 ∈ ℕ0
47 leibpilem2.2 . . . . . . . . . 10 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
48 0cnd 11167 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → 0 ∈ ℂ)
49 ioran 985 . . . . . . . . . . . 12 (¬ (𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘))
50 leibpilem1 26850 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (𝑘 ∈ ℕ ∧ ((𝑘 − 1) / 2) ∈ ℕ0))
5150simprd 495 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((𝑘 − 1) / 2) ∈ ℕ0)
52 reexpcl 14043 . . . . . . . . . . . . . . 15 ((-1 ∈ ℝ ∧ ((𝑘 − 1) / 2) ∈ ℕ0) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
5322, 51, 52sylancr 587 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
5450simpld 494 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ)
5553, 54nndivred 12240 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℝ)
5655recnd 11202 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
5749, 56sylan2b 594 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
5848, 57ifclda 4524 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ ℂ)
5947, 58fmpti 7084 . . . . . . . . 9 𝐺:ℕ0⟶ℂ
6059ffvelcdmi 7055 . . . . . . . 8 (1 ∈ ℕ0 → (𝐺‘1) ∈ ℂ)
6146, 60mp1i 13 . . . . . . 7 (⊤ → (𝐺‘1) ∈ ℂ)
62 simpr 484 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 ∈ (0...(1 − 1)))
63 1m1e0 12258 . . . . . . . . . . . 12 (1 − 1) = 0
6463oveq2i 7398 . . . . . . . . . . 11 (0...(1 − 1)) = (0...0)
6562, 64eleqtrdi 2838 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 ∈ (0...0))
66 elfz1eq 13496 . . . . . . . . . 10 (𝑛 ∈ (0...0) → 𝑛 = 0)
6765, 66syl 17 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 = 0)
6867fveq2d 6862 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → (𝐺𝑛) = (𝐺‘0))
69 0nn0 12457 . . . . . . . . 9 0 ∈ ℕ0
70 iftrue 4494 . . . . . . . . . . 11 ((𝑘 = 0 ∨ 2 ∥ 𝑘) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = 0)
7170orcs 875 . . . . . . . . . 10 (𝑘 = 0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = 0)
72 c0ex 11168 . . . . . . . . . 10 0 ∈ V
7371, 47, 72fvmpt 6968 . . . . . . . . 9 (0 ∈ ℕ0 → (𝐺‘0) = 0)
7469, 73ax-mp 5 . . . . . . . 8 (𝐺‘0) = 0
7568, 74eqtrdi 2780 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → (𝐺𝑛) = 0)
7642, 43, 45, 61, 75seqid 14012 . . . . . 6 (⊤ → (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , 𝐺))
77 1zzd 12564 . . . . . . 7 (⊤ → 1 ∈ ℤ)
78 simpr 484 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ (ℤ‘1))
79 nnuz 12836 . . . . . . . . 9 ℕ = (ℤ‘1)
8078, 79eleqtrrdi 2839 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
81 nnne0 12220 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
8281neneqd 2930 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
83 biorf 936 . . . . . . . . . . 11 𝑛 = 0 → (2 ∥ 𝑛 ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
8482, 83syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 ∥ 𝑛 ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
8584ifbid 4512 . . . . . . . . 9 (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
86 breq2 5111 . . . . . . . . . . 11 (𝑘 = 𝑛 → (2 ∥ 𝑘 ↔ 2 ∥ 𝑛))
87 oveq1 7394 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
8887oveq1d 7402 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝑘 − 1) / 2) = ((𝑛 − 1) / 2))
8988oveq2d 7403 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (-1↑((𝑘 − 1) / 2)) = (-1↑((𝑛 − 1) / 2)))
90 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑛𝑘 = 𝑛)
9189, 90oveq12d 7405 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((-1↑((𝑘 − 1) / 2)) / 𝑘) = ((-1↑((𝑛 − 1) / 2)) / 𝑛))
9286, 91ifbieq2d 4515 . . . . . . . . . 10 (𝑘 = 𝑛 → if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
93 eqid 2729 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) = (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
94 ovex 7420 . . . . . . . . . . 11 ((-1↑((𝑛 − 1) / 2)) / 𝑛) ∈ V
9572, 94ifex 4539 . . . . . . . . . 10 if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) ∈ V
9692, 93, 95fvmpt 6968 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
97 nnnn0 12449 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
98 eqeq1 2733 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0))
9998, 86orbi12d 918 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
10099, 91ifbieq2d 4515 . . . . . . . . . . 11 (𝑘 = 𝑛 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10172, 94ifex 4539 . . . . . . . . . . 11 if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) ∈ V
102100, 47, 101fvmpt 6968 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝐺𝑛) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10397, 102syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐺𝑛) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10485, 96, 1033eqtr4d 2774 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = (𝐺𝑛))
10580, 104syl 17 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = (𝐺𝑛))
10677, 105seqfeq 13992 . . . . . 6 (⊤ → seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) = seq1( + , 𝐺))
10776, 106eqtr4d 2767 . . . . 5 (⊤ → (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))))
108107mptru 1547 . . . 4 (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))))
109108breq1i 5114 . . 3 ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴)
110 1z 12563 . . . 4 1 ∈ ℤ
111 seqex 13968 . . . 4 seq0( + , 𝐺) ∈ V
112 climres 15541 . . . 4 ((1 ∈ ℤ ∧ seq0( + , 𝐺) ∈ V) → ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴))
113110, 111, 112mp2an 692 . . 3 ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
114109, 113bitr3i 277 . 2 (seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
11521, 40, 1143bitri 297 1 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wtru 1541  wcel 2109  wne 2925  Vcvv 3447  ifcif 4488   class class class wbr 5107  cmpt 5188  cres 5640  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  seqcseq 13966  cexp 14026  cli 15450  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-exp 14027  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-dvds 16223
This theorem is referenced by:  leibpi  26852
  Copyright terms: Public domain W3C validator