MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leibpilem2 Structured version   Visualization version   GIF version

Theorem leibpilem2 26858
Description: The Leibniz formula for π. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
leibpi.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
leibpilem2.2 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
leibpilem2.3 𝐴 ∈ V
Assertion
Ref Expression
leibpilem2 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
Distinct variable groups:   𝑘,𝑛   𝑛,𝐺
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐹(𝑘,𝑛)   𝐺(𝑘)

Proof of Theorem leibpilem2
StepHypRef Expression
1 leibpi.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
2 2cn 12268 . . . . . . . . . . . 12 2 ∈ ℂ
3 nn0cn 12459 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
4 mulcl 11159 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
52, 3, 4sylancr 587 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℂ)
6 ax-1cn 11133 . . . . . . . . . . 11 1 ∈ ℂ
7 pncan 11434 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
85, 6, 7sylancl 586 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
98oveq1d 7405 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((((2 · 𝑛) + 1) − 1) / 2) = ((2 · 𝑛) / 2))
10 2ne0 12297 . . . . . . . . . . 11 2 ≠ 0
11 divcan3 11870 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑛) / 2) = 𝑛)
122, 10, 11mp3an23 1455 . . . . . . . . . 10 (𝑛 ∈ ℂ → ((2 · 𝑛) / 2) = 𝑛)
133, 12syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((2 · 𝑛) / 2) = 𝑛)
149, 13eqtrd 2765 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((((2 · 𝑛) + 1) − 1) / 2) = 𝑛)
1514oveq2d 7406 . . . . . . 7 (𝑛 ∈ ℕ0 → (-1↑((((2 · 𝑛) + 1) − 1) / 2)) = (-1↑𝑛))
1615oveq1d 7405 . . . . . 6 (𝑛 ∈ ℕ0 → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) = ((-1↑𝑛) / ((2 · 𝑛) + 1)))
1716mpteq2ia 5205 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
181, 17eqtr4i 2756 . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))
19 seqeq3 13978 . . . 4 (𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))) → seq0( + , 𝐹) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))))
2018, 19ax-mp 5 . . 3 seq0( + , 𝐹) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))))
2120breq1i 5117 . 2 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴)
22 neg1rr 12179 . . . . . . . . 9 -1 ∈ ℝ
23 reexpcl 14050 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℝ)
2422, 23mpan 690 . . . . . . . 8 (𝑛 ∈ ℕ0 → (-1↑𝑛) ∈ ℝ)
25 2nn0 12466 . . . . . . . . . 10 2 ∈ ℕ0
26 nn0mulcl 12485 . . . . . . . . . 10 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
2725, 26mpan 690 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
28 nn0p1nn 12488 . . . . . . . . 9 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
2927, 28syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
3024, 29nndivred 12247 . . . . . . 7 (𝑛 ∈ ℕ0 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ ℝ)
3130recnd 11209 . . . . . 6 (𝑛 ∈ ℕ0 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ ℂ)
3216, 31eqeltrd 2829 . . . . 5 (𝑛 ∈ ℕ0 → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) ∈ ℂ)
3332adantl 481 . . . 4 ((⊤ ∧ 𝑛 ∈ ℕ0) → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) ∈ ℂ)
34 oveq1 7397 . . . . . . 7 (𝑘 = ((2 · 𝑛) + 1) → (𝑘 − 1) = (((2 · 𝑛) + 1) − 1))
3534oveq1d 7405 . . . . . 6 (𝑘 = ((2 · 𝑛) + 1) → ((𝑘 − 1) / 2) = ((((2 · 𝑛) + 1) − 1) / 2))
3635oveq2d 7406 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → (-1↑((𝑘 − 1) / 2)) = (-1↑((((2 · 𝑛) + 1) − 1) / 2)))
37 id 22 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → 𝑘 = ((2 · 𝑛) + 1))
3836, 37oveq12d 7408 . . . 4 (𝑘 = ((2 · 𝑛) + 1) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) = ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))
3933, 38iserodd 16813 . . 3 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴))
4039mptru 1547 . 2 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴)
41 addlid 11364 . . . . . . . 8 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
4241adantl 481 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
43 0cnd 11174 . . . . . . 7 (⊤ → 0 ∈ ℂ)
44 1eluzge0 12846 . . . . . . . 8 1 ∈ (ℤ‘0)
4544a1i 11 . . . . . . 7 (⊤ → 1 ∈ (ℤ‘0))
46 1nn0 12465 . . . . . . . 8 1 ∈ ℕ0
47 leibpilem2.2 . . . . . . . . . 10 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
48 0cnd 11174 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → 0 ∈ ℂ)
49 ioran 985 . . . . . . . . . . . 12 (¬ (𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘))
50 leibpilem1 26857 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (𝑘 ∈ ℕ ∧ ((𝑘 − 1) / 2) ∈ ℕ0))
5150simprd 495 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((𝑘 − 1) / 2) ∈ ℕ0)
52 reexpcl 14050 . . . . . . . . . . . . . . 15 ((-1 ∈ ℝ ∧ ((𝑘 − 1) / 2) ∈ ℕ0) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
5322, 51, 52sylancr 587 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
5450simpld 494 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ)
5553, 54nndivred 12247 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℝ)
5655recnd 11209 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
5749, 56sylan2b 594 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
5848, 57ifclda 4527 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ ℂ)
5947, 58fmpti 7087 . . . . . . . . 9 𝐺:ℕ0⟶ℂ
6059ffvelcdmi 7058 . . . . . . . 8 (1 ∈ ℕ0 → (𝐺‘1) ∈ ℂ)
6146, 60mp1i 13 . . . . . . 7 (⊤ → (𝐺‘1) ∈ ℂ)
62 simpr 484 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 ∈ (0...(1 − 1)))
63 1m1e0 12265 . . . . . . . . . . . 12 (1 − 1) = 0
6463oveq2i 7401 . . . . . . . . . . 11 (0...(1 − 1)) = (0...0)
6562, 64eleqtrdi 2839 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 ∈ (0...0))
66 elfz1eq 13503 . . . . . . . . . 10 (𝑛 ∈ (0...0) → 𝑛 = 0)
6765, 66syl 17 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 = 0)
6867fveq2d 6865 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → (𝐺𝑛) = (𝐺‘0))
69 0nn0 12464 . . . . . . . . 9 0 ∈ ℕ0
70 iftrue 4497 . . . . . . . . . . 11 ((𝑘 = 0 ∨ 2 ∥ 𝑘) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = 0)
7170orcs 875 . . . . . . . . . 10 (𝑘 = 0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = 0)
72 c0ex 11175 . . . . . . . . . 10 0 ∈ V
7371, 47, 72fvmpt 6971 . . . . . . . . 9 (0 ∈ ℕ0 → (𝐺‘0) = 0)
7469, 73ax-mp 5 . . . . . . . 8 (𝐺‘0) = 0
7568, 74eqtrdi 2781 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → (𝐺𝑛) = 0)
7642, 43, 45, 61, 75seqid 14019 . . . . . 6 (⊤ → (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , 𝐺))
77 1zzd 12571 . . . . . . 7 (⊤ → 1 ∈ ℤ)
78 simpr 484 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ (ℤ‘1))
79 nnuz 12843 . . . . . . . . 9 ℕ = (ℤ‘1)
8078, 79eleqtrrdi 2840 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
81 nnne0 12227 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
8281neneqd 2931 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
83 biorf 936 . . . . . . . . . . 11 𝑛 = 0 → (2 ∥ 𝑛 ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
8482, 83syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 ∥ 𝑛 ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
8584ifbid 4515 . . . . . . . . 9 (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
86 breq2 5114 . . . . . . . . . . 11 (𝑘 = 𝑛 → (2 ∥ 𝑘 ↔ 2 ∥ 𝑛))
87 oveq1 7397 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
8887oveq1d 7405 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝑘 − 1) / 2) = ((𝑛 − 1) / 2))
8988oveq2d 7406 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (-1↑((𝑘 − 1) / 2)) = (-1↑((𝑛 − 1) / 2)))
90 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑛𝑘 = 𝑛)
9189, 90oveq12d 7408 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((-1↑((𝑘 − 1) / 2)) / 𝑘) = ((-1↑((𝑛 − 1) / 2)) / 𝑛))
9286, 91ifbieq2d 4518 . . . . . . . . . 10 (𝑘 = 𝑛 → if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
93 eqid 2730 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) = (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
94 ovex 7423 . . . . . . . . . . 11 ((-1↑((𝑛 − 1) / 2)) / 𝑛) ∈ V
9572, 94ifex 4542 . . . . . . . . . 10 if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) ∈ V
9692, 93, 95fvmpt 6971 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
97 nnnn0 12456 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
98 eqeq1 2734 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0))
9998, 86orbi12d 918 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
10099, 91ifbieq2d 4518 . . . . . . . . . . 11 (𝑘 = 𝑛 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10172, 94ifex 4542 . . . . . . . . . . 11 if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) ∈ V
102100, 47, 101fvmpt 6971 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝐺𝑛) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10397, 102syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐺𝑛) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10485, 96, 1033eqtr4d 2775 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = (𝐺𝑛))
10580, 104syl 17 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = (𝐺𝑛))
10677, 105seqfeq 13999 . . . . . 6 (⊤ → seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) = seq1( + , 𝐺))
10776, 106eqtr4d 2768 . . . . 5 (⊤ → (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))))
108107mptru 1547 . . . 4 (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))))
109108breq1i 5117 . . 3 ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴)
110 1z 12570 . . . 4 1 ∈ ℤ
111 seqex 13975 . . . 4 seq0( + , 𝐺) ∈ V
112 climres 15548 . . . 4 ((1 ∈ ℤ ∧ seq0( + , 𝐺) ∈ V) → ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴))
113110, 111, 112mp2an 692 . . 3 ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
114109, 113bitr3i 277 . 2 (seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
11521, 40, 1143bitri 297 1 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wtru 1541  wcel 2109  wne 2926  Vcvv 3450  ifcif 4491   class class class wbr 5110  cmpt 5191  cres 5643  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  seqcseq 13973  cexp 14033  cli 15457  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-seq 13974  df-exp 14034  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-dvds 16230
This theorem is referenced by:  leibpi  26859
  Copyright terms: Public domain W3C validator