MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leibpilem2 Structured version   Visualization version   GIF version

Theorem leibpilem2 26903
Description: The Leibniz formula for π. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
leibpi.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
leibpilem2.2 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
leibpilem2.3 𝐴 ∈ V
Assertion
Ref Expression
leibpilem2 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
Distinct variable groups:   𝑘,𝑛   𝑛,𝐺
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐹(𝑘,𝑛)   𝐺(𝑘)

Proof of Theorem leibpilem2
StepHypRef Expression
1 leibpi.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
2 2cn 12315 . . . . . . . . . . . 12 2 ∈ ℂ
3 nn0cn 12511 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
4 mulcl 11213 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
52, 3, 4sylancr 587 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℂ)
6 ax-1cn 11187 . . . . . . . . . . 11 1 ∈ ℂ
7 pncan 11488 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
85, 6, 7sylancl 586 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
98oveq1d 7420 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((((2 · 𝑛) + 1) − 1) / 2) = ((2 · 𝑛) / 2))
10 2ne0 12344 . . . . . . . . . . 11 2 ≠ 0
11 divcan3 11922 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑛) / 2) = 𝑛)
122, 10, 11mp3an23 1455 . . . . . . . . . 10 (𝑛 ∈ ℂ → ((2 · 𝑛) / 2) = 𝑛)
133, 12syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((2 · 𝑛) / 2) = 𝑛)
149, 13eqtrd 2770 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((((2 · 𝑛) + 1) − 1) / 2) = 𝑛)
1514oveq2d 7421 . . . . . . 7 (𝑛 ∈ ℕ0 → (-1↑((((2 · 𝑛) + 1) − 1) / 2)) = (-1↑𝑛))
1615oveq1d 7420 . . . . . 6 (𝑛 ∈ ℕ0 → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) = ((-1↑𝑛) / ((2 · 𝑛) + 1)))
1716mpteq2ia 5216 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
181, 17eqtr4i 2761 . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))
19 seqeq3 14024 . . . 4 (𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))) → seq0( + , 𝐹) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))))
2018, 19ax-mp 5 . . 3 seq0( + , 𝐹) = seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1))))
2120breq1i 5126 . 2 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴)
22 neg1rr 12355 . . . . . . . . 9 -1 ∈ ℝ
23 reexpcl 14096 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℝ)
2422, 23mpan 690 . . . . . . . 8 (𝑛 ∈ ℕ0 → (-1↑𝑛) ∈ ℝ)
25 2nn0 12518 . . . . . . . . . 10 2 ∈ ℕ0
26 nn0mulcl 12537 . . . . . . . . . 10 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
2725, 26mpan 690 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
28 nn0p1nn 12540 . . . . . . . . 9 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
2927, 28syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
3024, 29nndivred 12294 . . . . . . 7 (𝑛 ∈ ℕ0 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ ℝ)
3130recnd 11263 . . . . . 6 (𝑛 ∈ ℕ0 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ ℂ)
3216, 31eqeltrd 2834 . . . . 5 (𝑛 ∈ ℕ0 → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) ∈ ℂ)
3332adantl 481 . . . 4 ((⊤ ∧ 𝑛 ∈ ℕ0) → ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)) ∈ ℂ)
34 oveq1 7412 . . . . . . 7 (𝑘 = ((2 · 𝑛) + 1) → (𝑘 − 1) = (((2 · 𝑛) + 1) − 1))
3534oveq1d 7420 . . . . . 6 (𝑘 = ((2 · 𝑛) + 1) → ((𝑘 − 1) / 2) = ((((2 · 𝑛) + 1) − 1) / 2))
3635oveq2d 7421 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → (-1↑((𝑘 − 1) / 2)) = (-1↑((((2 · 𝑛) + 1) − 1) / 2)))
37 id 22 . . . . 5 (𝑘 = ((2 · 𝑛) + 1) → 𝑘 = ((2 · 𝑛) + 1))
3836, 37oveq12d 7423 . . . 4 (𝑘 = ((2 · 𝑛) + 1) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) = ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))
3933, 38iserodd 16855 . . 3 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴))
4039mptru 1547 . 2 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑((((2 · 𝑛) + 1) − 1) / 2)) / ((2 · 𝑛) + 1)))) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴)
41 addlid 11418 . . . . . . . 8 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
4241adantl 481 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
43 0cnd 11228 . . . . . . 7 (⊤ → 0 ∈ ℂ)
44 1eluzge0 12908 . . . . . . . 8 1 ∈ (ℤ‘0)
4544a1i 11 . . . . . . 7 (⊤ → 1 ∈ (ℤ‘0))
46 1nn0 12517 . . . . . . . 8 1 ∈ ℕ0
47 leibpilem2.2 . . . . . . . . . 10 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
48 0cnd 11228 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → 0 ∈ ℂ)
49 ioran 985 . . . . . . . . . . . 12 (¬ (𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘))
50 leibpilem1 26902 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (𝑘 ∈ ℕ ∧ ((𝑘 − 1) / 2) ∈ ℕ0))
5150simprd 495 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((𝑘 − 1) / 2) ∈ ℕ0)
52 reexpcl 14096 . . . . . . . . . . . . . . 15 ((-1 ∈ ℝ ∧ ((𝑘 − 1) / 2) ∈ ℕ0) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
5322, 51, 52sylancr 587 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
5450simpld 494 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ)
5553, 54nndivred 12294 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℝ)
5655recnd 11263 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
5749, 56sylan2b 594 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
5848, 57ifclda 4536 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ ℂ)
5947, 58fmpti 7102 . . . . . . . . 9 𝐺:ℕ0⟶ℂ
6059ffvelcdmi 7073 . . . . . . . 8 (1 ∈ ℕ0 → (𝐺‘1) ∈ ℂ)
6146, 60mp1i 13 . . . . . . 7 (⊤ → (𝐺‘1) ∈ ℂ)
62 simpr 484 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 ∈ (0...(1 − 1)))
63 1m1e0 12312 . . . . . . . . . . . 12 (1 − 1) = 0
6463oveq2i 7416 . . . . . . . . . . 11 (0...(1 − 1)) = (0...0)
6562, 64eleqtrdi 2844 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 ∈ (0...0))
66 elfz1eq 13552 . . . . . . . . . 10 (𝑛 ∈ (0...0) → 𝑛 = 0)
6765, 66syl 17 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → 𝑛 = 0)
6867fveq2d 6880 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → (𝐺𝑛) = (𝐺‘0))
69 0nn0 12516 . . . . . . . . 9 0 ∈ ℕ0
70 iftrue 4506 . . . . . . . . . . 11 ((𝑘 = 0 ∨ 2 ∥ 𝑘) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = 0)
7170orcs 875 . . . . . . . . . 10 (𝑘 = 0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = 0)
72 c0ex 11229 . . . . . . . . . 10 0 ∈ V
7371, 47, 72fvmpt 6986 . . . . . . . . 9 (0 ∈ ℕ0 → (𝐺‘0) = 0)
7469, 73ax-mp 5 . . . . . . . 8 (𝐺‘0) = 0
7568, 74eqtrdi 2786 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (0...(1 − 1))) → (𝐺𝑛) = 0)
7642, 43, 45, 61, 75seqid 14065 . . . . . 6 (⊤ → (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , 𝐺))
77 1zzd 12623 . . . . . . 7 (⊤ → 1 ∈ ℤ)
78 simpr 484 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ (ℤ‘1))
79 nnuz 12895 . . . . . . . . 9 ℕ = (ℤ‘1)
8078, 79eleqtrrdi 2845 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
81 nnne0 12274 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
8281neneqd 2937 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
83 biorf 936 . . . . . . . . . . 11 𝑛 = 0 → (2 ∥ 𝑛 ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
8482, 83syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 ∥ 𝑛 ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
8584ifbid 4524 . . . . . . . . 9 (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
86 breq2 5123 . . . . . . . . . . 11 (𝑘 = 𝑛 → (2 ∥ 𝑘 ↔ 2 ∥ 𝑛))
87 oveq1 7412 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
8887oveq1d 7420 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((𝑘 − 1) / 2) = ((𝑛 − 1) / 2))
8988oveq2d 7421 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (-1↑((𝑘 − 1) / 2)) = (-1↑((𝑛 − 1) / 2)))
90 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑛𝑘 = 𝑛)
9189, 90oveq12d 7423 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((-1↑((𝑘 − 1) / 2)) / 𝑘) = ((-1↑((𝑛 − 1) / 2)) / 𝑛))
9286, 91ifbieq2d 4527 . . . . . . . . . 10 (𝑘 = 𝑛 → if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
93 eqid 2735 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) = (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
94 ovex 7438 . . . . . . . . . . 11 ((-1↑((𝑛 − 1) / 2)) / 𝑛) ∈ V
9572, 94ifex 4551 . . . . . . . . . 10 if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) ∈ V
9692, 93, 95fvmpt 6986 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
97 nnnn0 12508 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
98 eqeq1 2739 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0))
9998, 86orbi12d 918 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (𝑛 = 0 ∨ 2 ∥ 𝑛)))
10099, 91ifbieq2d 4527 . . . . . . . . . . 11 (𝑘 = 𝑛 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10172, 94ifex 4551 . . . . . . . . . . 11 if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)) ∈ V
102100, 47, 101fvmpt 6986 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝐺𝑛) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10397, 102syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐺𝑛) = if((𝑛 = 0 ∨ 2 ∥ 𝑛), 0, ((-1↑((𝑛 − 1) / 2)) / 𝑛)))
10485, 96, 1033eqtr4d 2780 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = (𝐺𝑛))
10580, 104syl 17 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (ℤ‘1)) → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑛) = (𝐺𝑛))
10677, 105seqfeq 14045 . . . . . 6 (⊤ → seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) = seq1( + , 𝐺))
10776, 106eqtr4d 2773 . . . . 5 (⊤ → (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))))
108107mptru 1547 . . . 4 (seq0( + , 𝐺) ↾ (ℤ‘1)) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))))
109108breq1i 5126 . . 3 ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴)
110 1z 12622 . . . 4 1 ∈ ℤ
111 seqex 14021 . . . 4 seq0( + , 𝐺) ∈ V
112 climres 15591 . . . 4 ((1 ∈ ℤ ∧ seq0( + , 𝐺) ∈ V) → ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴))
113110, 111, 112mp2an 692 . . 3 ((seq0( + , 𝐺) ↾ (ℤ‘1)) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
114109, 113bitr3i 277 . 2 (seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
11521, 40, 1143bitri 297 1 (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wtru 1541  wcel 2108  wne 2932  Vcvv 3459  ifcif 4500   class class class wbr 5119  cmpt 5201  cres 5656  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466  -cneg 11467   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cz 12588  cuz 12852  ...cfz 13524  seqcseq 14019  cexp 14079  cli 15500  cdvds 16272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-seq 14020  df-exp 14080  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-dvds 16273
This theorem is referenced by:  leibpi  26904
  Copyright terms: Public domain W3C validator