MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leibpi Structured version   Visualization version   GIF version

Theorem leibpi 26852
Description: The Leibniz formula for π. This proof depends on three main facts: (1) the series 𝐹 is convergent, because it is an alternating series (iseralt 15651). (2) Using leibpilem2 26851 to rewrite the series as a power series, it is the 𝑥 = 1 special case of the Taylor series for arctan (atantayl2 26848). (3) Although we cannot directly plug 𝑥 = 1 into atantayl2 26848, Abel's theorem (abelth2 26352) says that the limit along any sequence converging to 1, such as 1 − 1 / 𝑛, of the power series converges to the power series extended to 1, and then since arctan is continuous at 1 (atancn 26846) we get the desired result. This is Metamath 100 proof #26. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypothesis
Ref Expression
leibpi.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
Assertion
Ref Expression
leibpi seq0( + , 𝐹) ⇝ (π / 4)

Proof of Theorem leibpi
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12835 . . . . 5 0 = (ℤ‘0)
2 0zd 12541 . . . . 5 (⊤ → 0 ∈ ℤ)
3 eqidd 2730 . . . . 5 ((⊤ ∧ 𝑗 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
4 0cnd 11167 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → 0 ∈ ℂ)
5 ioran 985 . . . . . . . . . 10 (¬ (𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘))
6 neg1rr 12172 . . . . . . . . . . . . 13 -1 ∈ ℝ
7 leibpilem1 26850 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (𝑘 ∈ ℕ ∧ ((𝑘 − 1) / 2) ∈ ℕ0))
87simprd 495 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((𝑘 − 1) / 2) ∈ ℕ0)
9 reexpcl 14043 . . . . . . . . . . . . 13 ((-1 ∈ ℝ ∧ ((𝑘 − 1) / 2) ∈ ℕ0) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
106, 8, 9sylancr 587 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
117simpld 494 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ)
1210, 11nndivred 12240 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℝ)
1312recnd 11202 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
145, 13sylan2b 594 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
154, 14ifclda 4524 . . . . . . . 8 (𝑘 ∈ ℕ0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ ℂ)
1615adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ ℂ)
1716fmpttd 7087 . . . . . 6 (⊤ → (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))):ℕ0⟶ℂ)
1817ffvelcdmda 7056 . . . . 5 ((⊤ ∧ 𝑗 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) ∈ ℂ)
19 2nn0 12459 . . . . . . . . . . . . . 14 2 ∈ ℕ0
2019a1i 11 . . . . . . . . . . . . 13 (⊤ → 2 ∈ ℕ0)
21 nn0mulcl 12478 . . . . . . . . . . . . 13 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
2220, 21sylan 580 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
23 nn0p1nn 12481 . . . . . . . . . . . 12 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
2422, 23syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑛) + 1) ∈ ℕ)
2524nnrecred 12237 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ0) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
2625fmpttd 7087 . . . . . . . . 9 (⊤ → (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))):ℕ0⟶ℝ)
27 nn0mulcl 12478 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
2820, 27sylan 580 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
2928nn0red 12504 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℝ)
30 peano2nn0 12482 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3130adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
32 nn0mulcl 12478 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℕ0) → (2 · (𝑘 + 1)) ∈ ℕ0)
3319, 31, 32sylancr 587 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · (𝑘 + 1)) ∈ ℕ0)
3433nn0red 12504 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · (𝑘 + 1)) ∈ ℝ)
35 1red 11175 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
36 nn0re 12451 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
3736adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
3837lep1d 12114 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ≤ (𝑘 + 1))
39 peano2re 11347 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
4037, 39syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℝ)
41 2re 12260 . . . . . . . . . . . . . . 15 2 ∈ ℝ
4241a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℝ)
43 2pos 12289 . . . . . . . . . . . . . . 15 0 < 2
4443a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < 2)
45 lemul2 12035 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑘 ≤ (𝑘 + 1) ↔ (2 · 𝑘) ≤ (2 · (𝑘 + 1))))
4637, 40, 42, 44, 45syl112anc 1376 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝑘 ≤ (𝑘 + 1) ↔ (2 · 𝑘) ≤ (2 · (𝑘 + 1))))
4738, 46mpbid 232 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · 𝑘) ≤ (2 · (𝑘 + 1)))
4829, 34, 35, 47leadd1dd 11792 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ≤ ((2 · (𝑘 + 1)) + 1))
49 nn0p1nn 12481 . . . . . . . . . . . . . 14 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
5028, 49syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ)
5150nnred 12201 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℝ)
5250nngt0d 12235 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < ((2 · 𝑘) + 1))
53 nn0p1nn 12481 . . . . . . . . . . . . . 14 ((2 · (𝑘 + 1)) ∈ ℕ0 → ((2 · (𝑘 + 1)) + 1) ∈ ℕ)
5433, 53syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · (𝑘 + 1)) + 1) ∈ ℕ)
5554nnred 12201 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · (𝑘 + 1)) + 1) ∈ ℝ)
5654nngt0d 12235 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < ((2 · (𝑘 + 1)) + 1))
57 lerec 12066 . . . . . . . . . . . 12 (((((2 · 𝑘) + 1) ∈ ℝ ∧ 0 < ((2 · 𝑘) + 1)) ∧ (((2 · (𝑘 + 1)) + 1) ∈ ℝ ∧ 0 < ((2 · (𝑘 + 1)) + 1))) → (((2 · 𝑘) + 1) ≤ ((2 · (𝑘 + 1)) + 1) ↔ (1 / ((2 · (𝑘 + 1)) + 1)) ≤ (1 / ((2 · 𝑘) + 1))))
5851, 52, 55, 56, 57syl22anc 838 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (((2 · 𝑘) + 1) ≤ ((2 · (𝑘 + 1)) + 1) ↔ (1 / ((2 · (𝑘 + 1)) + 1)) ≤ (1 / ((2 · 𝑘) + 1))))
5948, 58mpbid 232 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / ((2 · (𝑘 + 1)) + 1)) ≤ (1 / ((2 · 𝑘) + 1)))
60 oveq2 7395 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → (2 · 𝑛) = (2 · (𝑘 + 1)))
6160oveq1d 7402 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → ((2 · 𝑛) + 1) = ((2 · (𝑘 + 1)) + 1))
6261oveq2d 7403 . . . . . . . . . . . 12 (𝑛 = (𝑘 + 1) → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · (𝑘 + 1)) + 1)))
63 eqid 2729 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))
64 ovex 7420 . . . . . . . . . . . 12 (1 / ((2 · (𝑘 + 1)) + 1)) ∈ V
6562, 63, 64fvmpt 6968 . . . . . . . . . . 11 ((𝑘 + 1) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘(𝑘 + 1)) = (1 / ((2 · (𝑘 + 1)) + 1)))
6631, 65syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘(𝑘 + 1)) = (1 / ((2 · (𝑘 + 1)) + 1)))
67 oveq2 7395 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
6867oveq1d 7402 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
6968oveq2d 7403 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1)))
70 ovex 7420 . . . . . . . . . . . 12 (1 / ((2 · 𝑘) + 1)) ∈ V
7169, 63, 70fvmpt 6968 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) = (1 / ((2 · 𝑘) + 1)))
7271adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) = (1 / ((2 · 𝑘) + 1)))
7359, 66, 723brtr4d 5139 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘(𝑘 + 1)) ≤ ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘))
74 nnuz 12836 . . . . . . . . . 10 ℕ = (ℤ‘1)
75 1zzd 12564 . . . . . . . . . 10 (⊤ → 1 ∈ ℤ)
76 ax-1cn 11126 . . . . . . . . . . 11 1 ∈ ℂ
77 divcnv 15819 . . . . . . . . . . 11 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
7876, 77mp1i 13 . . . . . . . . . 10 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
79 nn0ex 12448 . . . . . . . . . . . 12 0 ∈ V
8079mptex 7197 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))) ∈ V
8180a1i 11 . . . . . . . . . 10 (⊤ → (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))) ∈ V)
82 oveq2 7395 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
83 eqid 2729 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
84 ovex 7420 . . . . . . . . . . . . 13 (1 / 𝑘) ∈ V
8582, 83, 84fvmpt 6968 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
8685adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
87 nnrecre 12228 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
8887adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
8986, 88eqeltrd 2828 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) ∈ ℝ)
90 nnnn0 12449 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
9190adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
9291, 71syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) = (1 / ((2 · 𝑘) + 1)))
9390, 50sylan2 593 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ)
9493nnrecred 12237 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ)
9592, 94eqeltrd 2828 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) ∈ ℝ)
96 nnre 12193 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
9796adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
9819, 91, 27sylancr 587 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ0)
9998nn0red 12504 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℝ)
100 peano2re 11347 . . . . . . . . . . . . . 14 ((2 · 𝑘) ∈ ℝ → ((2 · 𝑘) + 1) ∈ ℝ)
10199, 100syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ)
102 nn0addge1 12488 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝑘 ≤ (𝑘 + 𝑘))
10397, 91, 102syl2anc 584 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (𝑘 + 𝑘))
10497recnd 11202 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
1051042timesd 12425 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
106103, 105breqtrrd 5135 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (2 · 𝑘))
10799lep1d 12114 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ≤ ((2 · 𝑘) + 1))
10897, 99, 101, 106, 107letrd 11331 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ ((2 · 𝑘) + 1))
109 nngt0 12217 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 0 < 𝑘)
110109adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
11193nnred 12201 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ)
11293nngt0d 12235 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < ((2 · 𝑘) + 1))
113 lerec 12066 . . . . . . . . . . . . 13 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ (((2 · 𝑘) + 1) ∈ ℝ ∧ 0 < ((2 · 𝑘) + 1))) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
11497, 110, 111, 112, 113syl22anc 838 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
115108, 114mpbid 232 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘))
116115, 92, 863brtr4d 5139 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘))
11793nnrpd 12993 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ+)
118117rpreccld 13005 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ+)
119118rpge0d 12999 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / ((2 · 𝑘) + 1)))
120119, 92breqtrrd 5135 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘))
12174, 75, 78, 81, 89, 95, 116, 120climsqz2 15608 . . . . . . . . 9 (⊤ → (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))) ⇝ 0)
122 neg1cn 12171 . . . . . . . . . . . . 13 -1 ∈ ℂ
123122a1i 11 . . . . . . . . . . . 12 (⊤ → -1 ∈ ℂ)
124 expcl 14044 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
125123, 124sylan 580 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
12650nncnd 12202 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℂ)
12750nnne0d 12236 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ≠ 0)
128125, 126, 127divrecd 11961 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) / ((2 · 𝑘) + 1)) = ((-1↑𝑘) · (1 / ((2 · 𝑘) + 1))))
129 oveq2 7395 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (-1↑𝑛) = (-1↑𝑘))
130129, 68oveq12d 7405 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) = ((-1↑𝑘) / ((2 · 𝑘) + 1)))
131 eqid 2729 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
132 ovex 7420 . . . . . . . . . . . 12 ((-1↑𝑘) / ((2 · 𝑘) + 1)) ∈ V
133130, 131, 132fvmpt 6968 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))‘𝑘) = ((-1↑𝑘) / ((2 · 𝑘) + 1)))
134133adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))‘𝑘) = ((-1↑𝑘) / ((2 · 𝑘) + 1)))
13572oveq2d 7403 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) · ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘)) = ((-1↑𝑘) · (1 / ((2 · 𝑘) + 1))))
136128, 134, 1353eqtr4d 2774 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))‘𝑘) = ((-1↑𝑘) · ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘)))
1371, 2, 26, 73, 121, 136iseralt 15651 . . . . . . . 8 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ∈ dom ⇝ )
138 climdm 15520 . . . . . . . 8 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ∈ dom ⇝ ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))))
139137, 138sylib 218 . . . . . . 7 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))))
140 eqid 2729 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
141 fvex 6871 . . . . . . . 8 ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))) ∈ V
142131, 140, 141leibpilem2 26851 . . . . . . 7 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))) ↔ seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))))
143139, 142sylib 218 . . . . . 6 (⊤ → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))))
144 seqex 13968 . . . . . . 7 seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ∈ V
145144, 141breldm 5872 . . . . . 6 (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))) → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ∈ dom ⇝ )
146143, 145syl 17 . . . . 5 (⊤ → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ∈ dom ⇝ )
1471, 2, 3, 18, 146isumclim2 15724 . . . 4 (⊤ → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
148 eqid 2729 . . . . . . . 8 (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) = (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)))
14917, 146, 148abelth2 26352 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) ∈ ((0[,]1)–cn→ℂ))
150 nnrp 12963 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
151150adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
152151rpreccld 13005 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
153152rpred 12995 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
154152rpge0d 12999 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → 0 ≤ (1 / 𝑛))
155 nnge1 12214 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 1 ≤ 𝑛)
156155adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ≤ 𝑛)
157 nnre 12193 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
158157adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
159158recnd 11202 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
160159mulridd 11191 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝑛 · 1) = 𝑛)
161156, 160breqtrrd 5135 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ≤ (𝑛 · 1))
162 1red 11175 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ∈ ℝ)
163 nngt0 12217 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 0 < 𝑛)
164163adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → 0 < 𝑛)
165 ledivmul 12059 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((1 / 𝑛) ≤ 1 ↔ 1 ≤ (𝑛 · 1)))
166162, 162, 158, 164, 165syl112anc 1376 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) ≤ 1 ↔ 1 ≤ (𝑛 · 1)))
167161, 166mpbird 257 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ≤ 1)
168 elicc01 13427 . . . . . . . . . 10 ((1 / 𝑛) ∈ (0[,]1) ↔ ((1 / 𝑛) ∈ ℝ ∧ 0 ≤ (1 / 𝑛) ∧ (1 / 𝑛) ≤ 1))
169153, 154, 167, 168syl3anbrc 1344 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ (0[,]1))
170 iirev 24823 . . . . . . . . 9 ((1 / 𝑛) ∈ (0[,]1) → (1 − (1 / 𝑛)) ∈ (0[,]1))
171169, 170syl 17 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) ∈ (0[,]1))
172171fmpttd 7087 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))):ℕ⟶(0[,]1))
173 1cnd 11169 . . . . . . . . 9 (⊤ → 1 ∈ ℂ)
174 nnex 12192 . . . . . . . . . . 11 ℕ ∈ V
175174mptex 7197 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) ∈ V
176175a1i 11 . . . . . . . . 9 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) ∈ V)
17789recnd 11202 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) ∈ ℂ)
17882oveq2d 7403 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (1 − (1 / 𝑛)) = (1 − (1 / 𝑘)))
179 eqid 2729 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))
180 ovex 7420 . . . . . . . . . . . 12 (1 − (1 / 𝑘)) ∈ V
181178, 179, 180fvmpt 6968 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))‘𝑘) = (1 − (1 / 𝑘)))
18285oveq2d 7403 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 − ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘)) = (1 − (1 / 𝑘)))
183181, 182eqtr4d 2767 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))‘𝑘) = (1 − ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘)))
184183adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))‘𝑘) = (1 − ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘)))
18574, 75, 78, 173, 176, 177, 184climsubc2 15605 . . . . . . . 8 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) ⇝ (1 − 0))
186 1m0e1 12302 . . . . . . . 8 (1 − 0) = 1
187185, 186breqtrdi 5148 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) ⇝ 1)
188 1elunit 13431 . . . . . . . 8 1 ∈ (0[,]1)
189188a1i 11 . . . . . . 7 (⊤ → 1 ∈ (0[,]1))
19074, 75, 149, 172, 187, 189climcncf 24793 . . . . . 6 (⊤ → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) ⇝ ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)))‘1))
191 eqidd 2730 . . . . . . . 8 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))))
192 eqidd 2730 . . . . . . . 8 (⊤ → (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) = (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))))
193 oveq1 7394 . . . . . . . . . 10 (𝑥 = (1 − (1 / 𝑛)) → (𝑥𝑗) = ((1 − (1 / 𝑛))↑𝑗))
194193oveq2d 7403 . . . . . . . . 9 (𝑥 = (1 − (1 / 𝑛)) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
195194sumeq2sdv 15669 . . . . . . . 8 (𝑥 = (1 − (1 / 𝑛)) → Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
196171, 191, 192, 195fmptco 7101 . . . . . . 7 (⊤ → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))))
197 0zd 12541 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → 0 ∈ ℤ)
1988adantll 714 . . . . . . . . . . . . . . . . . . . . . 22 (((⊤ ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((𝑘 − 1) / 2) ∈ ℕ0)
1996, 198, 9sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
200199recnd 11202 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℂ)
201200adantllr 719 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℂ)
202 1re 11174 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
203 resubcl 11486 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ (1 / 𝑛) ∈ ℝ) → (1 − (1 / 𝑛)) ∈ ℝ)
204202, 153, 203sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) ∈ ℝ)
205204ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (1 − (1 / 𝑛)) ∈ ℝ)
206 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ0)
207205, 206reexpcld 14128 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((1 − (1 / 𝑛))↑𝑘) ∈ ℝ)
208207recnd 11202 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((1 − (1 / 𝑛))↑𝑘) ∈ ℂ)
209 nn0cn 12452 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
210209ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℂ)
21111adantll 714 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ)
212211nnne0d 12236 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ≠ 0)
213201, 208, 210, 212div12d 11994 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) = (((1 − (1 / 𝑛))↑𝑘) · ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
21413adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
215208, 214mulcomd 11195 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (((1 − (1 / 𝑛))↑𝑘) · ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
216213, 215eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) = (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
2175, 216sylan2b 594 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) = (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
218217ifeq2da 4521 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘))))
219204recnd 11202 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) ∈ ℂ)
220 expcl 14044 . . . . . . . . . . . . . . . . . 18 (((1 − (1 / 𝑛)) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 − (1 / 𝑛))↑𝑘) ∈ ℂ)
221219, 220sylan 580 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((1 − (1 / 𝑛))↑𝑘) ∈ ℂ)
222221mul02d 11372 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (0 · ((1 − (1 / 𝑛))↑𝑘)) = 0)
223222ifeq1d 4508 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), (0 · ((1 − (1 / 𝑛))↑𝑘)), (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘))) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘))))
224218, 223eqtr4d 2767 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), (0 · ((1 − (1 / 𝑛))↑𝑘)), (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘))))
225 ovif 7487 . . . . . . . . . . . . . 14 (if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) · ((1 − (1 / 𝑛))↑𝑘)) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), (0 · ((1 − (1 / 𝑛))↑𝑘)), (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
226224, 225eqtr4di 2782 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = (if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) · ((1 − (1 / 𝑛))↑𝑘)))
227 simpr 484 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
228 c0ex 11168 . . . . . . . . . . . . . . 15 0 ∈ V
229 ovex 7420 . . . . . . . . . . . . . . 15 ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) ∈ V
230228, 229ifex 4539 . . . . . . . . . . . . . 14 if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ V
231 eqid 2729 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))) = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
232231fvmpt2 6979 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ V) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
233227, 230, 232sylancl 586 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
234 ovex 7420 . . . . . . . . . . . . . . . 16 ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ V
235228, 234ifex 4539 . . . . . . . . . . . . . . 15 if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ V
236140fvmpt2 6979 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0 ∧ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ V) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
237227, 235, 236sylancl 586 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
238237oveq1d 7402 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)) = (if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) · ((1 − (1 / 𝑛))↑𝑘)))
239226, 233, 2383eqtr4d 2774 . . . . . . . . . . . 12 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
240239ralrimiva 3125 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
241 nfv 1914 . . . . . . . . . . . 12 𝑗((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘))
242 nffvmpt1 6869 . . . . . . . . . . . . 13 𝑘((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗)
243 nffvmpt1 6869 . . . . . . . . . . . . . 14 𝑘((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗)
244 nfcv 2891 . . . . . . . . . . . . . 14 𝑘 ·
245 nfcv 2891 . . . . . . . . . . . . . 14 𝑘((1 − (1 / 𝑛))↑𝑗)
246243, 244, 245nfov 7417 . . . . . . . . . . . . 13 𝑘(((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))
247242, 246nfeq 2905 . . . . . . . . . . . 12 𝑘((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))
248 fveq2 6858 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
249 fveq2 6858 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
250 oveq2 7395 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((1 − (1 / 𝑛))↑𝑘) = ((1 − (1 / 𝑛))↑𝑗))
251249, 250oveq12d 7405 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
252248, 251eqeq12d 2745 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)) ↔ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))))
253241, 247, 252cbvralw 3280 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)) ↔ ∀𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
254240, 253sylib 218 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ∀𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
255254r19.21bi 3229 . . . . . . . . 9 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
256 0cnd 11167 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → 0 ∈ ℂ)
257207, 211nndivred 12240 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (((1 − (1 / 𝑛))↑𝑘) / 𝑘) ∈ ℝ)
258257recnd 11202 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (((1 − (1 / 𝑛))↑𝑘) / 𝑘) ∈ ℂ)
259201, 258mulcld 11194 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) ∈ ℂ)
2605, 259sylan2b 594 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) ∈ ℂ)
261256, 260ifclda 4524 . . . . . . . . . . . 12 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ ℂ)
262261fmpttd 7087 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))):ℕ0⟶ℂ)
263262ffvelcdmda 7056 . . . . . . . . . 10 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) ∈ ℂ)
264255, 263eqeltrrd 2829 . . . . . . . . 9 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)) ∈ ℂ)
265 0nn0 12457 . . . . . . . . . . . 12 0 ∈ ℕ0
266265a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → 0 ∈ ℕ0)
267 0p1e1 12303 . . . . . . . . . . . . 13 (0 + 1) = 1
268 seqeq1 13969 . . . . . . . . . . . . 13 ((0 + 1) = 1 → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) = seq1( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))))
269267, 268ax-mp 5 . . . . . . . . . . . 12 seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) = seq1( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))
270 1zzd 12564 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ∈ ℤ)
271 elnnuz 12837 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
272 nnne0 12220 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
273272neneqd 2930 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℕ → ¬ 𝑘 = 0)
274 biorf 936 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 = 0 → (2 ∥ 𝑘 ↔ (𝑘 = 0 ∨ 2 ∥ 𝑘)))
275273, 274syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ → (2 ∥ 𝑘 ↔ (𝑘 = 0 ∨ 2 ∥ 𝑘)))
276275bicomd 223 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → ((𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ 2 ∥ 𝑘))
277276ifbid 4512 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
27890, 230, 232sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
279228, 229ifex 4539 . . . . . . . . . . . . . . . . . . . . 21 if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ V
280 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))) = (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
281280fvmpt2 6979 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ V) → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
282279, 281mpan2 691 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
283277, 278, 2823eqtr4d 2774 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘))
284283rgen 3046 . . . . . . . . . . . . . . . . . 18 𝑘 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘)
285284a1i 11 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘))
286 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑗((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘)
287 nffvmpt1 6869 . . . . . . . . . . . . . . . . . . 19 𝑘((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗)
288242, 287nfeq 2905 . . . . . . . . . . . . . . . . . 18 𝑘((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗)
289 fveq2 6858 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
290248, 289eqeq12d 2745 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) ↔ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗)))
291286, 288, 290cbvralw 3280 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) ↔ ∀𝑗 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
292285, 291sylib 218 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑛 ∈ ℕ) → ∀𝑗 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
293292r19.21bi 3229 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
294271, 293sylan2br 595 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
295270, 294seqfeq 13992 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑛 ∈ ℕ) → seq1( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))))
296153, 162, 167abssubge0d 15400 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑛 ∈ ℕ) → (abs‘(1 − (1 / 𝑛))) = (1 − (1 / 𝑛)))
297 ltsubrp 12989 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (1 / 𝑛) ∈ ℝ+) → (1 − (1 / 𝑛)) < 1)
298202, 152, 297sylancr 587 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) < 1)
299296, 298eqbrtrd 5129 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑛 ∈ ℕ) → (abs‘(1 − (1 / 𝑛))) < 1)
300280atantayl2 26848 . . . . . . . . . . . . . 14 (((1 − (1 / 𝑛)) ∈ ℂ ∧ (abs‘(1 − (1 / 𝑛))) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
301219, 299, 300syl2anc 584 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑛 ∈ ℕ) → seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
302295, 301eqbrtrd 5129 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → seq1( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
303269, 302eqbrtrid 5142 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
3041, 266, 263, 303clim2ser2 15622 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ ((arctan‘(1 − (1 / 𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0)))
305 0z 12540 . . . . . . . . . . . . . 14 0 ∈ ℤ
306 seq1 13979 . . . . . . . . . . . . . 14 (0 ∈ ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘0))
307305, 306ax-mp 5 . . . . . . . . . . . . 13 (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘0)
308 iftrue 4494 . . . . . . . . . . . . . . . 16 ((𝑘 = 0 ∨ 2 ∥ 𝑘) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = 0)
309308orcs 875 . . . . . . . . . . . . . . 15 (𝑘 = 0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = 0)
310309, 231, 228fvmpt 6968 . . . . . . . . . . . . . 14 (0 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘0) = 0)
311265, 310ax-mp 5 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘0) = 0
312307, 311eqtri 2752 . . . . . . . . . . . 12 (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0) = 0
313312oveq2i 7398 . . . . . . . . . . 11 ((arctan‘(1 − (1 / 𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0)) = ((arctan‘(1 − (1 / 𝑛))) + 0)
314 atanrecl 26821 . . . . . . . . . . . . . 14 ((1 − (1 / 𝑛)) ∈ ℝ → (arctan‘(1 − (1 / 𝑛))) ∈ ℝ)
315204, 314syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑛 ∈ ℕ) → (arctan‘(1 − (1 / 𝑛))) ∈ ℝ)
316315recnd 11202 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → (arctan‘(1 − (1 / 𝑛))) ∈ ℂ)
317316addridd 11374 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → ((arctan‘(1 − (1 / 𝑛))) + 0) = (arctan‘(1 − (1 / 𝑛))))
318313, 317eqtrid 2776 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ((arctan‘(1 − (1 / 𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0)) = (arctan‘(1 − (1 / 𝑛))))
319304, 318breqtrd 5133 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
3201, 197, 255, 264, 319isumclim 15723 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)) = (arctan‘(1 − (1 / 𝑛))))
321320mpteq2dva 5200 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))) = (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))))
322196, 321eqtrd 2764 . . . . . 6 (⊤ → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))))
323 oveq1 7394 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥𝑗) = (1↑𝑗))
324 nn0z 12554 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
325 1exp 14056 . . . . . . . . . . . . 13 (𝑗 ∈ ℤ → (1↑𝑗) = 1)
326324, 325syl 17 . . . . . . . . . . . 12 (𝑗 ∈ ℕ0 → (1↑𝑗) = 1)
327323, 326sylan9eq 2784 . . . . . . . . . . 11 ((𝑥 = 1 ∧ 𝑗 ∈ ℕ0) → (𝑥𝑗) = 1)
328327oveq2d 7403 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑗 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · 1))
32917mptru 1547 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))):ℕ0⟶ℂ
330329ffvelcdmi 7055 . . . . . . . . . . . 12 (𝑗 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) ∈ ℂ)
331330mulridd 11191 . . . . . . . . . . 11 (𝑗 ∈ ℕ0 → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · 1) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
332331adantl 481 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑗 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · 1) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
333328, 332eqtrd 2764 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑗 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
334333sumeq2dv 15668 . . . . . . . 8 (𝑥 = 1 → Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
335 sumex 15654 . . . . . . . 8 Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) ∈ V
336334, 148, 335fvmpt 6968 . . . . . . 7 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)))‘1) = Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
337188, 336mp1i 13 . . . . . 6 (⊤ → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)))‘1) = Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
338190, 322, 3373brtr3d 5138 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))) ⇝ Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
339 eqid 2729 . . . . . . . . 9 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
340 eqid 2729 . . . . . . . . 9 {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} = {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}
341339, 340atancn 26846 . . . . . . . 8 (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∈ ({𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}–cn→ℂ)
342341a1i 11 . . . . . . 7 (⊤ → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∈ ({𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}–cn→ℂ))
343 unitssre 13460 . . . . . . . . 9 (0[,]1) ⊆ ℝ
344339, 340ressatans 26844 . . . . . . . . 9 ℝ ⊆ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}
345343, 344sstri 3956 . . . . . . . 8 (0[,]1) ⊆ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}
346 fss 6704 . . . . . . . 8 (((𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))):ℕ⟶(0[,]1) ∧ (0[,]1) ⊆ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))):ℕ⟶{𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})
347172, 345, 346sylancl 586 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))):ℕ⟶{𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})
348344, 202sselii 3943 . . . . . . . 8 1 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}
349348a1i 11 . . . . . . 7 (⊤ → 1 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})
35074, 75, 342, 347, 187, 349climcncf 24793 . . . . . 6 (⊤ → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) ⇝ ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘1))
351345, 171sselid 3944 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})
352 cncff 24786 . . . . . . . . . 10 ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∈ ({𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}–cn→ℂ) → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}):{𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}⟶ℂ)
353341, 352mp1i 13 . . . . . . . . 9 (⊤ → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}):{𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}⟶ℂ)
354353feqmptd 6929 . . . . . . . 8 (⊤ → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) = (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} ↦ ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘𝑘)))
355 fvres 6877 . . . . . . . . 9 (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘𝑘) = (arctan‘𝑘))
356355mpteq2ia 5202 . . . . . . . 8 (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} ↦ ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘𝑘)) = (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} ↦ (arctan‘𝑘))
357354, 356eqtrdi 2780 . . . . . . 7 (⊤ → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) = (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} ↦ (arctan‘𝑘)))
358 fveq2 6858 . . . . . . 7 (𝑘 = (1 − (1 / 𝑛)) → (arctan‘𝑘) = (arctan‘(1 − (1 / 𝑛))))
359351, 191, 357, 358fmptco 7101 . . . . . 6 (⊤ → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))))
360 fvres 6877 . . . . . . . 8 (1 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘1) = (arctan‘1))
361348, 360mp1i 13 . . . . . . 7 (⊤ → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘1) = (arctan‘1))
362 atan1 26838 . . . . . . 7 (arctan‘1) = (π / 4)
363361, 362eqtrdi 2780 . . . . . 6 (⊤ → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘1) = (π / 4))
364350, 359, 3633brtr3d 5138 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))) ⇝ (π / 4))
365 climuni 15518 . . . . 5 (((𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))) ⇝ Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) ∧ (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))) ⇝ (π / 4)) → Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) = (π / 4))
366338, 364, 365syl2anc 584 . . . 4 (⊤ → Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) = (π / 4))
367147, 366breqtrd 5133 . . 3 (⊤ → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ (π / 4))
368367mptru 1547 . 2 seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ (π / 4)
369 leibpi.1 . . 3 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
370 ovex 7420 . . 3 (π / 4) ∈ V
371369, 140, 370leibpilem2 26851 . 2 (seq0( + , 𝐹) ⇝ (π / 4) ↔ seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ (π / 4))
372368, 371mpbir 231 1 seq0( + , 𝐹) ⇝ (π / 4)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wtru 1541  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  dom cdm 5638  cres 5640  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  -∞cmnf 11206   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  4c4 12243  0cn0 12442  cz 12529  cuz 12793  +crp 12951  (,]cioc 13307  [,]cicc 13309  seqcseq 13966  cexp 14026  abscabs 15200  cli 15450  Σcsu 15652  πcpi 16032  cdvds 16222  cnccncf 24769  arctancatan 26774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-dvds 16223  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-t1 23201  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-ulm 26286  df-log 26465  df-atan 26777
This theorem is referenced by:  leibpisum  26853
  Copyright terms: Public domain W3C validator