MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leibpi Structured version   Visualization version   GIF version

Theorem leibpi 26292
Description: The Leibniz formula for π. This proof depends on three main facts: (1) the series 𝐹 is convergent, because it is an alternating series (iseralt 15569). (2) Using leibpilem2 26291 to rewrite the series as a power series, it is the 𝑥 = 1 special case of the Taylor series for arctan (atantayl2 26288). (3) Although we cannot directly plug 𝑥 = 1 into atantayl2 26288, Abel's theorem (abelth2 25801) says that the limit along any sequence converging to 1, such as 1 − 1 / 𝑛, of the power series converges to the power series extended to 1, and then since arctan is continuous at 1 (atancn 26286) we get the desired result. This is Metamath 100 proof #26. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypothesis
Ref Expression
leibpi.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
Assertion
Ref Expression
leibpi seq0( + , 𝐹) ⇝ (π / 4)

Proof of Theorem leibpi
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12805 . . . . 5 0 = (ℤ‘0)
2 0zd 12511 . . . . 5 (⊤ → 0 ∈ ℤ)
3 eqidd 2737 . . . . 5 ((⊤ ∧ 𝑗 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
4 0cnd 11148 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → 0 ∈ ℂ)
5 ioran 982 . . . . . . . . . 10 (¬ (𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘))
6 neg1rr 12268 . . . . . . . . . . . . 13 -1 ∈ ℝ
7 leibpilem1 26290 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (𝑘 ∈ ℕ ∧ ((𝑘 − 1) / 2) ∈ ℕ0))
87simprd 496 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((𝑘 − 1) / 2) ∈ ℕ0)
9 reexpcl 13984 . . . . . . . . . . . . 13 ((-1 ∈ ℝ ∧ ((𝑘 − 1) / 2) ∈ ℕ0) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
106, 8, 9sylancr 587 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
117simpld 495 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ)
1210, 11nndivred 12207 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℝ)
1312recnd 11183 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
145, 13sylan2b 594 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
154, 14ifclda 4521 . . . . . . . 8 (𝑘 ∈ ℕ0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ ℂ)
1615adantl 482 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ ℂ)
1716fmpttd 7063 . . . . . 6 (⊤ → (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))):ℕ0⟶ℂ)
1817ffvelcdmda 7035 . . . . 5 ((⊤ ∧ 𝑗 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) ∈ ℂ)
19 2nn0 12430 . . . . . . . . . . . . . 14 2 ∈ ℕ0
2019a1i 11 . . . . . . . . . . . . 13 (⊤ → 2 ∈ ℕ0)
21 nn0mulcl 12449 . . . . . . . . . . . . 13 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
2220, 21sylan 580 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
23 nn0p1nn 12452 . . . . . . . . . . . 12 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
2422, 23syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑛) + 1) ∈ ℕ)
2524nnrecred 12204 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ0) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
2625fmpttd 7063 . . . . . . . . 9 (⊤ → (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))):ℕ0⟶ℝ)
27 nn0mulcl 12449 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
2820, 27sylan 580 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
2928nn0red 12474 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℝ)
30 peano2nn0 12453 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3130adantl 482 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
32 nn0mulcl 12449 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℕ0) → (2 · (𝑘 + 1)) ∈ ℕ0)
3319, 31, 32sylancr 587 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · (𝑘 + 1)) ∈ ℕ0)
3433nn0red 12474 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · (𝑘 + 1)) ∈ ℝ)
35 1red 11156 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
36 nn0re 12422 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
3736adantl 482 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
3837lep1d 12086 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ≤ (𝑘 + 1))
39 peano2re 11328 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
4037, 39syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℝ)
41 2re 12227 . . . . . . . . . . . . . . 15 2 ∈ ℝ
4241a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℝ)
43 2pos 12256 . . . . . . . . . . . . . . 15 0 < 2
4443a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < 2)
45 lemul2 12008 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑘 ≤ (𝑘 + 1) ↔ (2 · 𝑘) ≤ (2 · (𝑘 + 1))))
4637, 40, 42, 44, 45syl112anc 1374 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝑘 ≤ (𝑘 + 1) ↔ (2 · 𝑘) ≤ (2 · (𝑘 + 1))))
4738, 46mpbid 231 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · 𝑘) ≤ (2 · (𝑘 + 1)))
4829, 34, 35, 47leadd1dd 11769 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ≤ ((2 · (𝑘 + 1)) + 1))
49 nn0p1nn 12452 . . . . . . . . . . . . . 14 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
5028, 49syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ)
5150nnred 12168 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℝ)
5250nngt0d 12202 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < ((2 · 𝑘) + 1))
53 nn0p1nn 12452 . . . . . . . . . . . . . 14 ((2 · (𝑘 + 1)) ∈ ℕ0 → ((2 · (𝑘 + 1)) + 1) ∈ ℕ)
5433, 53syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · (𝑘 + 1)) + 1) ∈ ℕ)
5554nnred 12168 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · (𝑘 + 1)) + 1) ∈ ℝ)
5654nngt0d 12202 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < ((2 · (𝑘 + 1)) + 1))
57 lerec 12038 . . . . . . . . . . . 12 (((((2 · 𝑘) + 1) ∈ ℝ ∧ 0 < ((2 · 𝑘) + 1)) ∧ (((2 · (𝑘 + 1)) + 1) ∈ ℝ ∧ 0 < ((2 · (𝑘 + 1)) + 1))) → (((2 · 𝑘) + 1) ≤ ((2 · (𝑘 + 1)) + 1) ↔ (1 / ((2 · (𝑘 + 1)) + 1)) ≤ (1 / ((2 · 𝑘) + 1))))
5851, 52, 55, 56, 57syl22anc 837 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (((2 · 𝑘) + 1) ≤ ((2 · (𝑘 + 1)) + 1) ↔ (1 / ((2 · (𝑘 + 1)) + 1)) ≤ (1 / ((2 · 𝑘) + 1))))
5948, 58mpbid 231 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / ((2 · (𝑘 + 1)) + 1)) ≤ (1 / ((2 · 𝑘) + 1)))
60 oveq2 7365 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → (2 · 𝑛) = (2 · (𝑘 + 1)))
6160oveq1d 7372 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → ((2 · 𝑛) + 1) = ((2 · (𝑘 + 1)) + 1))
6261oveq2d 7373 . . . . . . . . . . . 12 (𝑛 = (𝑘 + 1) → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · (𝑘 + 1)) + 1)))
63 eqid 2736 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))
64 ovex 7390 . . . . . . . . . . . 12 (1 / ((2 · (𝑘 + 1)) + 1)) ∈ V
6562, 63, 64fvmpt 6948 . . . . . . . . . . 11 ((𝑘 + 1) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘(𝑘 + 1)) = (1 / ((2 · (𝑘 + 1)) + 1)))
6631, 65syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘(𝑘 + 1)) = (1 / ((2 · (𝑘 + 1)) + 1)))
67 oveq2 7365 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
6867oveq1d 7372 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
6968oveq2d 7373 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1)))
70 ovex 7390 . . . . . . . . . . . 12 (1 / ((2 · 𝑘) + 1)) ∈ V
7169, 63, 70fvmpt 6948 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) = (1 / ((2 · 𝑘) + 1)))
7271adantl 482 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) = (1 / ((2 · 𝑘) + 1)))
7359, 66, 723brtr4d 5137 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘(𝑘 + 1)) ≤ ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘))
74 nnuz 12806 . . . . . . . . . 10 ℕ = (ℤ‘1)
75 1zzd 12534 . . . . . . . . . 10 (⊤ → 1 ∈ ℤ)
76 ax-1cn 11109 . . . . . . . . . . 11 1 ∈ ℂ
77 divcnv 15738 . . . . . . . . . . 11 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
7876, 77mp1i 13 . . . . . . . . . 10 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
79 nn0ex 12419 . . . . . . . . . . . 12 0 ∈ V
8079mptex 7173 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))) ∈ V
8180a1i 11 . . . . . . . . . 10 (⊤ → (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))) ∈ V)
82 oveq2 7365 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
83 eqid 2736 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
84 ovex 7390 . . . . . . . . . . . . 13 (1 / 𝑘) ∈ V
8582, 83, 84fvmpt 6948 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
8685adantl 482 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
87 nnrecre 12195 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
8887adantl 482 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
8986, 88eqeltrd 2838 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) ∈ ℝ)
90 nnnn0 12420 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
9190adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
9291, 71syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) = (1 / ((2 · 𝑘) + 1)))
9390, 50sylan2 593 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ)
9493nnrecred 12204 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ)
9592, 94eqeltrd 2838 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) ∈ ℝ)
96 nnre 12160 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
9796adantl 482 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
9819, 91, 27sylancr 587 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ0)
9998nn0red 12474 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℝ)
100 peano2re 11328 . . . . . . . . . . . . . 14 ((2 · 𝑘) ∈ ℝ → ((2 · 𝑘) + 1) ∈ ℝ)
10199, 100syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ)
102 nn0addge1 12459 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝑘 ≤ (𝑘 + 𝑘))
10397, 91, 102syl2anc 584 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (𝑘 + 𝑘))
10497recnd 11183 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
1051042timesd 12396 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
106103, 105breqtrrd 5133 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (2 · 𝑘))
10799lep1d 12086 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ≤ ((2 · 𝑘) + 1))
10897, 99, 101, 106, 107letrd 11312 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ ((2 · 𝑘) + 1))
109 nngt0 12184 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 0 < 𝑘)
110109adantl 482 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
11193nnred 12168 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ)
11293nngt0d 12202 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < ((2 · 𝑘) + 1))
113 lerec 12038 . . . . . . . . . . . . 13 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ (((2 · 𝑘) + 1) ∈ ℝ ∧ 0 < ((2 · 𝑘) + 1))) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
11497, 110, 111, 112, 113syl22anc 837 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
115108, 114mpbid 231 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘))
116115, 92, 863brtr4d 5137 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘))
11793nnrpd 12955 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ+)
118117rpreccld 12967 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ+)
119118rpge0d 12961 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / ((2 · 𝑘) + 1)))
120119, 92breqtrrd 5133 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘))
12174, 75, 78, 81, 89, 95, 116, 120climsqz2 15524 . . . . . . . . 9 (⊤ → (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))) ⇝ 0)
122 neg1cn 12267 . . . . . . . . . . . . 13 -1 ∈ ℂ
123122a1i 11 . . . . . . . . . . . 12 (⊤ → -1 ∈ ℂ)
124 expcl 13985 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
125123, 124sylan 580 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
12650nncnd 12169 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℂ)
12750nnne0d 12203 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ≠ 0)
128125, 126, 127divrecd 11934 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) / ((2 · 𝑘) + 1)) = ((-1↑𝑘) · (1 / ((2 · 𝑘) + 1))))
129 oveq2 7365 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (-1↑𝑛) = (-1↑𝑘))
130129, 68oveq12d 7375 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) = ((-1↑𝑘) / ((2 · 𝑘) + 1)))
131 eqid 2736 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
132 ovex 7390 . . . . . . . . . . . 12 ((-1↑𝑘) / ((2 · 𝑘) + 1)) ∈ V
133130, 131, 132fvmpt 6948 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))‘𝑘) = ((-1↑𝑘) / ((2 · 𝑘) + 1)))
134133adantl 482 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))‘𝑘) = ((-1↑𝑘) / ((2 · 𝑘) + 1)))
13572oveq2d 7373 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) · ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘)) = ((-1↑𝑘) · (1 / ((2 · 𝑘) + 1))))
136128, 134, 1353eqtr4d 2786 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))‘𝑘) = ((-1↑𝑘) · ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘)))
1371, 2, 26, 73, 121, 136iseralt 15569 . . . . . . . 8 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ∈ dom ⇝ )
138 climdm 15436 . . . . . . . 8 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ∈ dom ⇝ ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))))
139137, 138sylib 217 . . . . . . 7 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))))
140 eqid 2736 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
141 fvex 6855 . . . . . . . 8 ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))) ∈ V
142131, 140, 141leibpilem2 26291 . . . . . . 7 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))) ↔ seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))))
143139, 142sylib 217 . . . . . 6 (⊤ → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))))
144 seqex 13908 . . . . . . 7 seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ∈ V
145144, 141breldm 5864 . . . . . 6 (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))) → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ∈ dom ⇝ )
146143, 145syl 17 . . . . 5 (⊤ → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ∈ dom ⇝ )
1471, 2, 3, 18, 146isumclim2 15643 . . . 4 (⊤ → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
148 eqid 2736 . . . . . . . 8 (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) = (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)))
14917, 146, 148abelth2 25801 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) ∈ ((0[,]1)–cn→ℂ))
150 nnrp 12926 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
151150adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
152151rpreccld 12967 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
153152rpred 12957 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
154152rpge0d 12961 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → 0 ≤ (1 / 𝑛))
155 nnge1 12181 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 1 ≤ 𝑛)
156155adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ≤ 𝑛)
157 nnre 12160 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
158157adantl 482 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
159158recnd 11183 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
160159mulid1d 11172 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝑛 · 1) = 𝑛)
161156, 160breqtrrd 5133 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ≤ (𝑛 · 1))
162 1red 11156 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ∈ ℝ)
163 nngt0 12184 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 0 < 𝑛)
164163adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → 0 < 𝑛)
165 ledivmul 12031 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((1 / 𝑛) ≤ 1 ↔ 1 ≤ (𝑛 · 1)))
166162, 162, 158, 164, 165syl112anc 1374 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) ≤ 1 ↔ 1 ≤ (𝑛 · 1)))
167161, 166mpbird 256 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ≤ 1)
168 elicc01 13383 . . . . . . . . . 10 ((1 / 𝑛) ∈ (0[,]1) ↔ ((1 / 𝑛) ∈ ℝ ∧ 0 ≤ (1 / 𝑛) ∧ (1 / 𝑛) ≤ 1))
169153, 154, 167, 168syl3anbrc 1343 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ (0[,]1))
170 iirev 24292 . . . . . . . . 9 ((1 / 𝑛) ∈ (0[,]1) → (1 − (1 / 𝑛)) ∈ (0[,]1))
171169, 170syl 17 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) ∈ (0[,]1))
172171fmpttd 7063 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))):ℕ⟶(0[,]1))
173 1cnd 11150 . . . . . . . . 9 (⊤ → 1 ∈ ℂ)
174 nnex 12159 . . . . . . . . . . 11 ℕ ∈ V
175174mptex 7173 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) ∈ V
176175a1i 11 . . . . . . . . 9 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) ∈ V)
17789recnd 11183 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) ∈ ℂ)
17882oveq2d 7373 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (1 − (1 / 𝑛)) = (1 − (1 / 𝑘)))
179 eqid 2736 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))
180 ovex 7390 . . . . . . . . . . . 12 (1 − (1 / 𝑘)) ∈ V
181178, 179, 180fvmpt 6948 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))‘𝑘) = (1 − (1 / 𝑘)))
18285oveq2d 7373 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 − ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘)) = (1 − (1 / 𝑘)))
183181, 182eqtr4d 2779 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))‘𝑘) = (1 − ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘)))
184183adantl 482 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))‘𝑘) = (1 − ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘)))
18574, 75, 78, 173, 176, 177, 184climsubc2 15521 . . . . . . . 8 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) ⇝ (1 − 0))
186 1m0e1 12274 . . . . . . . 8 (1 − 0) = 1
187185, 186breqtrdi 5146 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) ⇝ 1)
188 1elunit 13387 . . . . . . . 8 1 ∈ (0[,]1)
189188a1i 11 . . . . . . 7 (⊤ → 1 ∈ (0[,]1))
19074, 75, 149, 172, 187, 189climcncf 24263 . . . . . 6 (⊤ → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) ⇝ ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)))‘1))
191 eqidd 2737 . . . . . . . 8 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))))
192 eqidd 2737 . . . . . . . 8 (⊤ → (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) = (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))))
193 oveq1 7364 . . . . . . . . . 10 (𝑥 = (1 − (1 / 𝑛)) → (𝑥𝑗) = ((1 − (1 / 𝑛))↑𝑗))
194193oveq2d 7373 . . . . . . . . 9 (𝑥 = (1 − (1 / 𝑛)) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
195194sumeq2sdv 15589 . . . . . . . 8 (𝑥 = (1 − (1 / 𝑛)) → Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
196171, 191, 192, 195fmptco 7075 . . . . . . 7 (⊤ → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))))
197 0zd 12511 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → 0 ∈ ℤ)
1988adantll 712 . . . . . . . . . . . . . . . . . . . . . 22 (((⊤ ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((𝑘 − 1) / 2) ∈ ℕ0)
1996, 198, 9sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
200199recnd 11183 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℂ)
201200adantllr 717 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℂ)
202 1re 11155 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
203 resubcl 11465 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ (1 / 𝑛) ∈ ℝ) → (1 − (1 / 𝑛)) ∈ ℝ)
204202, 153, 203sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) ∈ ℝ)
205204ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (1 − (1 / 𝑛)) ∈ ℝ)
206 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ0)
207205, 206reexpcld 14068 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((1 − (1 / 𝑛))↑𝑘) ∈ ℝ)
208207recnd 11183 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((1 − (1 / 𝑛))↑𝑘) ∈ ℂ)
209 nn0cn 12423 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
210209ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℂ)
21111adantll 712 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ)
212211nnne0d 12203 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ≠ 0)
213201, 208, 210, 212div12d 11967 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) = (((1 − (1 / 𝑛))↑𝑘) · ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
21413adantll 712 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
215208, 214mulcomd 11176 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (((1 − (1 / 𝑛))↑𝑘) · ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
216213, 215eqtrd 2776 . . . . . . . . . . . . . . . . 17 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) = (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
2175, 216sylan2b 594 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) = (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
218217ifeq2da 4518 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘))))
219204recnd 11183 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) ∈ ℂ)
220 expcl 13985 . . . . . . . . . . . . . . . . . 18 (((1 − (1 / 𝑛)) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 − (1 / 𝑛))↑𝑘) ∈ ℂ)
221219, 220sylan 580 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((1 − (1 / 𝑛))↑𝑘) ∈ ℂ)
222221mul02d 11353 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (0 · ((1 − (1 / 𝑛))↑𝑘)) = 0)
223222ifeq1d 4505 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), (0 · ((1 − (1 / 𝑛))↑𝑘)), (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘))) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘))))
224218, 223eqtr4d 2779 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), (0 · ((1 − (1 / 𝑛))↑𝑘)), (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘))))
225 ovif 7454 . . . . . . . . . . . . . 14 (if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) · ((1 − (1 / 𝑛))↑𝑘)) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), (0 · ((1 − (1 / 𝑛))↑𝑘)), (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
226224, 225eqtr4di 2794 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = (if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) · ((1 − (1 / 𝑛))↑𝑘)))
227 simpr 485 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
228 c0ex 11149 . . . . . . . . . . . . . . 15 0 ∈ V
229 ovex 7390 . . . . . . . . . . . . . . 15 ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) ∈ V
230228, 229ifex 4536 . . . . . . . . . . . . . 14 if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ V
231 eqid 2736 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))) = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
232231fvmpt2 6959 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ V) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
233227, 230, 232sylancl 586 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
234 ovex 7390 . . . . . . . . . . . . . . . 16 ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ V
235228, 234ifex 4536 . . . . . . . . . . . . . . 15 if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ V
236140fvmpt2 6959 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0 ∧ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ V) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
237227, 235, 236sylancl 586 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
238237oveq1d 7372 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)) = (if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) · ((1 − (1 / 𝑛))↑𝑘)))
239226, 233, 2383eqtr4d 2786 . . . . . . . . . . . 12 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
240239ralrimiva 3143 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
241 nfv 1917 . . . . . . . . . . . 12 𝑗((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘))
242 nffvmpt1 6853 . . . . . . . . . . . . 13 𝑘((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗)
243 nffvmpt1 6853 . . . . . . . . . . . . . 14 𝑘((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗)
244 nfcv 2907 . . . . . . . . . . . . . 14 𝑘 ·
245 nfcv 2907 . . . . . . . . . . . . . 14 𝑘((1 − (1 / 𝑛))↑𝑗)
246243, 244, 245nfov 7387 . . . . . . . . . . . . 13 𝑘(((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))
247242, 246nfeq 2920 . . . . . . . . . . . 12 𝑘((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))
248 fveq2 6842 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
249 fveq2 6842 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
250 oveq2 7365 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((1 − (1 / 𝑛))↑𝑘) = ((1 − (1 / 𝑛))↑𝑗))
251249, 250oveq12d 7375 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
252248, 251eqeq12d 2752 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)) ↔ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))))
253241, 247, 252cbvralw 3289 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)) ↔ ∀𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
254240, 253sylib 217 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ∀𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
255254r19.21bi 3234 . . . . . . . . 9 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
256 0cnd 11148 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → 0 ∈ ℂ)
257207, 211nndivred 12207 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (((1 − (1 / 𝑛))↑𝑘) / 𝑘) ∈ ℝ)
258257recnd 11183 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (((1 − (1 / 𝑛))↑𝑘) / 𝑘) ∈ ℂ)
259201, 258mulcld 11175 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) ∈ ℂ)
2605, 259sylan2b 594 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) ∈ ℂ)
261256, 260ifclda 4521 . . . . . . . . . . . 12 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ ℂ)
262261fmpttd 7063 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))):ℕ0⟶ℂ)
263262ffvelcdmda 7035 . . . . . . . . . 10 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) ∈ ℂ)
264255, 263eqeltrrd 2839 . . . . . . . . 9 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)) ∈ ℂ)
265 0nn0 12428 . . . . . . . . . . . 12 0 ∈ ℕ0
266265a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → 0 ∈ ℕ0)
267 0p1e1 12275 . . . . . . . . . . . . 13 (0 + 1) = 1
268 seqeq1 13909 . . . . . . . . . . . . 13 ((0 + 1) = 1 → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) = seq1( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))))
269267, 268ax-mp 5 . . . . . . . . . . . 12 seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) = seq1( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))
270 1zzd 12534 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ∈ ℤ)
271 elnnuz 12807 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
272 nnne0 12187 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
273272neneqd 2948 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℕ → ¬ 𝑘 = 0)
274 biorf 935 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 = 0 → (2 ∥ 𝑘 ↔ (𝑘 = 0 ∨ 2 ∥ 𝑘)))
275273, 274syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ → (2 ∥ 𝑘 ↔ (𝑘 = 0 ∨ 2 ∥ 𝑘)))
276275bicomd 222 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → ((𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ 2 ∥ 𝑘))
277276ifbid 4509 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
27890, 230, 232sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
279228, 229ifex 4536 . . . . . . . . . . . . . . . . . . . . 21 if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ V
280 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))) = (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
281280fvmpt2 6959 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ V) → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
282279, 281mpan2 689 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
283277, 278, 2823eqtr4d 2786 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘))
284283rgen 3066 . . . . . . . . . . . . . . . . . 18 𝑘 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘)
285284a1i 11 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘))
286 nfv 1917 . . . . . . . . . . . . . . . . . 18 𝑗((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘)
287 nffvmpt1 6853 . . . . . . . . . . . . . . . . . . 19 𝑘((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗)
288242, 287nfeq 2920 . . . . . . . . . . . . . . . . . 18 𝑘((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗)
289 fveq2 6842 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
290248, 289eqeq12d 2752 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) ↔ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗)))
291286, 288, 290cbvralw 3289 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) ↔ ∀𝑗 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
292285, 291sylib 217 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑛 ∈ ℕ) → ∀𝑗 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
293292r19.21bi 3234 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
294271, 293sylan2br 595 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
295270, 294seqfeq 13933 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑛 ∈ ℕ) → seq1( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))))
296153, 162, 167abssubge0d 15316 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑛 ∈ ℕ) → (abs‘(1 − (1 / 𝑛))) = (1 − (1 / 𝑛)))
297 ltsubrp 12951 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (1 / 𝑛) ∈ ℝ+) → (1 − (1 / 𝑛)) < 1)
298202, 152, 297sylancr 587 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) < 1)
299296, 298eqbrtrd 5127 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑛 ∈ ℕ) → (abs‘(1 − (1 / 𝑛))) < 1)
300280atantayl2 26288 . . . . . . . . . . . . . 14 (((1 − (1 / 𝑛)) ∈ ℂ ∧ (abs‘(1 − (1 / 𝑛))) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
301219, 299, 300syl2anc 584 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑛 ∈ ℕ) → seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
302295, 301eqbrtrd 5127 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → seq1( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
303269, 302eqbrtrid 5140 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
3041, 266, 263, 303clim2ser2 15540 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ ((arctan‘(1 − (1 / 𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0)))
305 0z 12510 . . . . . . . . . . . . . 14 0 ∈ ℤ
306 seq1 13919 . . . . . . . . . . . . . 14 (0 ∈ ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘0))
307305, 306ax-mp 5 . . . . . . . . . . . . 13 (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘0)
308 iftrue 4492 . . . . . . . . . . . . . . . 16 ((𝑘 = 0 ∨ 2 ∥ 𝑘) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = 0)
309308orcs 873 . . . . . . . . . . . . . . 15 (𝑘 = 0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = 0)
310309, 231, 228fvmpt 6948 . . . . . . . . . . . . . 14 (0 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘0) = 0)
311265, 310ax-mp 5 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘0) = 0
312307, 311eqtri 2764 . . . . . . . . . . . 12 (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0) = 0
313312oveq2i 7368 . . . . . . . . . . 11 ((arctan‘(1 − (1 / 𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0)) = ((arctan‘(1 − (1 / 𝑛))) + 0)
314 atanrecl 26261 . . . . . . . . . . . . . 14 ((1 − (1 / 𝑛)) ∈ ℝ → (arctan‘(1 − (1 / 𝑛))) ∈ ℝ)
315204, 314syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑛 ∈ ℕ) → (arctan‘(1 − (1 / 𝑛))) ∈ ℝ)
316315recnd 11183 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → (arctan‘(1 − (1 / 𝑛))) ∈ ℂ)
317316addid1d 11355 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → ((arctan‘(1 − (1 / 𝑛))) + 0) = (arctan‘(1 − (1 / 𝑛))))
318313, 317eqtrid 2788 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ((arctan‘(1 − (1 / 𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0)) = (arctan‘(1 − (1 / 𝑛))))
319304, 318breqtrd 5131 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
3201, 197, 255, 264, 319isumclim 15642 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)) = (arctan‘(1 − (1 / 𝑛))))
321320mpteq2dva 5205 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))) = (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))))
322196, 321eqtrd 2776 . . . . . 6 (⊤ → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))))
323 oveq1 7364 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥𝑗) = (1↑𝑗))
324 nn0z 12524 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
325 1exp 13997 . . . . . . . . . . . . 13 (𝑗 ∈ ℤ → (1↑𝑗) = 1)
326324, 325syl 17 . . . . . . . . . . . 12 (𝑗 ∈ ℕ0 → (1↑𝑗) = 1)
327323, 326sylan9eq 2796 . . . . . . . . . . 11 ((𝑥 = 1 ∧ 𝑗 ∈ ℕ0) → (𝑥𝑗) = 1)
328327oveq2d 7373 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑗 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · 1))
32917mptru 1548 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))):ℕ0⟶ℂ
330329ffvelcdmi 7034 . . . . . . . . . . . 12 (𝑗 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) ∈ ℂ)
331330mulid1d 11172 . . . . . . . . . . 11 (𝑗 ∈ ℕ0 → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · 1) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
332331adantl 482 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑗 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · 1) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
333328, 332eqtrd 2776 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑗 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
334333sumeq2dv 15588 . . . . . . . 8 (𝑥 = 1 → Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
335 sumex 15572 . . . . . . . 8 Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) ∈ V
336334, 148, 335fvmpt 6948 . . . . . . 7 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)))‘1) = Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
337188, 336mp1i 13 . . . . . 6 (⊤ → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)))‘1) = Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
338190, 322, 3373brtr3d 5136 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))) ⇝ Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
339 eqid 2736 . . . . . . . . 9 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
340 eqid 2736 . . . . . . . . 9 {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} = {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}
341339, 340atancn 26286 . . . . . . . 8 (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∈ ({𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}–cn→ℂ)
342341a1i 11 . . . . . . 7 (⊤ → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∈ ({𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}–cn→ℂ))
343 unitssre 13416 . . . . . . . . 9 (0[,]1) ⊆ ℝ
344339, 340ressatans 26284 . . . . . . . . 9 ℝ ⊆ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}
345343, 344sstri 3953 . . . . . . . 8 (0[,]1) ⊆ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}
346 fss 6685 . . . . . . . 8 (((𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))):ℕ⟶(0[,]1) ∧ (0[,]1) ⊆ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))):ℕ⟶{𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})
347172, 345, 346sylancl 586 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))):ℕ⟶{𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})
348344, 202sselii 3941 . . . . . . . 8 1 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}
349348a1i 11 . . . . . . 7 (⊤ → 1 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})
35074, 75, 342, 347, 187, 349climcncf 24263 . . . . . 6 (⊤ → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) ⇝ ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘1))
351345, 171sselid 3942 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})
352 cncff 24256 . . . . . . . . . 10 ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∈ ({𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}–cn→ℂ) → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}):{𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}⟶ℂ)
353341, 352mp1i 13 . . . . . . . . 9 (⊤ → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}):{𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}⟶ℂ)
354353feqmptd 6910 . . . . . . . 8 (⊤ → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) = (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} ↦ ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘𝑘)))
355 fvres 6861 . . . . . . . . 9 (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘𝑘) = (arctan‘𝑘))
356355mpteq2ia 5208 . . . . . . . 8 (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} ↦ ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘𝑘)) = (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} ↦ (arctan‘𝑘))
357354, 356eqtrdi 2792 . . . . . . 7 (⊤ → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) = (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} ↦ (arctan‘𝑘)))
358 fveq2 6842 . . . . . . 7 (𝑘 = (1 − (1 / 𝑛)) → (arctan‘𝑘) = (arctan‘(1 − (1 / 𝑛))))
359351, 191, 357, 358fmptco 7075 . . . . . 6 (⊤ → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))))
360 fvres 6861 . . . . . . . 8 (1 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘1) = (arctan‘1))
361348, 360mp1i 13 . . . . . . 7 (⊤ → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘1) = (arctan‘1))
362 atan1 26278 . . . . . . 7 (arctan‘1) = (π / 4)
363361, 362eqtrdi 2792 . . . . . 6 (⊤ → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘1) = (π / 4))
364350, 359, 3633brtr3d 5136 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))) ⇝ (π / 4))
365 climuni 15434 . . . . 5 (((𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))) ⇝ Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) ∧ (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))) ⇝ (π / 4)) → Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) = (π / 4))
366338, 364, 365syl2anc 584 . . . 4 (⊤ → Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) = (π / 4))
367147, 366breqtrd 5131 . . 3 (⊤ → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ (π / 4))
368367mptru 1548 . 2 seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ (π / 4)
369 leibpi.1 . . 3 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
370 ovex 7390 . . 3 (π / 4) ∈ V
371369, 140, 370leibpilem2 26291 . 2 (seq0( + , 𝐹) ⇝ (π / 4) ↔ seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ (π / 4))
372368, 371mpbir 230 1 seq0( + , 𝐹) ⇝ (π / 4)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 845   = wceq 1541  wtru 1542  wcel 2106  wral 3064  {crab 3407  Vcvv 3445  cdif 3907  wss 3910  ifcif 4486   class class class wbr 5105  cmpt 5188  dom cdm 5633  cres 5635  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  -∞cmnf 11187   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  4c4 12210  0cn0 12413  cz 12499  cuz 12763  +crp 12915  (,]cioc 13265  [,]cicc 13267  seqcseq 13906  cexp 13967  abscabs 15119  cli 15366  Σcsu 15570  πcpi 15949  cdvds 16136  cnccncf 24239  arctancatan 26214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-t1 22665  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736  df-log 25912  df-atan 26217
This theorem is referenced by:  leibpisum  26293
  Copyright terms: Public domain W3C validator