Proof of Theorem tppreqb
| Step | Hyp | Ref
| Expression |
| 1 | | 3ianor 1106 |
. . . 4
⊢ (¬
(𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵)) |
| 2 | | df-3or 1087 |
. . . 4
⊢ ((¬
𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵) ↔ ((¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴) ∨ ¬ 𝐶 ≠ 𝐵)) |
| 3 | 1, 2 | bitri 275 |
. . 3
⊢ (¬
(𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵) ↔ ((¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴) ∨ ¬ 𝐶 ≠ 𝐵)) |
| 4 | | orass 921 |
. . . . 5
⊢ ((((¬
𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴) ∨ ¬ 𝐶 ≠ 𝐵) ∨ ¬ 𝐶 ∈ V) ↔ ((¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴) ∨ (¬ 𝐶 ≠ 𝐵 ∨ ¬ 𝐶 ∈ V))) |
| 5 | | ianor 983 |
. . . . . . . 8
⊢ (¬
(𝐶 ∈ V ∧ 𝐶 ≠ 𝐴) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴)) |
| 6 | | tpprceq3 4785 |
. . . . . . . 8
⊢ (¬
(𝐶 ∈ V ∧ 𝐶 ≠ 𝐴) → {𝐵, 𝐴, 𝐶} = {𝐵, 𝐴}) |
| 7 | 5, 6 | sylbir 235 |
. . . . . . 7
⊢ ((¬
𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴) → {𝐵, 𝐴, 𝐶} = {𝐵, 𝐴}) |
| 8 | | tpcoma 4731 |
. . . . . . 7
⊢ {𝐵, 𝐴, 𝐶} = {𝐴, 𝐵, 𝐶} |
| 9 | | prcom 4713 |
. . . . . . 7
⊢ {𝐵, 𝐴} = {𝐴, 𝐵} |
| 10 | 7, 8, 9 | 3eqtr3g 2794 |
. . . . . 6
⊢ ((¬
𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| 11 | | orcom 870 |
. . . . . . . 8
⊢ ((¬
𝐶 ≠ 𝐵 ∨ ¬ 𝐶 ∈ V) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐵)) |
| 12 | | ianor 983 |
. . . . . . . 8
⊢ (¬
(𝐶 ∈ V ∧ 𝐶 ≠ 𝐵) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐵)) |
| 13 | 11, 12 | bitr4i 278 |
. . . . . . 7
⊢ ((¬
𝐶 ≠ 𝐵 ∨ ¬ 𝐶 ∈ V) ↔ ¬ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐵)) |
| 14 | | tpprceq3 4785 |
. . . . . . 7
⊢ (¬
(𝐶 ∈ V ∧ 𝐶 ≠ 𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| 15 | 13, 14 | sylbi 217 |
. . . . . 6
⊢ ((¬
𝐶 ≠ 𝐵 ∨ ¬ 𝐶 ∈ V) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| 16 | 10, 15 | jaoi 857 |
. . . . 5
⊢ (((¬
𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴) ∨ (¬ 𝐶 ≠ 𝐵 ∨ ¬ 𝐶 ∈ V)) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| 17 | 4, 16 | sylbi 217 |
. . . 4
⊢ ((((¬
𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴) ∨ ¬ 𝐶 ≠ 𝐵) ∨ ¬ 𝐶 ∈ V) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| 18 | 17 | orcs 875 |
. . 3
⊢ (((¬
𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴) ∨ ¬ 𝐶 ≠ 𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| 19 | 3, 18 | sylbi 217 |
. 2
⊢ (¬
(𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| 20 | | df-tp 4611 |
. . . 4
⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| 21 | 20 | eqeq1i 2741 |
. . 3
⊢ ({𝐴, 𝐵, 𝐶} = {𝐴, 𝐵} ↔ ({𝐴, 𝐵} ∪ {𝐶}) = {𝐴, 𝐵}) |
| 22 | | ssequn2 4169 |
. . . 4
⊢ ({𝐶} ⊆ {𝐴, 𝐵} ↔ ({𝐴, 𝐵} ∪ {𝐶}) = {𝐴, 𝐵}) |
| 23 | | snssg 4764 |
. . . . . . 7
⊢ (𝐶 ∈ V → (𝐶 ∈ {𝐴, 𝐵} ↔ {𝐶} ⊆ {𝐴, 𝐵})) |
| 24 | | elpri 4630 |
. . . . . . . 8
⊢ (𝐶 ∈ {𝐴, 𝐵} → (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)) |
| 25 | | nne 2937 |
. . . . . . . . . 10
⊢ (¬
𝐶 ≠ 𝐴 ↔ 𝐶 = 𝐴) |
| 26 | | 3mix2 1332 |
. . . . . . . . . 10
⊢ (¬
𝐶 ≠ 𝐴 → (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵)) |
| 27 | 25, 26 | sylbir 235 |
. . . . . . . . 9
⊢ (𝐶 = 𝐴 → (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵)) |
| 28 | | nne 2937 |
. . . . . . . . . 10
⊢ (¬
𝐶 ≠ 𝐵 ↔ 𝐶 = 𝐵) |
| 29 | | 3mix3 1333 |
. . . . . . . . . 10
⊢ (¬
𝐶 ≠ 𝐵 → (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵)) |
| 30 | 28, 29 | sylbir 235 |
. . . . . . . . 9
⊢ (𝐶 = 𝐵 → (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵)) |
| 31 | 27, 30 | jaoi 857 |
. . . . . . . 8
⊢ ((𝐶 = 𝐴 ∨ 𝐶 = 𝐵) → (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵)) |
| 32 | 24, 31 | syl 17 |
. . . . . . 7
⊢ (𝐶 ∈ {𝐴, 𝐵} → (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵)) |
| 33 | 23, 32 | biimtrrdi 254 |
. . . . . 6
⊢ (𝐶 ∈ V → ({𝐶} ⊆ {𝐴, 𝐵} → (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵))) |
| 34 | | 3mix1 1331 |
. . . . . . 7
⊢ (¬
𝐶 ∈ V → (¬
𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵)) |
| 35 | 34 | a1d 25 |
. . . . . 6
⊢ (¬
𝐶 ∈ V → ({𝐶} ⊆ {𝐴, 𝐵} → (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵))) |
| 36 | 33, 35 | pm2.61i 182 |
. . . . 5
⊢ ({𝐶} ⊆ {𝐴, 𝐵} → (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵)) |
| 37 | 36, 1 | sylibr 234 |
. . . 4
⊢ ({𝐶} ⊆ {𝐴, 𝐵} → ¬ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵)) |
| 38 | 22, 37 | sylbir 235 |
. . 3
⊢ (({𝐴, 𝐵} ∪ {𝐶}) = {𝐴, 𝐵} → ¬ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵)) |
| 39 | 21, 38 | sylbi 217 |
. 2
⊢ ({𝐴, 𝐵, 𝐶} = {𝐴, 𝐵} → ¬ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵)) |
| 40 | 19, 39 | impbii 209 |
1
⊢ (¬
(𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵) ↔ {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |