Step | Hyp | Ref
| Expression |
1 | | elpri 4584 |
. . . 4
⊢ (𝑟 ∈ { ≤ , ◡ ≤ } → (𝑟 = ≤ ∨ 𝑟 = ◡
≤ )) |
2 | | simprr 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → 𝑛 ∈ (1...𝑁)) |
3 | | fz1ssfz0 13361 |
. . . . . . . . . 10
⊢
(1...𝑁) ⊆
(0...𝑁) |
4 | 3 | sseli 3918 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ (0...𝑁)) |
5 | 4 | anim2i 617 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (𝑘 ∈ ℕ ∧ 𝑛 ∈ (0...𝑁))) |
6 | | eleq1 2827 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑛 → (𝑖 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...𝑁))) |
7 | 6 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑛 → ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁)) ↔ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (0...𝑁)))) |
8 | 7 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑛 → ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) ↔ (𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (0...𝑁))))) |
9 | | eqeq1 2743 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑛 → (𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) ↔ 𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
))) |
10 | 9 | rexbidv 3227 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑛 → (∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) ↔
∃𝑗 ∈ (0...𝑁)𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
))) |
11 | 8, 10 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑛 → (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < )) ↔ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
)))) |
12 | | poimirlem31.5 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
)) |
13 | 11, 12 | chvarvv 2003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
)) |
14 | | elfzle1 13268 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (1...𝑁) → 1 ≤ 𝑛) |
15 | | 1re 10984 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ |
16 | | elfzelz 13265 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℤ) |
17 | 16 | zred 12435 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℝ) |
18 | | lenlt 11062 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℝ ∧ 𝑛
∈ ℝ) → (1 ≤ 𝑛 ↔ ¬ 𝑛 < 1)) |
19 | 15, 17, 18 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (1...𝑁) → (1 ≤ 𝑛 ↔ ¬ 𝑛 < 1)) |
20 | 14, 19 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (1...𝑁) → ¬ 𝑛 < 1) |
21 | | elsni 4579 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {0} → 𝑛 = 0) |
22 | | 0lt1 11506 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
23 | 21, 22 | eqbrtrdi 5114 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ {0} → 𝑛 < 1) |
24 | 20, 23 | nsyl 140 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (1...𝑁) → ¬ 𝑛 ∈ {0}) |
25 | | ltso 11064 |
. . . . . . . . . . . . . . 15
⊢ < Or
ℝ |
26 | | snfi 8843 |
. . . . . . . . . . . . . . . . 17
⊢ {0}
∈ Fin |
27 | | fzfi 13701 |
. . . . . . . . . . . . . . . . . 18
⊢
(1...𝑁) ∈
Fin |
28 | | rabfi 9053 |
. . . . . . . . . . . . . . . . . 18
⊢
((1...𝑁) ∈ Fin
→ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)} ∈ Fin) |
29 | 27, 28 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)} ∈ Fin |
30 | | unfi 8964 |
. . . . . . . . . . . . . . . . 17
⊢ (({0}
∈ Fin ∧ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)} ∈ Fin) → ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ∈ Fin) |
31 | 26, 29, 30 | mp2an 689 |
. . . . . . . . . . . . . . . 16
⊢ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ∈ Fin |
32 | | c0ex 10978 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
V |
33 | 32 | snid 4598 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
{0} |
34 | | elun1 4111 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
{0} → 0 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)})) |
35 | | ne0i 4269 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ≠ ∅) |
36 | 33, 34, 35 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ≠ ∅ |
37 | | 0re 10986 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ |
38 | | snssi 4742 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ℝ → {0} ⊆ ℝ) |
39 | 37, 38 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ {0}
⊆ ℝ |
40 | | ssrab2 4014 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)} ⊆ (1...𝑁) |
41 | 16 | ssriv 3926 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1...𝑁) ⊆
ℤ |
42 | | zssre 12335 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℤ
⊆ ℝ |
43 | 41, 42 | sstri 3931 |
. . . . . . . . . . . . . . . . . 18
⊢
(1...𝑁) ⊆
ℝ |
44 | 40, 43 | sstri 3931 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)} ⊆ ℝ |
45 | 39, 44 | unssi 4120 |
. . . . . . . . . . . . . . . 16
⊢ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ⊆ ℝ |
46 | 31, 36, 45 | 3pm3.2i 1338 |
. . . . . . . . . . . . . . 15
⊢ (({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ∈ Fin ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ≠ ∅ ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ⊆ ℝ) |
47 | | fisupcl 9237 |
. . . . . . . . . . . . . . 15
⊢ (( <
Or ℝ ∧ (({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ∈ Fin ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ≠ ∅ ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ⊆ ℝ)) → sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)})) |
48 | 25, 46, 47 | mp2an 689 |
. . . . . . . . . . . . . 14
⊢ sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) |
49 | | eleq1 2827 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → (𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ↔ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}))) |
50 | 48, 49 | mpbiri 257 |
. . . . . . . . . . . . 13
⊢ (𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → 𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)})) |
51 | | elun 4084 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ↔ (𝑛 ∈ {0} ∨ 𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)})) |
52 | 50, 51 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → (𝑛 ∈ {0} ∨ 𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)})) |
53 | | oveq2 7292 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑛 → (1...𝑎) = (1...𝑛)) |
54 | 53 | raleqdv 3349 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑛 → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
55 | 54 | elrab 3625 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)} ↔ (𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
56 | | elfzuz 13261 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈
(ℤ≥‘1)) |
57 | | eluzfz2 13273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(ℤ≥‘1) → 𝑛 ∈ (1...𝑛)) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ (1...𝑛)) |
59 | | simpl 483 |
. . . . . . . . . . . . . . . 16
⊢ ((0 ≤
((𝐹‘(𝑃 ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) → 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏)) |
60 | 59 | ralimi 3088 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑏 ∈
(1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏)) |
61 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑛 → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) = ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) |
62 | 61 | breq2d 5087 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑛 → (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ↔ 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
63 | 62 | rspcva 3560 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ (1...𝑛) ∧ ∀𝑏 ∈ (1...𝑛)0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏)) → 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) |
64 | 58, 60, 63 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) → 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) |
65 | 55, 64 | sylbi 216 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)} → 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) |
66 | 65 | orim2i 908 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ {0} ∨ 𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) → (𝑛 ∈ {0} ∨ 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
67 | 52, 66 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → (𝑛 ∈ {0} ∨ 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
68 | | orel1 886 |
. . . . . . . . . . 11
⊢ (¬
𝑛 ∈ {0} → ((𝑛 ∈ {0} ∨ 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) → 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
69 | 24, 67, 68 | syl2im 40 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...𝑁) → (𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → 0 ≤
((𝐹‘(𝑃 ∘f /
((1...𝑁) × {𝑘})))‘𝑛))) |
70 | 69 | reximdv 3203 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...𝑁) → (∃𝑗 ∈ (0...𝑁)𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) →
∃𝑗 ∈ (0...𝑁)0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
71 | 13, 70 | syl5 34 |
. . . . . . . 8
⊢ (𝑛 ∈ (1...𝑁) → ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
72 | 5, 71 | sylan2i 606 |
. . . . . . 7
⊢ (𝑛 ∈ (1...𝑁) → ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → ∃𝑗 ∈ (0...𝑁)0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
73 | 2, 72 | mpcom 38 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → ∃𝑗 ∈ (0...𝑁)0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) |
74 | | breq 5077 |
. . . . . . 7
⊢ (𝑟 = ≤ → (0𝑟((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ↔ 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
75 | 74 | rexbidv 3227 |
. . . . . 6
⊢ (𝑟 = ≤ → (∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ↔ ∃𝑗 ∈ (0...𝑁)0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
76 | 73, 75 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → (𝑟 = ≤ → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
77 | | poimir.0 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℕ) |
78 | 77 | nnzd 12434 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℤ) |
79 | | elfzm1b 13343 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑛 ∈ (1...𝑁) ↔ (𝑛 − 1) ∈ (0...(𝑁 − 1)))) |
80 | 16, 78, 79 | syl2anr 597 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑛 ∈ (1...𝑁) ↔ (𝑛 − 1) ∈ (0...(𝑁 − 1)))) |
81 | 80 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ∈ (0...(𝑁 − 1)))) |
82 | 81 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ∈ (0...(𝑁 − 1))))) |
83 | 82 | pm2.43d 53 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ∈ (0...(𝑁 − 1)))) |
84 | 77 | nncnd 11998 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℂ) |
85 | | npcan1 11409 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
86 | 84, 85 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
87 | | nnm1nn0 12283 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
88 | 77, 87 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 − 1) ∈
ℕ0) |
89 | 88 | nn0zd 12433 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
90 | | uzid 12606 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
91 | | peano2uz 12650 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
92 | 89, 90, 91 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
93 | 86, 92 | eqeltrrd 2841 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
94 | | fzss2 13305 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁)) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁)) |
96 | 95 | sseld 3921 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑛 − 1) ∈ (0...(𝑁 − 1)) → (𝑛 − 1) ∈ (0...𝑁))) |
97 | 83, 96 | syld 47 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ∈ (0...𝑁))) |
98 | 97 | anim2d 612 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (𝑘 ∈ ℕ ∧ (𝑛 − 1) ∈ (0...𝑁)))) |
99 | 98 | imp 407 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → (𝑘 ∈ ℕ ∧ (𝑛 − 1) ∈ (0...𝑁))) |
100 | | ovex 7317 |
. . . . . . . . 9
⊢ (𝑛 − 1) ∈
V |
101 | | eleq1 2827 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑛 − 1) → (𝑖 ∈ (0...𝑁) ↔ (𝑛 − 1) ∈ (0...𝑁))) |
102 | 101 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑛 − 1) → ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁)) ↔ (𝑘 ∈ ℕ ∧ (𝑛 − 1) ∈ (0...𝑁)))) |
103 | 102 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑛 − 1) → ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) ↔ (𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑛 − 1) ∈ (0...𝑁))))) |
104 | | eqeq1 2743 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑛 − 1) → (𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) ↔ (𝑛 − 1) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
))) |
105 | 104 | rexbidv 3227 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑛 − 1) → (∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) ↔
∃𝑗 ∈ (0...𝑁)(𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
))) |
106 | 103, 105 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑖 = (𝑛 − 1) → (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < )) ↔ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑛 − 1) ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)(𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
)))) |
107 | 100, 106,
12 | vtocl 3499 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑛 − 1) ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)(𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
)) |
108 | 99, 107 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → ∃𝑗 ∈ (0...𝑁)(𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
)) |
109 | | eleq1 2827 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 − 1) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → ((𝑛 − 1) ∈ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ↔ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}))) |
110 | 48, 109 | mpbiri 257 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 − 1) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → (𝑛 − 1) ∈ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)})) |
111 | | elun 4084 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 − 1) ∈ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ↔ ((𝑛 − 1) ∈ {0} ∨ (𝑛 − 1) ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)})) |
112 | 100 | elsn 4577 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 − 1) ∈ {0} ↔
(𝑛 − 1) =
0) |
113 | | oveq2 7292 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = (𝑛 − 1) → (1...𝑎) = (1...(𝑛 − 1))) |
114 | 113 | raleqdv 3349 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (𝑛 − 1) → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
115 | 114 | elrab 3625 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 − 1) ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)} ↔ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
116 | 112, 115 | orbi12i 912 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 − 1) ∈ {0} ∨
(𝑛 − 1) ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ↔ ((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)))) |
117 | 111, 116 | bitri 274 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 − 1) ∈ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ↔ ((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)))) |
118 | 110, 117 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 − 1) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → ((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)))) |
119 | 118 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → ((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))))) |
120 | | ltm1 11826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℝ → (𝑛 − 1) < 𝑛) |
121 | | peano2rem 11297 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℝ → (𝑛 − 1) ∈
ℝ) |
122 | | ltnle 11063 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 − 1) ∈ ℝ ∧
𝑛 ∈ ℝ) →
((𝑛 − 1) < 𝑛 ↔ ¬ 𝑛 ≤ (𝑛 − 1))) |
123 | 121, 122 | mpancom 685 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℝ → ((𝑛 − 1) < 𝑛 ↔ ¬ 𝑛 ≤ (𝑛 − 1))) |
124 | 120, 123 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℝ → ¬
𝑛 ≤ (𝑛 − 1)) |
125 | 17, 124 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (1...𝑁) → ¬ 𝑛 ≤ (𝑛 − 1)) |
126 | | breq2 5079 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 − 1) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → (𝑛 ≤ (𝑛 − 1) ↔ 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
))) |
127 | 126 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 − 1) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → (¬
𝑛 ≤ (𝑛 − 1) ↔ ¬ 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
))) |
128 | 125, 127 | syl5ibcom 244 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → ¬
𝑛 ≤ sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
))) |
129 | | elun2 4112 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)} → 𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)})) |
130 | | fimaxre2 11929 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ⊆ ℝ ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)})𝑦 ≤ 𝑥) |
131 | 45, 31, 130 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∃𝑥 ∈
ℝ ∀𝑦 ∈
({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)})𝑦 ≤ 𝑥 |
132 | 45, 36, 131 | 3pm3.2i 1338 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ⊆ ℝ ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)})𝑦 ≤ 𝑥) |
133 | 132 | suprubii 11959 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) → 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
)) |
134 | 129, 133 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)} → 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, <
)) |
135 | 134 | con3i 154 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑛 ≤ sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → ¬
𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}) |
136 | | ianor 979 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) ↔ (¬ 𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
137 | 136, 55 | xchnxbir 333 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)} ↔ (¬ 𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
138 | 135, 137 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑛 ≤ sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → (¬
𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
139 | 128, 138 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → (¬
𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)))) |
140 | | pm2.63 938 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) → ((¬ 𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) → ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
141 | 140 | orcs 872 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (1...𝑁) → ((¬ 𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) → ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
142 | 139, 141 | syld 47 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → ¬
∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
143 | 119, 142 | jcad 513 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → (((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)))) |
144 | | andir 1006 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) ↔ (((𝑛 − 1) = 0 ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) ∨ (((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)))) |
145 | 16 | zcnd 12436 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ) |
146 | | ax-1cn 10938 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℂ |
147 | | 0cn 10976 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
ℂ |
148 | | subadd 11233 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ ∧ 0 ∈ ℂ) → ((𝑛 − 1) = 0 ↔ (1 + 0) = 𝑛)) |
149 | 146, 147,
148 | mp3an23 1452 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℂ → ((𝑛 − 1) = 0 ↔ (1 + 0) =
𝑛)) |
150 | 145, 149 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = 0 ↔ (1 + 0) = 𝑛)) |
151 | 150 | biimpa 477 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ (1...𝑁) ∧ (𝑛 − 1) = 0) → (1 + 0) = 𝑛) |
152 | | 1p0e1 12106 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 + 0) =
1 |
153 | 151, 152 | eqtr3di 2794 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ (1...𝑁) ∧ (𝑛 − 1) = 0) → 𝑛 = 1) |
154 | | 1z 12359 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℤ |
155 | | fzsn 13307 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 ∈
ℤ → (1...1) = {1}) |
156 | 154, 155 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1...1) =
{1} |
157 | | oveq2 7292 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 1 → (1...𝑛) = (1...1)) |
158 | | sneq 4572 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 1 → {𝑛} = {1}) |
159 | 156, 157,
158 | 3eqtr4a 2805 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → (1...𝑛) = {𝑛}) |
160 | 159 | raleqdv 3349 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → (∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
161 | 160 | notbid 318 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → (¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) ↔ ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
162 | 161 | biimpd 228 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → (¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
163 | 153, 162 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ (1...𝑁) ∧ (𝑛 − 1) = 0) → (¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
164 | 163 | expimpd 454 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (1...𝑁) → (((𝑛 − 1) = 0 ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
165 | | ralun 4127 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑏 ∈
(1...(𝑛 − 1))(0 ≤
((𝐹‘(𝑃 ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) → ∀𝑏 ∈ ((1...(𝑛 − 1)) ∪ {𝑛})(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) |
166 | | npcan1 11409 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℂ → ((𝑛 − 1) + 1) = 𝑛) |
167 | 145, 166 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) + 1) = 𝑛) |
168 | 167, 56 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) + 1) ∈
(ℤ≥‘1)) |
169 | | peano2zm 12372 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℤ → (𝑛 − 1) ∈
ℤ) |
170 | | uzid 12606 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 − 1) ∈ ℤ
→ (𝑛 − 1) ∈
(ℤ≥‘(𝑛 − 1))) |
171 | | peano2uz 12650 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 − 1) ∈
(ℤ≥‘(𝑛 − 1)) → ((𝑛 − 1) + 1) ∈
(ℤ≥‘(𝑛 − 1))) |
172 | 16, 169, 170, 171 | 4syl 19 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) + 1) ∈
(ℤ≥‘(𝑛 − 1))) |
173 | 167, 172 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ (ℤ≥‘(𝑛 − 1))) |
174 | | fzsplit2 13290 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑛 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑛 ∈ (ℤ≥‘(𝑛 − 1))) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛))) |
175 | 168, 173,
174 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ (1...𝑁) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛))) |
176 | 167 | oveq1d 7299 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → (((𝑛 − 1) + 1)...𝑛) = (𝑛...𝑛)) |
177 | | fzsn 13307 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℤ → (𝑛...𝑛) = {𝑛}) |
178 | 16, 177 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → (𝑛...𝑛) = {𝑛}) |
179 | 176, 178 | eqtrd 2779 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (1...𝑁) → (((𝑛 − 1) + 1)...𝑛) = {𝑛}) |
180 | 179 | uneq2d 4098 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ (1...𝑁) → ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛)) = ((1...(𝑛 − 1)) ∪ {𝑛})) |
181 | 175, 180 | eqtrd 2779 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ (1...𝑁) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ {𝑛})) |
182 | 181 | raleqdv 3349 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ ((1...(𝑛 − 1)) ∪ {𝑛})(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
183 | 165, 182 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (1...𝑁) → ((∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
184 | 183 | expdimp 453 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
185 | 184 | con3d 152 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) → (¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
186 | 185 | adantrl 713 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ (1...𝑁) ∧ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) → (¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
187 | 186 | expimpd 454 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (1...𝑁) → ((((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
188 | 164, 187 | jaod 856 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (1...𝑁) → ((((𝑛 − 1) = 0 ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) ∨ (((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
189 | 144, 188 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (1...𝑁) → ((((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) |
190 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑛 → (𝑃‘𝑏) = (𝑃‘𝑛)) |
191 | 190 | neeq1d 3004 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑛 → ((𝑃‘𝑏) ≠ 0 ↔ (𝑃‘𝑛) ≠ 0)) |
192 | 62, 191 | anbi12d 631 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑛 → ((0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑃‘𝑛) ≠ 0))) |
193 | 192 | ralsng 4610 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑃‘𝑛) ≠ 0))) |
194 | 193 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (1...𝑁) → (¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) ↔ ¬ (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑃‘𝑛) ≠ 0))) |
195 | | ianor 979 |
. . . . . . . . . . . . . . 15
⊢ (¬ (0
≤ ((𝐹‘(𝑃 ∘f /
((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑃‘𝑛) ≠ 0) ↔ (¬ 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∨ ¬ (𝑃‘𝑛) ≠ 0)) |
196 | | nne 2948 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝑃‘𝑛) ≠ 0 ↔ (𝑃‘𝑛) = 0) |
197 | 196 | orbi2i 910 |
. . . . . . . . . . . . . . 15
⊢ ((¬ 0
≤ ((𝐹‘(𝑃 ∘f /
((1...𝑁) × {𝑘})))‘𝑛) ∨ ¬ (𝑃‘𝑛) ≠ 0) ↔ (¬ 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃‘𝑛) = 0)) |
198 | 195, 197 | bitri 274 |
. . . . . . . . . . . . . 14
⊢ (¬ (0
≤ ((𝐹‘(𝑃 ∘f /
((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑃‘𝑛) ≠ 0) ↔ (¬ 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃‘𝑛) = 0)) |
199 | 194, 198 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (1...𝑁) → (¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0) ↔ (¬ 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃‘𝑛) = 0))) |
200 | 189, 199 | sylibd 238 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (1...𝑁) → ((((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0))) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)) → (¬ 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃‘𝑛) = 0))) |
201 | 143, 200 | syld 47 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → (¬ 0
≤ ((𝐹‘(𝑃 ∘f /
((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃‘𝑛) = 0))) |
202 | 201 | ad2antlr 724 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → (¬ 0
≤ ((𝐹‘(𝑃 ∘f /
((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃‘𝑛) = 0))) |
203 | | poimir.1 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) |
204 | | poimir.r |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑅 =
(∏t‘((1...𝑁) × {(topGen‘ran
(,))})) |
205 | | retop 23934 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(topGen‘ran (,)) ∈ Top |
206 | 205 | fconst6 6673 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Top |
207 | | pttop 22742 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1...𝑁) ∈ Fin
∧ ((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Top) →
(∏t‘((1...𝑁) × {(topGen‘ran (,))})) ∈
Top) |
208 | 27, 206, 207 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∏t‘((1...𝑁) × {(topGen‘ran (,))})) ∈
Top |
209 | 204, 208 | eqeltri 2836 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑅 ∈ Top |
210 | | poimir.i |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐼 = ((0[,]1) ↑m
(1...𝑁)) |
211 | | reex 10971 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ℝ
∈ V |
212 | | unitssre 13240 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0[,]1)
⊆ ℝ |
213 | | mapss 8686 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ℝ
∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑m
(1...𝑁)) ⊆ (ℝ
↑m (1...𝑁))) |
214 | 211, 212,
213 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((0[,]1)
↑m (1...𝑁))
⊆ (ℝ ↑m (1...𝑁)) |
215 | 210, 214 | eqsstri 3956 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐼 ⊆ (ℝ
↑m (1...𝑁)) |
216 | | uniretop 23935 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ℝ =
∪ (topGen‘ran (,)) |
217 | 204, 216 | ptuniconst 22758 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1...𝑁) ∈ Fin
∧ (topGen‘ran (,)) ∈ Top) → (ℝ ↑m
(1...𝑁)) = ∪ 𝑅) |
218 | 27, 205, 217 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℝ
↑m (1...𝑁))
= ∪ 𝑅 |
219 | 218 | restuni 22322 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Top ∧ 𝐼 ⊆ (ℝ
↑m (1...𝑁))) → 𝐼 = ∪ (𝑅 ↾t 𝐼)) |
220 | 209, 215,
219 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐼 = ∪
(𝑅 ↾t
𝐼) |
221 | 220, 218 | cnf 22406 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅) → 𝐹:𝐼⟶(ℝ ↑m
(1...𝑁))) |
222 | 203, 221 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹:𝐼⟶(ℝ ↑m
(1...𝑁))) |
223 | 222 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → 𝐹:𝐼⟶(ℝ ↑m
(1...𝑁))) |
224 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → 𝑘 ∈ ℕ) |
225 | | elfzelz 13265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈ (0...𝑘) → 𝑥 ∈ ℤ) |
226 | 225 | zred 12435 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ (0...𝑘) → 𝑥 ∈ ℝ) |
227 | 226 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ) |
228 | | nnre 11989 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
229 | 228 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ) |
230 | | nnne0 12016 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ℕ → 𝑘 ≠ 0) |
231 | 230 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0) |
232 | 227, 229,
231 | redivcld 11812 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑥 / 𝑘) ∈ ℝ) |
233 | | elfzle1 13268 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ (0...𝑘) → 0 ≤ 𝑥) |
234 | 226, 233 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ (0...𝑘) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
235 | | nnrp 12750 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
236 | 235 | rpregt0d 12787 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 <
𝑘)) |
237 | | divge0 11853 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) ∧ (𝑘 ∈ ℝ ∧ 0 <
𝑘)) → 0 ≤ (𝑥 / 𝑘)) |
238 | 234, 236,
237 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝑥 / 𝑘)) |
239 | | elfzle2 13269 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ (0...𝑘) → 𝑥 ≤ 𝑘) |
240 | 239 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑥 ≤ 𝑘) |
241 | | 1red 10985 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 1 ∈
ℝ) |
242 | 235 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+) |
243 | 227, 241,
242 | ledivmuld 12834 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑥 / 𝑘) ≤ 1 ↔ 𝑥 ≤ (𝑘 · 1))) |
244 | | nncn 11990 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
245 | 244 | mulid1d 11001 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ ℕ → (𝑘 · 1) = 𝑘) |
246 | 245 | breq2d 5087 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ ℕ → (𝑥 ≤ (𝑘 · 1) ↔ 𝑥 ≤ 𝑘)) |
247 | 246 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑥 ≤ (𝑘 · 1) ↔ 𝑥 ≤ 𝑘)) |
248 | 243, 247 | bitrd 278 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑥 / 𝑘) ≤ 1 ↔ 𝑥 ≤ 𝑘)) |
249 | 240, 248 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑥 / 𝑘) ≤ 1) |
250 | | elicc01 13207 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 / 𝑘) ∈ (0[,]1) ↔ ((𝑥 / 𝑘) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝑘) ∧ (𝑥 / 𝑘) ≤ 1)) |
251 | 232, 238,
249, 250 | syl3anbrc 1342 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑥 / 𝑘) ∈ (0[,]1)) |
252 | 251 | ancoms 459 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℕ ∧ 𝑥 ∈ (0...𝑘)) → (𝑥 / 𝑘) ∈ (0[,]1)) |
253 | | elsni 4579 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ {𝑘} → 𝑦 = 𝑘) |
254 | 253 | oveq2d 7300 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ {𝑘} → (𝑥 / 𝑦) = (𝑥 / 𝑘)) |
255 | 254 | eleq1d 2824 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ {𝑘} → ((𝑥 / 𝑦) ∈ (0[,]1) ↔ (𝑥 / 𝑘) ∈ (0[,]1))) |
256 | 252, 255 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ ∧ 𝑥 ∈ (0...𝑘)) → (𝑦 ∈ {𝑘} → (𝑥 / 𝑦) ∈ (0[,]1))) |
257 | 256 | impr 455 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ ∧ (𝑥 ∈ (0...𝑘) ∧ 𝑦 ∈ {𝑘})) → (𝑥 / 𝑦) ∈ (0[,]1)) |
258 | 224, 257 | sylan 580 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ (0...𝑘) ∧ 𝑦 ∈ {𝑘})) → (𝑥 / 𝑦) ∈ (0[,]1)) |
259 | | elun 4084 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ({1} ∪ {0}) ↔
(𝑦 ∈ {1} ∨ 𝑦 ∈ {0})) |
260 | | fzofzp1 13493 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ (0..^𝑘) → (𝑥 + 1) ∈ (0...𝑘)) |
261 | | elsni 4579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ {1} → 𝑦 = 1) |
262 | 261 | oveq2d 7300 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ {1} → (𝑥 + 𝑦) = (𝑥 + 1)) |
263 | 262 | eleq1d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ {1} → ((𝑥 + 𝑦) ∈ (0...𝑘) ↔ (𝑥 + 1) ∈ (0...𝑘))) |
264 | 260, 263 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ (0..^𝑘) → (𝑦 ∈ {1} → (𝑥 + 𝑦) ∈ (0...𝑘))) |
265 | | elfzonn0 13441 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 ∈ (0..^𝑘) → 𝑥 ∈ ℕ0) |
266 | 265 | nn0cnd 12304 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 ∈ (0..^𝑘) → 𝑥 ∈ ℂ) |
267 | 266 | addid1d 11184 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈ (0..^𝑘) → (𝑥 + 0) = 𝑥) |
268 | | elfzofz 13412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈ (0..^𝑘) → 𝑥 ∈ (0...𝑘)) |
269 | 267, 268 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ (0..^𝑘) → (𝑥 + 0) ∈ (0...𝑘)) |
270 | | elsni 4579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ {0} → 𝑦 = 0) |
271 | 270 | oveq2d 7300 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ {0} → (𝑥 + 𝑦) = (𝑥 + 0)) |
272 | 271 | eleq1d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ {0} → ((𝑥 + 𝑦) ∈ (0...𝑘) ↔ (𝑥 + 0) ∈ (0...𝑘))) |
273 | 269, 272 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ (0..^𝑘) → (𝑦 ∈ {0} → (𝑥 + 𝑦) ∈ (0...𝑘))) |
274 | 264, 273 | jaod 856 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ (0..^𝑘) → ((𝑦 ∈ {1} ∨ 𝑦 ∈ {0}) → (𝑥 + 𝑦) ∈ (0...𝑘))) |
275 | 259, 274 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ (0..^𝑘) → (𝑦 ∈ ({1} ∪ {0}) → (𝑥 + 𝑦) ∈ (0...𝑘))) |
276 | 275 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ (0..^𝑘) ∧ 𝑦 ∈ ({1} ∪ {0})) → (𝑥 + 𝑦) ∈ (0...𝑘)) |
277 | 276 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ (0..^𝑘) ∧ 𝑦 ∈ ({1} ∪ {0}))) → (𝑥 + 𝑦) ∈ (0...𝑘)) |
278 | | poimirlem31.3 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐺:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
279 | 278 | ffvelrnda 6970 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
280 | | xp1st 7872 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺‘𝑘) ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(𝐺‘𝑘)) ∈ (ℕ0
↑m (1...𝑁))) |
281 | | elmapfn 8662 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1st ‘(𝐺‘𝑘)) ∈ (ℕ0
↑m (1...𝑁))
→ (1st ‘(𝐺‘𝑘)) Fn (1...𝑁)) |
282 | 279, 280,
281 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1st
‘(𝐺‘𝑘)) Fn (1...𝑁)) |
283 | | poimirlem31.4 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran (1st
‘(𝐺‘𝑘)) ⊆ (0..^𝑘)) |
284 | | df-f 6441 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1st ‘(𝐺‘𝑘)):(1...𝑁)⟶(0..^𝑘) ↔ ((1st ‘(𝐺‘𝑘)) Fn (1...𝑁) ∧ ran (1st ‘(𝐺‘𝑘)) ⊆ (0..^𝑘))) |
285 | 282, 283,
284 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1st
‘(𝐺‘𝑘)):(1...𝑁)⟶(0..^𝑘)) |
286 | 285 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (1st ‘(𝐺‘𝑘)):(1...𝑁)⟶(0..^𝑘)) |
287 | | 1ex 10980 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 ∈
V |
288 | 287 | fconst 6669 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}):((2nd
‘(𝐺‘𝑘)) “ (1...𝑗))⟶{1} |
289 | 32 | fconst 6669 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}):((2nd
‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁))⟶{0} |
290 | 288, 289 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}):((2nd
‘(𝐺‘𝑘)) “ (1...𝑗))⟶{1} ∧
(((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}):((2nd
‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁))⟶{0}) |
291 | | xp2nd 7873 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐺‘𝑘) ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(𝐺‘𝑘)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
292 | 279, 291 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2nd
‘(𝐺‘𝑘)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
293 | | fvex 6796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(2nd ‘(𝐺‘𝑘)) ∈ V |
294 | | f1oeq1 6713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓 = (2nd ‘(𝐺‘𝑘)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(𝐺‘𝑘)):(1...𝑁)–1-1-onto→(1...𝑁))) |
295 | 293, 294 | elab 3610 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((2nd ‘(𝐺‘𝑘)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(𝐺‘𝑘)):(1...𝑁)–1-1-onto→(1...𝑁)) |
296 | 292, 295 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2nd
‘(𝐺‘𝑘)):(1...𝑁)–1-1-onto→(1...𝑁)) |
297 | | dff1o3 6731 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((2nd ‘(𝐺‘𝑘)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(𝐺‘𝑘)):(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡(2nd ‘(𝐺‘𝑘)))) |
298 | 297 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((2nd ‘(𝐺‘𝑘)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡(2nd ‘(𝐺‘𝑘))) |
299 | | imain 6526 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (Fun
◡(2nd ‘(𝐺‘𝑘)) → ((2nd ‘(𝐺‘𝑘)) “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) ∩ ((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)))) |
300 | 296, 298,
299 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2nd
‘(𝐺‘𝑘)) “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) ∩ ((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)))) |
301 | | elfznn0 13358 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℕ0) |
302 | 301 | nn0red 12303 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℝ) |
303 | 302 | ltp1d 11914 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 < (𝑗 + 1)) |
304 | | fzdisj 13292 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅) |
305 | 303, 304 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (0...𝑁) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅) |
306 | 305 | imaeq2d 5972 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0...𝑁) → ((2nd ‘(𝐺‘𝑘)) “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((2nd ‘(𝐺‘𝑘)) “ ∅)) |
307 | | ima0 5988 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((2nd ‘(𝐺‘𝑘)) “ ∅) =
∅ |
308 | 306, 307 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (0...𝑁) → ((2nd ‘(𝐺‘𝑘)) “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ∅) |
309 | 300, 308 | sylan9req 2800 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) ∩ ((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁))) = ∅) |
310 | | fun 6645 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}):((2nd
‘(𝐺‘𝑘)) “ (1...𝑗))⟶{1} ∧
(((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}):((2nd
‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁))⟶{0}) ∧ (((2nd
‘(𝐺‘𝑘)) “ (1...𝑗)) ∩ ((2nd
‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁))) = ∅) → ((((2nd
‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})):(((2nd
‘(𝐺‘𝑘)) “ (1...𝑗)) ∪ ((2nd
‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0})) |
311 | 290, 309,
310 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → ((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})):(((2nd
‘(𝐺‘𝑘)) “ (1...𝑗)) ∪ ((2nd
‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0})) |
312 | | imaundi 6058 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((2nd ‘(𝐺‘𝑘)) “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) = (((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) ∪ ((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁))) |
313 | | nn0p1nn 12281 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ) |
314 | 301, 313 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ ℕ) |
315 | | nnuz 12630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ℕ =
(ℤ≥‘1) |
316 | 314, 315 | eleqtrdi 2850 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈
(ℤ≥‘1)) |
317 | | elfzuz3 13262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑁) → 𝑁 ∈ (ℤ≥‘𝑗)) |
318 | | fzsplit2 13290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑗 + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑗)) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) |
319 | 316, 317,
318 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑁) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) |
320 | 319 | imaeq2d 5972 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (0...𝑁) → ((2nd ‘(𝐺‘𝑘)) “ (1...𝑁)) = ((2nd ‘(𝐺‘𝑘)) “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁)))) |
321 | | f1ofo 6732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((2nd ‘(𝐺‘𝑘)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(𝐺‘𝑘)):(1...𝑁)–onto→(1...𝑁)) |
322 | | foima 6702 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((2nd ‘(𝐺‘𝑘)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(𝐺‘𝑘)) “ (1...𝑁)) = (1...𝑁)) |
323 | 296, 321,
322 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2nd
‘(𝐺‘𝑘)) “ (1...𝑁)) = (1...𝑁)) |
324 | 320, 323 | sylan9req 2800 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑗 ∈ (0...𝑁) ∧ (𝜑 ∧ 𝑘 ∈ ℕ)) → ((2nd
‘(𝐺‘𝑘)) “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) = (1...𝑁)) |
325 | 324 | ancoms 459 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → ((2nd ‘(𝐺‘𝑘)) “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) = (1...𝑁)) |
326 | 312, 325 | eqtr3id 2793 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) ∪ ((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁))) = (1...𝑁)) |
327 | 326 | feq2d 6595 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})):(((2nd
‘(𝐺‘𝑘)) “ (1...𝑗)) ∪ ((2nd
‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}) ↔
((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}))) |
328 | 311, 327 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → ((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0})) |
329 | | fzfid 13702 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (1...𝑁) ∈ Fin) |
330 | | inidm 4153 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
331 | 277, 286,
328, 329, 329, 330 | off 7560 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → ((1st ‘(𝐺‘𝑘)) ∘f + ((((2nd
‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝑘)) |
332 | | poimirlem31.p |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑃 = ((1st
‘(𝐺‘𝑘)) ∘f +
((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
333 | 332 | feq1i 6600 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃:(1...𝑁)⟶(0...𝑘) ↔ ((1st ‘(𝐺‘𝑘)) ∘f + ((((2nd
‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝑘)) |
334 | 331, 333 | sylibr 233 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → 𝑃:(1...𝑁)⟶(0...𝑘)) |
335 | | vex 3437 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑘 ∈ V |
336 | 335 | fconst 6669 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1...𝑁) ×
{𝑘}):(1...𝑁)⟶{𝑘} |
337 | 336 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → ((1...𝑁) × {𝑘}):(1...𝑁)⟶{𝑘}) |
338 | 258, 334,
337, 329, 329, 330 | off 7560 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (𝑃 ∘f / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
339 | 210 | eleq2i 2831 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃 ∘f /
((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ (𝑃 ∘f / ((1...𝑁) × {𝑘})) ∈ ((0[,]1) ↑m
(1...𝑁))) |
340 | | ovex 7317 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0[,]1)
∈ V |
341 | | ovex 7317 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1...𝑁) ∈
V |
342 | 340, 341 | elmap 8668 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃 ∘f /
((1...𝑁) × {𝑘})) ∈ ((0[,]1)
↑m (1...𝑁))
↔ (𝑃
∘f / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
343 | 339, 342 | bitri 274 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∘f /
((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ (𝑃 ∘f / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
344 | 338, 343 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (𝑃 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼) |
345 | 223, 344 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘}))) ∈ (ℝ ↑m
(1...𝑁))) |
346 | | elmapi 8646 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘}))) ∈ (ℝ ↑m
(1...𝑁)) → (𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘}))):(1...𝑁)⟶ℝ) |
347 | 345, 346 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘}))):(1...𝑁)⟶ℝ) |
348 | 347 | ffvelrnda 6970 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∈ ℝ) |
349 | 348 | an32s 649 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∈ ℝ) |
350 | | 0red 10987 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → 0 ∈ ℝ) |
351 | 349, 350 | ltnled 11131 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → (((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
352 | | ltle 11072 |
. . . . . . . . . . . . 13
⊢ ((((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∈ ℝ ∧ 0 ∈ ℝ)
→ (((𝐹‘(𝑃 ∘f /
((1...𝑁) × {𝑘})))‘𝑛) < 0 → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)) |
353 | 349, 37, 352 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → (((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) < 0 → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)) |
354 | 351, 353 | sylbird 259 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → (¬ 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)) |
355 | 244, 230 | div0d 11759 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → (0 /
𝑘) = 0) |
356 | | oveq1 7291 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃‘𝑛) = 0 → ((𝑃‘𝑛) / 𝑘) = (0 / 𝑘)) |
357 | 356 | eqeq1d 2741 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃‘𝑛) = 0 → (((𝑃‘𝑛) / 𝑘) = 0 ↔ (0 / 𝑘) = 0)) |
358 | 355, 357 | syl5ibrcom 246 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → ((𝑃‘𝑛) = 0 → ((𝑃‘𝑛) / 𝑘) = 0)) |
359 | 358 | ad3antlr 728 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑃‘𝑛) = 0 → ((𝑃‘𝑛) / 𝑘) = 0)) |
360 | 334 | ffnd 6610 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → 𝑃 Fn (1...𝑁)) |
361 | | fnconstg 6671 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ V → ((1...𝑁) × {𝑘}) Fn (1...𝑁)) |
362 | 335, 361 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → ((1...𝑁) × {𝑘}) Fn (1...𝑁)) |
363 | | eqidd 2740 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝑃‘𝑛) = (𝑃‘𝑛)) |
364 | 335 | fvconst2 7088 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {𝑘})‘𝑛) = 𝑘) |
365 | 364 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {𝑘})‘𝑛) = 𝑘) |
366 | 360, 362,
329, 329, 330, 363, 365 | ofval 7553 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑃 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = ((𝑃‘𝑛) / 𝑘)) |
367 | 366 | an32s 649 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑃 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = ((𝑃‘𝑛) / 𝑘)) |
368 | 367 | eqeq1d 2741 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → (((𝑃 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 0 ↔ ((𝑃‘𝑛) / 𝑘) = 0)) |
369 | 359, 368 | sylibrd 258 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑃‘𝑛) = 0 → ((𝑃 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 0)) |
370 | | simplll 772 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → 𝜑) |
371 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → 𝑛 ∈ (1...𝑁)) |
372 | 344 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → (𝑃 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼) |
373 | | ovex 7317 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∘f /
((1...𝑁) × {𝑘})) ∈ V |
374 | | eleq1 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑃 ∘f / ((1...𝑁) × {𝑘})) → (𝑧 ∈ 𝐼 ↔ (𝑃 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼)) |
375 | | fveq1 6782 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑃 ∘f / ((1...𝑁) × {𝑘})) → (𝑧‘𝑛) = ((𝑃 ∘f / ((1...𝑁) × {𝑘}))‘𝑛)) |
376 | 375 | eqeq1d 2741 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑃 ∘f / ((1...𝑁) × {𝑘})) → ((𝑧‘𝑛) = 0 ↔ ((𝑃 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 0)) |
377 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑃 ∘f / ((1...𝑁) × {𝑘})) → (𝐹‘𝑧) = (𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))) |
378 | 377 | fveq1d 6785 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑃 ∘f / ((1...𝑁) × {𝑘})) → ((𝐹‘𝑧)‘𝑛) = ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) |
379 | 378 | breq1d 5085 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑃 ∘f / ((1...𝑁) × {𝑘})) → (((𝐹‘𝑧)‘𝑛) ≤ 0 ↔ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)) |
380 | 376, 379 | imbi12d 345 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑃 ∘f / ((1...𝑁) × {𝑘})) → (((𝑧‘𝑛) = 0 → ((𝐹‘𝑧)‘𝑛) ≤ 0) ↔ (((𝑃 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 0 → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))) |
381 | 374, 380 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑃 ∘f / ((1...𝑁) × {𝑘})) → ((𝑧 ∈ 𝐼 → ((𝑧‘𝑛) = 0 → ((𝐹‘𝑧)‘𝑛) ≤ 0)) ↔ ((𝑃 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼 → (((𝑃 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 0 → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)))) |
382 | 381 | imbi2d 341 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑃 ∘f / ((1...𝑁) × {𝑘})) → ((𝑛 ∈ (1...𝑁) → (𝑧 ∈ 𝐼 → ((𝑧‘𝑛) = 0 → ((𝐹‘𝑧)‘𝑛) ≤ 0))) ↔ (𝑛 ∈ (1...𝑁) → ((𝑃 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼 → (((𝑃 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 0 → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))))) |
383 | 382 | imbi2d 341 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑃 ∘f / ((1...𝑁) × {𝑘})) → ((𝜑 → (𝑛 ∈ (1...𝑁) → (𝑧 ∈ 𝐼 → ((𝑧‘𝑛) = 0 → ((𝐹‘𝑧)‘𝑛) ≤ 0)))) ↔ (𝜑 → (𝑛 ∈ (1...𝑁) → ((𝑃 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼 → (((𝑃 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 0 → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)))))) |
384 | | poimir.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → ((𝐹‘𝑧)‘𝑛) ≤ 0) |
385 | 384 | 3exp2 1353 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑧 ∈ 𝐼 → ((𝑧‘𝑛) = 0 → ((𝐹‘𝑧)‘𝑛) ≤ 0)))) |
386 | 373, 383,
385 | vtocl 3499 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) → ((𝑃 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼 → (((𝑃 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 0 → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)))) |
387 | 370, 371,
372, 386 | syl3c 66 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → (((𝑃 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 0 → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)) |
388 | 369, 387 | syld 47 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑃‘𝑛) = 0 → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)) |
389 | 354, 388 | jaod 856 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((¬ 0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃‘𝑛) = 0) → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)) |
390 | 202, 389 | syld 47 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) → ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)) |
391 | 390 | reximdva 3204 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) → (∃𝑗 ∈ (0...𝑁)(𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) →
∃𝑗 ∈ (0...𝑁)((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)) |
392 | 391 | anasss 467 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → (∃𝑗 ∈ (0...𝑁)(𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃‘𝑏) ≠ 0)}), ℝ, < ) →
∃𝑗 ∈ (0...𝑁)((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)) |
393 | 108, 392 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → ∃𝑗 ∈ (0...𝑁)((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0) |
394 | | breq 5077 |
. . . . . . . 8
⊢ (𝑟 = ◡ ≤ → (0𝑟((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ↔ 0◡ ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
395 | | fvex 6796 |
. . . . . . . . 9
⊢ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∈ V |
396 | 32, 395 | brcnv 5794 |
. . . . . . . 8
⊢ (0◡ ≤ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ↔ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0) |
397 | 394, 396 | bitrdi 287 |
. . . . . . 7
⊢ (𝑟 = ◡ ≤ → (0𝑟((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ↔ ((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)) |
398 | 397 | rexbidv 3227 |
. . . . . 6
⊢ (𝑟 = ◡ ≤ → (∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ↔ ∃𝑗 ∈ (0...𝑁)((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)) |
399 | 393, 398 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → (𝑟 = ◡
≤ → ∃𝑗 ∈
(0...𝑁)0𝑟((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
400 | 76, 399 | jaod 856 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → ((𝑟 = ≤ ∨ 𝑟 = ◡
≤ ) → ∃𝑗
∈ (0...𝑁)0𝑟((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
401 | 1, 400 | syl5 34 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → (𝑟 ∈ { ≤ , ◡ ≤ } → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
402 | 401 | exp32 421 |
. 2
⊢ (𝜑 → (𝑘 ∈ ℕ → (𝑛 ∈ (1...𝑁) → (𝑟 ∈ { ≤ , ◡ ≤ } → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))))) |
403 | 402 | 3imp2 1348 |
1
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ◡ ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) |