Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem31 Structured version   Visualization version   GIF version

Theorem poimirlem31 33747
Description: Lemma for poimir 33749, assigning values to the vertices of the tessellation that meet the hypotheses of both poimirlem30 33746 and poimirlem28 33744. Equation (2) of [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimir.i 𝐼 = ((0[,]1) ↑𝑚 (1...𝑁))
poimir.r 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
poimir.1 (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))
poimir.2 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)
poimirlem31.p 𝑃 = ((1st ‘(𝐺𝑘)) ∘𝑓 + ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
poimirlem31.3 (𝜑𝐺:ℕ⟶((ℕ0𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
poimirlem31.4 ((𝜑𝑘 ∈ ℕ) → ran (1st ‘(𝐺𝑘)) ⊆ (0..^𝑘))
poimirlem31.5 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ))
Assertion
Ref Expression
poimirlem31 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛))
Distinct variable groups:   𝑓,𝑖,𝑗,𝑘,𝑛,𝑧   𝜑,𝑗,𝑛   𝑗,𝐹,𝑛   𝑗,𝑁,𝑛   𝜑,𝑖,𝑘   𝑓,𝑁,𝑖,𝑘   𝜑,𝑧   𝑓,𝐹,𝑘,𝑧   𝑧,𝑁   𝑖,𝑟,𝑗,𝑘,𝑛,𝑧,𝜑   𝑎,𝑏,𝑓,𝑖,𝑗,𝑘,𝑛,𝑟,𝑧,𝐹   𝐺,𝑎,𝑏,𝑓,𝑖,𝑗,𝑘,𝑛,𝑟,𝑧   𝐼,𝑎,𝑏,𝑓,𝑖,𝑗,𝑘,𝑛,𝑟,𝑧   𝑁,𝑎,𝑏,𝑟   𝑅,𝑎,𝑏,𝑓,𝑖,𝑗,𝑘,𝑛,𝑟,𝑧   𝑃,𝑎,𝑏,𝑓,𝑖,𝑛,𝑟,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑎,𝑏)   𝑃(𝑗,𝑘)

Proof of Theorem poimirlem31
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpri 4386 . . . 4 (𝑟 ∈ { ≤ , ≤ } → (𝑟 = ≤ ∨ 𝑟 = ≤ ))
2 simprr 780 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → 𝑛 ∈ (1...𝑁))
3 fz1ssfz0 12653 . . . . . . . . . 10 (1...𝑁) ⊆ (0...𝑁)
43sseli 3788 . . . . . . . . 9 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ (0...𝑁))
54anim2i 605 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (𝑘 ∈ ℕ ∧ 𝑛 ∈ (0...𝑁)))
6 eleq1 2869 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → (𝑖 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...𝑁)))
76anbi2d 616 . . . . . . . . . . . 12 (𝑖 = 𝑛 → ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁)) ↔ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (0...𝑁))))
87anbi2d 616 . . . . . . . . . . 11 (𝑖 = 𝑛 → ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) ↔ (𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (0...𝑁)))))
9 eqeq1 2806 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) ↔ 𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < )))
109rexbidv 3236 . . . . . . . . . . 11 (𝑖 = 𝑛 → (∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) ↔ ∃𝑗 ∈ (0...𝑁)𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < )))
118, 10imbi12d 335 . . . . . . . . . 10 (𝑖 = 𝑛 → (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < )) ↔ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ))))
12 poimirlem31.5 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ))
1311, 12chvarv 2436 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ))
14 elfzle1 12561 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → 1 ≤ 𝑛)
15 1re 10319 . . . . . . . . . . . . . 14 1 ∈ ℝ
16 elfzelz 12559 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℤ)
1716zred 11742 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℝ)
18 lenlt 10395 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (1 ≤ 𝑛 ↔ ¬ 𝑛 < 1))
1915, 17, 18sylancr 577 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → (1 ≤ 𝑛 ↔ ¬ 𝑛 < 1))
2014, 19mpbid 223 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑁) → ¬ 𝑛 < 1)
21 elsni 4381 . . . . . . . . . . . . 13 (𝑛 ∈ {0} → 𝑛 = 0)
22 0lt1 10829 . . . . . . . . . . . . 13 0 < 1
2321, 22syl6eqbr 4876 . . . . . . . . . . . 12 (𝑛 ∈ {0} → 𝑛 < 1)
2420, 23nsyl 137 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑁) → ¬ 𝑛 ∈ {0})
25 ltso 10397 . . . . . . . . . . . . . . 15 < Or ℝ
26 snfi 8271 . . . . . . . . . . . . . . . . 17 {0} ∈ Fin
27 fzfi 12989 . . . . . . . . . . . . . . . . . 18 (1...𝑁) ∈ Fin
28 rabfi 8418 . . . . . . . . . . . . . . . . . 18 ((1...𝑁) ∈ Fin → {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)} ∈ Fin)
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . 17 {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)} ∈ Fin
30 unfi 8460 . . . . . . . . . . . . . . . . 17 (({0} ∈ Fin ∧ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)} ∈ Fin) → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ∈ Fin)
3126, 29, 30mp2an 675 . . . . . . . . . . . . . . . 16 ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ∈ Fin
32 c0ex 10313 . . . . . . . . . . . . . . . . . 18 0 ∈ V
3332snid 4396 . . . . . . . . . . . . . . . . 17 0 ∈ {0}
34 elun1 3973 . . . . . . . . . . . . . . . . 17 (0 ∈ {0} → 0 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}))
35 ne0i 4116 . . . . . . . . . . . . . . . . 17 (0 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ≠ ∅)
3633, 34, 35mp2b 10 . . . . . . . . . . . . . . . 16 ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ≠ ∅
37 0re 10321 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
38 snssi 4523 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → {0} ⊆ ℝ)
3937, 38ax-mp 5 . . . . . . . . . . . . . . . . 17 {0} ⊆ ℝ
40 ssrab2 3878 . . . . . . . . . . . . . . . . . 18 {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)} ⊆ (1...𝑁)
4116ssriv 3796 . . . . . . . . . . . . . . . . . . 19 (1...𝑁) ⊆ ℤ
42 zssre 11644 . . . . . . . . . . . . . . . . . . 19 ℤ ⊆ ℝ
4341, 42sstri 3801 . . . . . . . . . . . . . . . . . 18 (1...𝑁) ⊆ ℝ
4440, 43sstri 3801 . . . . . . . . . . . . . . . . 17 {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)} ⊆ ℝ
4539, 44unssi 3981 . . . . . . . . . . . . . . . 16 ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ⊆ ℝ
4631, 36, 453pm3.2i 1431 . . . . . . . . . . . . . . 15 (({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ∈ Fin ∧ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ≠ ∅ ∧ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ⊆ ℝ)
47 fisupcl 8608 . . . . . . . . . . . . . . 15 (( < Or ℝ ∧ (({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ∈ Fin ∧ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ≠ ∅ ∧ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ⊆ ℝ)) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}))
4825, 46, 47mp2an 675 . . . . . . . . . . . . . 14 sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)})
49 eleq1 2869 . . . . . . . . . . . . . 14 (𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → (𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ↔ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)})))
5048, 49mpbiri 249 . . . . . . . . . . . . 13 (𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → 𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}))
51 elun 3946 . . . . . . . . . . . . 13 (𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ↔ (𝑛 ∈ {0} ∨ 𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}))
5250, 51sylib 209 . . . . . . . . . . . 12 (𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → (𝑛 ∈ {0} ∨ 𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}))
53 oveq2 6876 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑛 → (1...𝑎) = (1...𝑛))
5453raleqdv 3329 . . . . . . . . . . . . . . 15 (𝑎 = 𝑛 → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
5554elrab 3555 . . . . . . . . . . . . . 14 (𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)} ↔ (𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
56 elfzuz 12555 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ (ℤ‘1))
57 eluzfz2 12566 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ (1...𝑛))
5856, 57syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ (1...𝑛))
59 simpl 470 . . . . . . . . . . . . . . . 16 ((0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) → 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏))
6059ralimi 3136 . . . . . . . . . . . . . . 15 (∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏))
61 fveq2 6402 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑛 → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) = ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛))
6261breq2d 4849 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑛 → (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ↔ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
6362rspcva 3496 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (1...𝑛) ∧ ∀𝑏 ∈ (1...𝑛)0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏)) → 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛))
6458, 60, 63syl2an 585 . . . . . . . . . . . . . 14 ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) → 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛))
6555, 64sylbi 208 . . . . . . . . . . . . 13 (𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)} → 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛))
6665orim2i 925 . . . . . . . . . . . 12 ((𝑛 ∈ {0} ∨ 𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) → (𝑛 ∈ {0} ∨ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
6752, 66syl 17 . . . . . . . . . . 11 (𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → (𝑛 ∈ {0} ∨ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
68 orel1 904 . . . . . . . . . . 11 𝑛 ∈ {0} → ((𝑛 ∈ {0} ∨ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)) → 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
6924, 67, 68syl2im 40 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) → (𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
7069reximdv 3199 . . . . . . . . 9 (𝑛 ∈ (1...𝑁) → (∃𝑗 ∈ (0...𝑁)𝑛 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → ∃𝑗 ∈ (0...𝑁)0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
7113, 70syl5 34 . . . . . . . 8 (𝑛 ∈ (1...𝑁) → ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
725, 71sylan2i 595 . . . . . . 7 (𝑛 ∈ (1...𝑁) → ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → ∃𝑗 ∈ (0...𝑁)0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
732, 72mpcom 38 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → ∃𝑗 ∈ (0...𝑁)0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛))
74 breq 4839 . . . . . . 7 (𝑟 = ≤ → (0𝑟((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ↔ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
7574rexbidv 3236 . . . . . 6 (𝑟 = ≤ → (∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ↔ ∃𝑗 ∈ (0...𝑁)0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
7673, 75syl5ibrcom 238 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → (𝑟 = ≤ → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
77 poimir.0 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ)
7877nnzd 11741 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
79 elfzm1b 12635 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑛 ∈ (1...𝑁) ↔ (𝑛 − 1) ∈ (0...(𝑁 − 1))))
8016, 78, 79syl2anr 586 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 ∈ (1...𝑁) ↔ (𝑛 − 1) ∈ (0...(𝑁 − 1))))
8180biimpd 220 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ∈ (0...(𝑁 − 1))))
8281ex 399 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ∈ (0...(𝑁 − 1)))))
8382pm2.43d 53 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ∈ (0...(𝑁 − 1))))
8477nncnd 11315 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℂ)
85 npcan1 10734 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
8684, 85syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
87 nnm1nn0 11594 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
8877, 87syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℕ0)
8988nn0zd 11740 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − 1) ∈ ℤ)
90 uzid 11913 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
91 peano2uz 11953 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
9289, 90, 913syl 18 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
9386, 92eqeltrrd 2882 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
94 fzss2 12598 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
9593, 94syl 17 . . . . . . . . . . . 12 (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁))
9695sseld 3791 . . . . . . . . . . 11 (𝜑 → ((𝑛 − 1) ∈ (0...(𝑁 − 1)) → (𝑛 − 1) ∈ (0...𝑁)))
9783, 96syld 47 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑛 − 1) ∈ (0...𝑁)))
9897anim2d 601 . . . . . . . . 9 (𝜑 → ((𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁)) → (𝑘 ∈ ℕ ∧ (𝑛 − 1) ∈ (0...𝑁))))
9998imp 395 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → (𝑘 ∈ ℕ ∧ (𝑛 − 1) ∈ (0...𝑁)))
100 ovex 6900 . . . . . . . . 9 (𝑛 − 1) ∈ V
101 eleq1 2869 . . . . . . . . . . . 12 (𝑖 = (𝑛 − 1) → (𝑖 ∈ (0...𝑁) ↔ (𝑛 − 1) ∈ (0...𝑁)))
102101anbi2d 616 . . . . . . . . . . 11 (𝑖 = (𝑛 − 1) → ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁)) ↔ (𝑘 ∈ ℕ ∧ (𝑛 − 1) ∈ (0...𝑁))))
103102anbi2d 616 . . . . . . . . . 10 (𝑖 = (𝑛 − 1) → ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) ↔ (𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑛 − 1) ∈ (0...𝑁)))))
104 eqeq1 2806 . . . . . . . . . . 11 (𝑖 = (𝑛 − 1) → (𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) ↔ (𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < )))
105104rexbidv 3236 . . . . . . . . . 10 (𝑖 = (𝑛 − 1) → (∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) ↔ ∃𝑗 ∈ (0...𝑁)(𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < )))
106103, 105imbi12d 335 . . . . . . . . 9 (𝑖 = (𝑛 − 1) → (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < )) ↔ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑛 − 1) ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)(𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ))))
107100, 106, 12vtocl 3448 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ (𝑛 − 1) ∈ (0...𝑁))) → ∃𝑗 ∈ (0...𝑁)(𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ))
10899, 107syldan 581 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → ∃𝑗 ∈ (0...𝑁)(𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ))
109 eleq1 2869 . . . . . . . . . . . . . . . 16 ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ↔ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)})))
11048, 109mpbiri 249 . . . . . . . . . . . . . . 15 ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → (𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}))
111 elun 3946 . . . . . . . . . . . . . . . 16 ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ↔ ((𝑛 − 1) ∈ {0} ∨ (𝑛 − 1) ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}))
112100elsn 4379 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ {0} ↔ (𝑛 − 1) = 0)
113 oveq2 6876 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (𝑛 − 1) → (1...𝑎) = (1...(𝑛 − 1)))
114113raleqdv 3329 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑛 − 1) → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
115114elrab 3555 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)} ↔ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
116112, 115orbi12i 929 . . . . . . . . . . . . . . . 16 (((𝑛 − 1) ∈ {0} ∨ (𝑛 − 1) ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ↔ ((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0))))
117111, 116bitri 266 . . . . . . . . . . . . . . 15 ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ↔ ((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0))))
118110, 117sylib 209 . . . . . . . . . . . . . 14 ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → ((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0))))
119118a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → ((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))))
120 ltm1 11142 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ → (𝑛 − 1) < 𝑛)
121 peano2rem 10627 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
122 ltnle 10396 . . . . . . . . . . . . . . . . . . 19 (((𝑛 − 1) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((𝑛 − 1) < 𝑛 ↔ ¬ 𝑛 ≤ (𝑛 − 1)))
123121, 122mpancom 671 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ → ((𝑛 − 1) < 𝑛 ↔ ¬ 𝑛 ≤ (𝑛 − 1)))
124120, 123mpbid 223 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → ¬ 𝑛 ≤ (𝑛 − 1))
12517, 124syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑁) → ¬ 𝑛 ≤ (𝑛 − 1))
126 breq2 4841 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → (𝑛 ≤ (𝑛 − 1) ↔ 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < )))
127126notbid 309 . . . . . . . . . . . . . . . 16 ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → (¬ 𝑛 ≤ (𝑛 − 1) ↔ ¬ 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < )))
128125, 127syl5ibcom 236 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → ¬ 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < )))
129 elun2 3974 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)} → 𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}))
130 fimaxre2 11248 . . . . . . . . . . . . . . . . . . . . 21 ((({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ⊆ ℝ ∧ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)})𝑦𝑥)
13145, 31, 130mp2an 675 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ ℝ ∀𝑦 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)})𝑦𝑥
13245, 36, 1313pm3.2i 1431 . . . . . . . . . . . . . . . . . . 19 (({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ⊆ ℝ ∧ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)})𝑦𝑥)
133132suprubii 11277 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}) → 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ))
134129, 133syl 17 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)} → 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ))
135134con3i 151 . . . . . . . . . . . . . . . 16 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → ¬ 𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)})
136 ianor 995 . . . . . . . . . . . . . . . . 17 (¬ (𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) ↔ (¬ 𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
137136, 55xchnxbir 324 . . . . . . . . . . . . . . . 16 𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)} ↔ (¬ 𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
138135, 137sylib 209 . . . . . . . . . . . . . . 15 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → (¬ 𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
139128, 138syl6 35 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → (¬ 𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0))))
140 pm2.63 955 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) → ((¬ 𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) → ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
141140orcs 893 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → ((¬ 𝑛 ∈ (1...𝑁) ∨ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) → ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
142139, 141syld 47 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
143119, 142jcad 504 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → (((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0))) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0))))
144 andir 1022 . . . . . . . . . . . . . 14 ((((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0))) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) ↔ (((𝑛 − 1) = 0 ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) ∨ (((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0))))
145 1p0e1 11410 . . . . . . . . . . . . . . . . . 18 (1 + 0) = 1
14616zcnd 11743 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ)
147 ax-1cn 10273 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
148 0cn 10311 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℂ
149 subadd 10563 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑛 − 1) = 0 ↔ (1 + 0) = 𝑛))
150147, 148, 149mp3an23 1570 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℂ → ((𝑛 − 1) = 0 ↔ (1 + 0) = 𝑛))
151146, 150syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = 0 ↔ (1 + 0) = 𝑛))
152151biimpa 464 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (1...𝑁) ∧ (𝑛 − 1) = 0) → (1 + 0) = 𝑛)
153145, 152syl5reqr 2851 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (1...𝑁) ∧ (𝑛 − 1) = 0) → 𝑛 = 1)
154 1z 11667 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℤ
155 fzsn 12600 . . . . . . . . . . . . . . . . . . . . . 22 (1 ∈ ℤ → (1...1) = {1})
156154, 155ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (1...1) = {1}
157 oveq2 6876 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 1 → (1...𝑛) = (1...1))
158 sneq 4374 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 1 → {𝑛} = {1})
159156, 157, 1583eqtr4a 2862 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 → (1...𝑛) = {𝑛})
160159raleqdv 3329 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 → (∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) ↔ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
161160notbid 309 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 → (¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) ↔ ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
162161biimpd 220 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 → (¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
163153, 162syl 17 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (1...𝑁) ∧ (𝑛 − 1) = 0) → (¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
164163expimpd 443 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → (((𝑛 − 1) = 0 ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
165 ralun 3988 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) → ∀𝑏 ∈ ((1...(𝑛 − 1)) ∪ {𝑛})(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0))
166 npcan1 10734 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℂ → ((𝑛 − 1) + 1) = 𝑛)
167146, 166syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) + 1) = 𝑛)
168167, 56eqeltrd 2881 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) + 1) ∈ (ℤ‘1))
169 peano2zm 11680 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℤ → (𝑛 − 1) ∈ ℤ)
170 uzid 11913 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 − 1) ∈ ℤ → (𝑛 − 1) ∈ (ℤ‘(𝑛 − 1)))
171 peano2uz 11953 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 − 1) ∈ (ℤ‘(𝑛 − 1)) → ((𝑛 − 1) + 1) ∈ (ℤ‘(𝑛 − 1)))
17216, 169, 170, 1714syl 19 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) + 1) ∈ (ℤ‘(𝑛 − 1)))
173167, 172eqeltrrd 2882 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ (ℤ‘(𝑛 − 1)))
174 fzsplit2 12583 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑛 − 1) + 1) ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ‘(𝑛 − 1))) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛)))
175168, 173, 174syl2anc 575 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (1...𝑁) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛)))
176167oveq1d 6883 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ (1...𝑁) → (((𝑛 − 1) + 1)...𝑛) = (𝑛...𝑛))
177 fzsn 12600 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℤ → (𝑛...𝑛) = {𝑛})
17816, 177syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ (1...𝑁) → (𝑛...𝑛) = {𝑛})
179176, 178eqtrd 2836 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (1...𝑁) → (((𝑛 − 1) + 1)...𝑛) = {𝑛})
180179uneq2d 3960 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (1...𝑁) → ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛)) = ((1...(𝑛 − 1)) ∪ {𝑛}))
181175, 180eqtrd 2836 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...𝑁) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ {𝑛}))
182181raleqdv 3329 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) ↔ ∀𝑏 ∈ ((1...(𝑛 − 1)) ∪ {𝑛})(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
183165, 182syl5ibr 237 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) → ((∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
184183expdimp 442 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
185184con3d 149 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) → (¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
186185adantrl 698 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (1...𝑁) ∧ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0))) → (¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
187186expimpd 443 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → ((((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
188164, 187jaod 877 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → ((((𝑛 − 1) = 0 ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) ∨ (((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0))) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
189144, 188syl5bi 233 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → ((((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0))) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) → ¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)))
190 fveq2 6402 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑛 → (𝑃𝑏) = (𝑃𝑛))
191190neeq1d 3033 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑛 → ((𝑃𝑏) ≠ 0 ↔ (𝑃𝑛) ≠ 0))
19262, 191anbi12d 618 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑛 → ((0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑃𝑛) ≠ 0)))
193192ralsng 4405 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑃𝑛) ≠ 0)))
194193notbid 309 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → (¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) ↔ ¬ (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑃𝑛) ≠ 0)))
195 ianor 995 . . . . . . . . . . . . . . 15 (¬ (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑃𝑛) ≠ 0) ↔ (¬ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∨ ¬ (𝑃𝑛) ≠ 0))
196 nne 2978 . . . . . . . . . . . . . . . 16 (¬ (𝑃𝑛) ≠ 0 ↔ (𝑃𝑛) = 0)
197196orbi2i 927 . . . . . . . . . . . . . . 15 ((¬ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∨ ¬ (𝑃𝑛) ≠ 0) ↔ (¬ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃𝑛) = 0))
198195, 197bitri 266 . . . . . . . . . . . . . 14 (¬ (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑃𝑛) ≠ 0) ↔ (¬ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃𝑛) = 0))
199194, 198syl6bb 278 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → (¬ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0) ↔ (¬ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃𝑛) = 0)))
200189, 199sylibd 230 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑁) → ((((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0))) ∧ ¬ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)) → (¬ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃𝑛) = 0)))
201143, 200syld 47 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → (¬ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃𝑛) = 0)))
202201ad2antlr 709 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → (¬ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃𝑛) = 0)))
203 poimir.1 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))
204 poimir.r . . . . . . . . . . . . . . . . . . . . . 22 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
205 retop 22772 . . . . . . . . . . . . . . . . . . . . . . . 24 (topGen‘ran (,)) ∈ Top
206205fconst6 6304 . . . . . . . . . . . . . . . . . . . . . . 23 ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top
207 pttop 21593 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...𝑁) ∈ Fin ∧ ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top) → (∏t‘((1...𝑁) × {(topGen‘ran (,))})) ∈ Top)
20827, 206, 207mp2an 675 . . . . . . . . . . . . . . . . . . . . . 22 (∏t‘((1...𝑁) × {(topGen‘ran (,))})) ∈ Top
209204, 208eqeltri 2877 . . . . . . . . . . . . . . . . . . . . 21 𝑅 ∈ Top
210 poimir.i . . . . . . . . . . . . . . . . . . . . . 22 𝐼 = ((0[,]1) ↑𝑚 (1...𝑁))
211 reex 10306 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ∈ V
212 unitssre 12536 . . . . . . . . . . . . . . . . . . . . . . 23 (0[,]1) ⊆ ℝ
213 mapss 8131 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑𝑚 (1...𝑁)) ⊆ (ℝ ↑𝑚 (1...𝑁)))
214211, 212, 213mp2an 675 . . . . . . . . . . . . . . . . . . . . . 22 ((0[,]1) ↑𝑚 (1...𝑁)) ⊆ (ℝ ↑𝑚 (1...𝑁))
215210, 214eqsstri 3826 . . . . . . . . . . . . . . . . . . . . 21 𝐼 ⊆ (ℝ ↑𝑚 (1...𝑁))
216 uniretop 22773 . . . . . . . . . . . . . . . . . . . . . . . 24 ℝ = (topGen‘ran (,))
217204, 216ptuniconst 21609 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...𝑁) ∈ Fin ∧ (topGen‘ran (,)) ∈ Top) → (ℝ ↑𝑚 (1...𝑁)) = 𝑅)
21827, 205, 217mp2an 675 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ ↑𝑚 (1...𝑁)) = 𝑅
219218restuni 21174 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Top ∧ 𝐼 ⊆ (ℝ ↑𝑚 (1...𝑁))) → 𝐼 = (𝑅t 𝐼))
220209, 215, 219mp2an 675 . . . . . . . . . . . . . . . . . . . 20 𝐼 = (𝑅t 𝐼)
221220, 218cnf 21258 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅) → 𝐹:𝐼⟶(ℝ ↑𝑚 (1...𝑁)))
222203, 221syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:𝐼⟶(ℝ ↑𝑚 (1...𝑁)))
223222ad2antrr 708 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → 𝐹:𝐼⟶(ℝ ↑𝑚 (1...𝑁)))
224 simplr 776 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → 𝑘 ∈ ℕ)
225 elfzelz 12559 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (0...𝑘) → 𝑥 ∈ ℤ)
226225zred 11742 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ (0...𝑘) → 𝑥 ∈ ℝ)
227226adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
228 nnre 11306 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
229228adantl 469 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
230 nnne0 11333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
231230adantl 469 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
232227, 229, 231redivcld 11132 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑥 / 𝑘) ∈ ℝ)
233 elfzle1 12561 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ (0...𝑘) → 0 ≤ 𝑥)
234226, 233jca 503 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (0...𝑘) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
235 nnrp 12050 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
236235rpregt0d 12086 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
237 divge0 11171 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → 0 ≤ (𝑥 / 𝑘))
238234, 236, 237syl2an 585 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝑥 / 𝑘))
239 elfzle2 12562 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ (0...𝑘) → 𝑥𝑘)
240239adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑥𝑘)
241 1red 10320 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
242235adantl 469 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
243227, 241, 242ledivmuld 12133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑥 / 𝑘) ≤ 1 ↔ 𝑥 ≤ (𝑘 · 1)))
244 nncn 11307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
245244mulid1d 10336 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ ℕ → (𝑘 · 1) = 𝑘)
246245breq2d 4849 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ℕ → (𝑥 ≤ (𝑘 · 1) ↔ 𝑥𝑘))
247246adantl 469 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑥 ≤ (𝑘 · 1) ↔ 𝑥𝑘))
248243, 247bitrd 270 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑥 / 𝑘) ≤ 1 ↔ 𝑥𝑘))
249240, 248mpbird 248 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑥 / 𝑘) ≤ 1)
250 elicc01 12504 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 / 𝑘) ∈ (0[,]1) ↔ ((𝑥 / 𝑘) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝑘) ∧ (𝑥 / 𝑘) ≤ 1))
251232, 238, 249, 250syl3anbrc 1436 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑥 / 𝑘) ∈ (0[,]1))
252251ancoms 448 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ (0...𝑘)) → (𝑥 / 𝑘) ∈ (0[,]1))
253 elsni 4381 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ {𝑘} → 𝑦 = 𝑘)
254253oveq2d 6884 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ {𝑘} → (𝑥 / 𝑦) = (𝑥 / 𝑘))
255254eleq1d 2866 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ {𝑘} → ((𝑥 / 𝑦) ∈ (0[,]1) ↔ (𝑥 / 𝑘) ∈ (0[,]1)))
256252, 255syl5ibrcom 238 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ (0...𝑘)) → (𝑦 ∈ {𝑘} → (𝑥 / 𝑦) ∈ (0[,]1)))
257256impr 444 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ (𝑥 ∈ (0...𝑘) ∧ 𝑦 ∈ {𝑘})) → (𝑥 / 𝑦) ∈ (0[,]1))
258224, 257sylan 571 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ (0...𝑘) ∧ 𝑦 ∈ {𝑘})) → (𝑥 / 𝑦) ∈ (0[,]1))
259 elun 3946 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ({1} ∪ {0}) ↔ (𝑦 ∈ {1} ∨ 𝑦 ∈ {0}))
260 fzofzp1 12783 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ (0..^𝑘) → (𝑥 + 1) ∈ (0...𝑘))
261 elsni 4381 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ {1} → 𝑦 = 1)
262261oveq2d 6884 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ {1} → (𝑥 + 𝑦) = (𝑥 + 1))
263262eleq1d 2866 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ {1} → ((𝑥 + 𝑦) ∈ (0...𝑘) ↔ (𝑥 + 1) ∈ (0...𝑘)))
264260, 263syl5ibrcom 238 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (0..^𝑘) → (𝑦 ∈ {1} → (𝑥 + 𝑦) ∈ (0...𝑘)))
265 elfzonn0 12731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (0..^𝑘) → 𝑥 ∈ ℕ0)
266265nn0cnd 11613 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ (0..^𝑘) → 𝑥 ∈ ℂ)
267266addid1d 10515 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (0..^𝑘) → (𝑥 + 0) = 𝑥)
268 elfzofz 12703 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (0..^𝑘) → 𝑥 ∈ (0...𝑘))
269267, 268eqeltrd 2881 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ (0..^𝑘) → (𝑥 + 0) ∈ (0...𝑘))
270 elsni 4381 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ {0} → 𝑦 = 0)
271270oveq2d 6884 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ {0} → (𝑥 + 𝑦) = (𝑥 + 0))
272271eleq1d 2866 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ {0} → ((𝑥 + 𝑦) ∈ (0...𝑘) ↔ (𝑥 + 0) ∈ (0...𝑘)))
273269, 272syl5ibrcom 238 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (0..^𝑘) → (𝑦 ∈ {0} → (𝑥 + 𝑦) ∈ (0...𝑘)))
274264, 273jaod 877 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (0..^𝑘) → ((𝑦 ∈ {1} ∨ 𝑦 ∈ {0}) → (𝑥 + 𝑦) ∈ (0...𝑘)))
275259, 274syl5bi 233 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (0..^𝑘) → (𝑦 ∈ ({1} ∪ {0}) → (𝑥 + 𝑦) ∈ (0...𝑘)))
276275imp 395 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0..^𝑘) ∧ 𝑦 ∈ ({1} ∪ {0})) → (𝑥 + 𝑦) ∈ (0...𝑘))
277276adantl 469 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ (0..^𝑘) ∧ 𝑦 ∈ ({1} ∪ {0}))) → (𝑥 + 𝑦) ∈ (0...𝑘))
278 poimirlem31.3 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐺:ℕ⟶((ℕ0𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
279278ffvelrnda 6575 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ((ℕ0𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
280 xp1st 7424 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺𝑘) ∈ ((ℕ0𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(𝐺𝑘)) ∈ (ℕ0𝑚 (1...𝑁)))
281 elmapfn 8109 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1st ‘(𝐺𝑘)) ∈ (ℕ0𝑚 (1...𝑁)) → (1st ‘(𝐺𝑘)) Fn (1...𝑁))
282279, 280, 2813syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐺𝑘)) Fn (1...𝑁))
283 poimirlem31.4 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → ran (1st ‘(𝐺𝑘)) ⊆ (0..^𝑘))
284 df-f 6099 . . . . . . . . . . . . . . . . . . . . . . 23 ((1st ‘(𝐺𝑘)):(1...𝑁)⟶(0..^𝑘) ↔ ((1st ‘(𝐺𝑘)) Fn (1...𝑁) ∧ ran (1st ‘(𝐺𝑘)) ⊆ (0..^𝑘)))
285282, 283, 284sylanbrc 574 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐺𝑘)):(1...𝑁)⟶(0..^𝑘))
286285adantr 468 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (1st ‘(𝐺𝑘)):(1...𝑁)⟶(0..^𝑘))
287 1ex 10315 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ V
288287fconst 6300 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}):((2nd ‘(𝐺𝑘)) “ (1...𝑗))⟶{1}
28932fconst 6300 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}):((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁))⟶{0}
290288, 289pm3.2i 458 . . . . . . . . . . . . . . . . . . . . . . 23 ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}):((2nd ‘(𝐺𝑘)) “ (1...𝑗))⟶{1} ∧ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}):((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁))⟶{0})
291 xp2nd 7425 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺𝑘) ∈ ((ℕ0𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(𝐺𝑘)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
292279, 291syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → (2nd ‘(𝐺𝑘)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
293 fvex 6415 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (2nd ‘(𝐺𝑘)) ∈ V
294 f1oeq1 6337 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (2nd ‘(𝐺𝑘)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(𝐺𝑘)):(1...𝑁)–1-1-onto→(1...𝑁)))
295293, 294elab 3541 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2nd ‘(𝐺𝑘)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(𝐺𝑘)):(1...𝑁)–1-1-onto→(1...𝑁))
296292, 295sylib 209 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (2nd ‘(𝐺𝑘)):(1...𝑁)–1-1-onto→(1...𝑁))
297 dff1o3 6353 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2nd ‘(𝐺𝑘)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(𝐺𝑘)):(1...𝑁)–onto→(1...𝑁) ∧ Fun (2nd ‘(𝐺𝑘))))
298297simprbi 486 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2nd ‘(𝐺𝑘)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun (2nd ‘(𝐺𝑘)))
299 imain 6179 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Fun (2nd ‘(𝐺𝑘)) → ((2nd ‘(𝐺𝑘)) “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (((2nd ‘(𝐺𝑘)) “ (1...𝑗)) ∩ ((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁))))
300296, 298, 2993syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → ((2nd ‘(𝐺𝑘)) “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (((2nd ‘(𝐺𝑘)) “ (1...𝑗)) ∩ ((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁))))
301 elfznn0 12650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℕ0)
302301nn0red 11612 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℝ)
303302ltp1d 11233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (0...𝑁) → 𝑗 < (𝑗 + 1))
304 fzdisj 12585 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅)
305303, 304syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 ∈ (0...𝑁) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅)
306305imaeq2d 5670 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 ∈ (0...𝑁) → ((2nd ‘(𝐺𝑘)) “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((2nd ‘(𝐺𝑘)) “ ∅))
307 ima0 5685 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2nd ‘(𝐺𝑘)) “ ∅) = ∅
308306, 307syl6eq 2852 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑁) → ((2nd ‘(𝐺𝑘)) “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ∅)
309300, 308sylan9req 2857 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (((2nd ‘(𝐺𝑘)) “ (1...𝑗)) ∩ ((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁))) = ∅)
310 fun 6275 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}):((2nd ‘(𝐺𝑘)) “ (1...𝑗))⟶{1} ∧ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}):((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁))⟶{0}) ∧ (((2nd ‘(𝐺𝑘)) “ (1...𝑗)) ∩ ((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁))) = ∅) → ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})):(((2nd ‘(𝐺𝑘)) “ (1...𝑗)) ∪ ((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}))
311290, 309, 310sylancr 577 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})):(((2nd ‘(𝐺𝑘)) “ (1...𝑗)) ∪ ((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}))
312 imaundi 5750 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2nd ‘(𝐺𝑘)) “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) = (((2nd ‘(𝐺𝑘)) “ (1...𝑗)) ∪ ((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)))
313 nn0p1nn 11592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ)
314301, 313syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ ℕ)
315 nnuz 11935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℕ = (ℤ‘1)
316314, 315syl6eleq 2891 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ (ℤ‘1))
317 elfzuz3 12556 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝑗))
318 fzsplit2 12583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑗 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ𝑗)) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁)))
319316, 317, 318syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (0...𝑁) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁)))
320319imaeq2d 5670 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 ∈ (0...𝑁) → ((2nd ‘(𝐺𝑘)) “ (1...𝑁)) = ((2nd ‘(𝐺𝑘)) “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))))
321 f1ofo 6354 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2nd ‘(𝐺𝑘)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(𝐺𝑘)):(1...𝑁)–onto→(1...𝑁))
322 foima 6330 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((2nd ‘(𝐺𝑘)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(𝐺𝑘)) “ (1...𝑁)) = (1...𝑁))
323296, 321, 3223syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → ((2nd ‘(𝐺𝑘)) “ (1...𝑁)) = (1...𝑁))
324320, 323sylan9req 2857 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ (0...𝑁) ∧ (𝜑𝑘 ∈ ℕ)) → ((2nd ‘(𝐺𝑘)) “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) = (1...𝑁))
325324ancoms 448 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → ((2nd ‘(𝐺𝑘)) “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) = (1...𝑁))
326312, 325syl5eqr 2850 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (((2nd ‘(𝐺𝑘)) “ (1...𝑗)) ∪ ((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁))) = (1...𝑁))
327326feq2d 6236 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})):(((2nd ‘(𝐺𝑘)) “ (1...𝑗)) ∪ ((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}) ↔ ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0})))
328311, 327mpbid 223 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}))
329 fzfid 12990 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (1...𝑁) ∈ Fin)
330 inidm 4013 . . . . . . . . . . . . . . . . . . . . 21 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
331277, 286, 328, 329, 329, 330off 7136 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → ((1st ‘(𝐺𝑘)) ∘𝑓 + ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝑘))
332 poimirlem31.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = ((1st ‘(𝐺𝑘)) ∘𝑓 + ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
333332feq1i 6241 . . . . . . . . . . . . . . . . . . . 20 (𝑃:(1...𝑁)⟶(0...𝑘) ↔ ((1st ‘(𝐺𝑘)) ∘𝑓 + ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝑘))
334331, 333sylibr 225 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → 𝑃:(1...𝑁)⟶(0...𝑘))
335 vex 3390 . . . . . . . . . . . . . . . . . . . . 21 𝑘 ∈ V
336335fconst 6300 . . . . . . . . . . . . . . . . . . . 20 ((1...𝑁) × {𝑘}):(1...𝑁)⟶{𝑘}
337336a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → ((1...𝑁) × {𝑘}):(1...𝑁)⟶{𝑘})
338258, 334, 337, 329, 329, 330off 7136 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (𝑃𝑓 / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1))
339210eleq2i 2873 . . . . . . . . . . . . . . . . . . 19 ((𝑃𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ (𝑃𝑓 / ((1...𝑁) × {𝑘})) ∈ ((0[,]1) ↑𝑚 (1...𝑁)))
340 ovex 6900 . . . . . . . . . . . . . . . . . . . 20 (0[,]1) ∈ V
341 ovex 6900 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ∈ V
342340, 341elmap 8115 . . . . . . . . . . . . . . . . . . 19 ((𝑃𝑓 / ((1...𝑁) × {𝑘})) ∈ ((0[,]1) ↑𝑚 (1...𝑁)) ↔ (𝑃𝑓 / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1))
343339, 342bitri 266 . . . . . . . . . . . . . . . . . 18 ((𝑃𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ (𝑃𝑓 / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1))
344338, 343sylibr 225 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (𝑃𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼)
345223, 344ffvelrnd 6576 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘}))) ∈ (ℝ ↑𝑚 (1...𝑁)))
346 elmapi 8108 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘}))) ∈ (ℝ ↑𝑚 (1...𝑁)) → (𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘}))):(1...𝑁)⟶ℝ)
347345, 346syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → (𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘}))):(1...𝑁)⟶ℝ)
348347ffvelrnda 6575 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∈ ℝ)
349348an32s 634 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∈ ℝ)
350 0red 10322 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → 0 ∈ ℝ)
351349, 350ltnled 10463 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → (((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
352 ltle 10405 . . . . . . . . . . . . 13 ((((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) < 0 → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))
353349, 37, 352sylancl 576 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → (((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) < 0 → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))
354351, 353sylbird 251 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → (¬ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))
355244, 230div0d 11079 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (0 / 𝑘) = 0)
356 oveq1 6875 . . . . . . . . . . . . . . . 16 ((𝑃𝑛) = 0 → ((𝑃𝑛) / 𝑘) = (0 / 𝑘))
357356eqeq1d 2804 . . . . . . . . . . . . . . 15 ((𝑃𝑛) = 0 → (((𝑃𝑛) / 𝑘) = 0 ↔ (0 / 𝑘) = 0))
358355, 357syl5ibrcom 238 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((𝑃𝑛) = 0 → ((𝑃𝑛) / 𝑘) = 0))
359358ad3antlr 713 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑃𝑛) = 0 → ((𝑃𝑛) / 𝑘) = 0))
360334ffnd 6251 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → 𝑃 Fn (1...𝑁))
361 fnconstg 6302 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ V → ((1...𝑁) × {𝑘}) Fn (1...𝑁))
362335, 361mp1i 13 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) → ((1...𝑁) × {𝑘}) Fn (1...𝑁))
363 eqidd 2803 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝑃𝑛) = (𝑃𝑛))
364335fvconst2 6688 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {𝑘})‘𝑛) = 𝑘)
365364adantl 469 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {𝑘})‘𝑛) = 𝑘)
366360, 362, 329, 329, 330, 363, 365ofval 7130 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑃𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = ((𝑃𝑛) / 𝑘))
367366an32s 634 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑃𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = ((𝑃𝑛) / 𝑘))
368367eqeq1d 2804 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → (((𝑃𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 0 ↔ ((𝑃𝑛) / 𝑘) = 0))
369359, 368sylibrd 250 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑃𝑛) = 0 → ((𝑃𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 0))
370 simplll 782 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → 𝜑)
371 simplr 776 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → 𝑛 ∈ (1...𝑁))
372344adantlr 697 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → (𝑃𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼)
373 ovex 6900 . . . . . . . . . . . . . 14 (𝑃𝑓 / ((1...𝑁) × {𝑘})) ∈ V
374 eleq1 2869 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑃𝑓 / ((1...𝑁) × {𝑘})) → (𝑧𝐼 ↔ (𝑃𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼))
375 fveq1 6401 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑃𝑓 / ((1...𝑁) × {𝑘})) → (𝑧𝑛) = ((𝑃𝑓 / ((1...𝑁) × {𝑘}))‘𝑛))
376375eqeq1d 2804 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑃𝑓 / ((1...𝑁) × {𝑘})) → ((𝑧𝑛) = 0 ↔ ((𝑃𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 0))
377 fveq2 6402 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑃𝑓 / ((1...𝑁) × {𝑘})) → (𝐹𝑧) = (𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘}))))
378377fveq1d 6404 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑃𝑓 / ((1...𝑁) × {𝑘})) → ((𝐹𝑧)‘𝑛) = ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛))
379378breq1d 4847 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑃𝑓 / ((1...𝑁) × {𝑘})) → (((𝐹𝑧)‘𝑛) ≤ 0 ↔ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))
380376, 379imbi12d 335 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑃𝑓 / ((1...𝑁) × {𝑘})) → (((𝑧𝑛) = 0 → ((𝐹𝑧)‘𝑛) ≤ 0) ↔ (((𝑃𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 0 → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)))
381374, 380imbi12d 335 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑃𝑓 / ((1...𝑁) × {𝑘})) → ((𝑧𝐼 → ((𝑧𝑛) = 0 → ((𝐹𝑧)‘𝑛) ≤ 0)) ↔ ((𝑃𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼 → (((𝑃𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 0 → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))))
382381imbi2d 331 . . . . . . . . . . . . . . 15 (𝑧 = (𝑃𝑓 / ((1...𝑁) × {𝑘})) → ((𝑛 ∈ (1...𝑁) → (𝑧𝐼 → ((𝑧𝑛) = 0 → ((𝐹𝑧)‘𝑛) ≤ 0))) ↔ (𝑛 ∈ (1...𝑁) → ((𝑃𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼 → (((𝑃𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 0 → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)))))
383382imbi2d 331 . . . . . . . . . . . . . 14 (𝑧 = (𝑃𝑓 / ((1...𝑁) × {𝑘})) → ((𝜑 → (𝑛 ∈ (1...𝑁) → (𝑧𝐼 → ((𝑧𝑛) = 0 → ((𝐹𝑧)‘𝑛) ≤ 0)))) ↔ (𝜑 → (𝑛 ∈ (1...𝑁) → ((𝑃𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼 → (((𝑃𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 0 → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))))))
384 poimir.2 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)
3853843exp2 1456 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑧𝐼 → ((𝑧𝑛) = 0 → ((𝐹𝑧)‘𝑛) ≤ 0))))
386373, 383, 385vtocl 3448 . . . . . . . . . . . . 13 (𝜑 → (𝑛 ∈ (1...𝑁) → ((𝑃𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼 → (((𝑃𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 0 → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))))
387370, 371, 372, 386syl3c 66 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → (((𝑃𝑓 / ((1...𝑁) × {𝑘}))‘𝑛) = 0 → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))
388369, 387syld 47 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑃𝑛) = 0 → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))
389354, 388jaod 877 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((¬ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∨ (𝑃𝑛) = 0) → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))
390202, 389syld 47 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))
391390reximdva 3200 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑁)) → (∃𝑗 ∈ (0...𝑁)(𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → ∃𝑗 ∈ (0...𝑁)((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))
392391anasss 454 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → (∃𝑗 ∈ (0...𝑁)(𝑛 − 1) = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑃𝑏) ≠ 0)}), ℝ, < ) → ∃𝑗 ∈ (0...𝑁)((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))
393108, 392mpd 15 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → ∃𝑗 ∈ (0...𝑁)((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)
394 breq 4839 . . . . . . . 8 (𝑟 = ≤ → (0𝑟((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ↔ 0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
395 fvex 6415 . . . . . . . . 9 ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ∈ V
39632, 395brcnv 5500 . . . . . . . 8 (0 ≤ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ↔ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0)
397394, 396syl6bb 278 . . . . . . 7 (𝑟 = ≤ → (0𝑟((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ↔ ((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))
398397rexbidv 3236 . . . . . 6 (𝑟 = ≤ → (∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ↔ ∃𝑗 ∈ (0...𝑁)((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) ≤ 0))
399393, 398syl5ibrcom 238 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → (𝑟 = ≤ → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
40076, 399jaod 877 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → ((𝑟 = ≤ ∨ 𝑟 = ≤ ) → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
4011, 400syl5 34 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁))) → (𝑟 ∈ { ≤ , ≤ } → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))
402401exp32 409 . 2 (𝜑 → (𝑘 ∈ ℕ → (𝑛 ∈ (1...𝑁) → (𝑟 ∈ { ≤ , ≤ } → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛)))))
4034023imp2 1451 1 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟((𝐹‘(𝑃𝑓 / ((1...𝑁) × {𝑘})))‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  wcel 2155  {cab 2788  wne 2974  wral 3092  wrex 3093  {crab 3096  Vcvv 3387  cun 3761  cin 3762  wss 3763  c0 4110  {csn 4364  {cpr 4366   cuni 4623   class class class wbr 4837   Or wor 5225   × cxp 5303  ccnv 5304  ran crn 5306  cima 5308  Fun wfun 6089   Fn wfn 6090  wf 6091  ontowfo 6093  1-1-ontowf1o 6094  cfv 6095  (class class class)co 6868  𝑓 cof 7119  1st c1st 7390  2nd c2nd 7391  𝑚 cmap 8086  Fincfn 8186  supcsup 8579  cc 10213  cr 10214  0cc0 10215  1c1 10216   + caddc 10218   · cmul 10220   < clt 10353  cle 10354  cmin 10545   / cdiv 10963  cn 11299  0cn0 11553  cz 11637  cuz 11898  +crp 12040  (,)cioo 12387  [,]cicc 12390  ...cfz 12543  ..^cfzo 12683  t crest 16280  topGenctg 16297  tcpt 16298  Topctop 20905   Cn ccn 21236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-cnex 10271  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292  ax-pre-sup 10293
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-of 7121  df-om 7290  df-1st 7392  df-2nd 7393  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-1o 7790  df-oadd 7794  df-er 7973  df-map 8088  df-ixp 8140  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190  df-fi 8550  df-sup 8581  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-div 10964  df-nn 11300  df-n0 11554  df-z 11638  df-uz 11899  df-rp 12041  df-ioo 12391  df-icc 12394  df-fz 12544  df-fzo 12684  df-rest 16282  df-topgen 16303  df-pt 16304  df-top 20906  df-topon 20923  df-bases 20958  df-cn 21239
This theorem is referenced by:  poimirlem32  33748
  Copyright terms: Public domain W3C validator