Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm11.58 | Structured version Visualization version GIF version |
Description: Theorem *11.58 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
pm11.58 | ⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2174 | . . . . 5 ⊢ (𝜑 → ∃𝑥𝜑) | |
2 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
3 | 2 | sb8e 2522 | . . . . 5 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
4 | 1, 3 | sylib 217 | . . . 4 ⊢ (𝜑 → ∃𝑦[𝑦 / 𝑥]𝜑) |
5 | 4 | pm4.71i 560 | . . 3 ⊢ (𝜑 ↔ (𝜑 ∧ ∃𝑦[𝑦 / 𝑥]𝜑)) |
6 | 19.42v 1957 | . . 3 ⊢ (∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑 ∧ ∃𝑦[𝑦 / 𝑥]𝜑)) | |
7 | 5, 6 | bitr4i 277 | . 2 ⊢ (𝜑 ↔ ∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) |
8 | 7 | exbii 1850 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |