| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm11.58 | Structured version Visualization version GIF version | ||
| Description: Theorem *11.58 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| pm11.58 | ⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2181 | . . . . 5 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 2 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 3 | 2 | sb8e 2523 | . . . . 5 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| 4 | 1, 3 | sylib 218 | . . . 4 ⊢ (𝜑 → ∃𝑦[𝑦 / 𝑥]𝜑) |
| 5 | 4 | pm4.71i 559 | . . 3 ⊢ (𝜑 ↔ (𝜑 ∧ ∃𝑦[𝑦 / 𝑥]𝜑)) |
| 6 | 19.42v 1953 | . . 3 ⊢ (∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑 ∧ ∃𝑦[𝑦 / 𝑥]𝜑)) | |
| 7 | 5, 6 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ ∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) |
| 8 | 7 | exbii 1848 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |