Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddn0 Structured version   Visualization version   GIF version

Theorem elpaddn0 39803
Description: Member of projective subspace sum of nonempty sets. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpaddn0 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
Distinct variable groups:   𝑟,𝑞,𝐾   𝑋,𝑞   𝑌,𝑞,𝑟   𝑆,𝑞,𝑟   𝐴,𝑞,𝑟   ,𝑞,𝑟   ,𝑞,𝑟   𝑋,𝑟
Allowed substitution hints:   + (𝑟,𝑞)

Proof of Theorem elpaddn0
StepHypRef Expression
1 paddfval.l . . . 4 = (le‘𝐾)
2 paddfval.j . . . 4 = (join‘𝐾)
3 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 paddfval.p . . . 4 + = (+𝑃𝐾)
51, 2, 3, 4elpadd 39802 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
65adantr 480 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
7 simpl2 1192 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → 𝑋𝐴)
87sseld 3981 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋𝑆𝐴))
9 simpll1 1212 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝐾 ∈ Lat)
10 ssel2 3977 . . . . . . . . . . . . . . . 16 ((𝑋𝐴𝑆𝑋) → 𝑆𝐴)
11103ad2antl2 1186 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) → 𝑆𝐴)
1211adantr 480 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆𝐴)
13 eqid 2736 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
1413, 3atbase 39291 . . . . . . . . . . . . . 14 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1512, 14syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆 ∈ (Base‘𝐾))
16 simpl3 1193 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) → 𝑌𝐴)
1716sselda 3982 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑟𝐴)
1813, 3atbase 39291 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑟 ∈ (Base‘𝐾))
2013, 1, 2latlej1 18494 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → 𝑆 (𝑆 𝑟))
219, 15, 19, 20syl3anc 1372 . . . . . . . . . . . 12 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆 (𝑆 𝑟))
2221reximdva0 4354 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑌 ≠ ∅) → ∃𝑟𝑌 𝑆 (𝑆 𝑟))
2322exp31 419 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑆𝑋 → (𝑌 ≠ ∅ → ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
2423com23 86 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑌 ≠ ∅ → (𝑆𝑋 → ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
2524imp 406 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → ∃𝑟𝑌 𝑆 (𝑆 𝑟)))
2625ancld 550 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → (𝑆𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
27 oveq1 7439 . . . . . . . . . 10 (𝑞 = 𝑆 → (𝑞 𝑟) = (𝑆 𝑟))
2827breq2d 5154 . . . . . . . . 9 (𝑞 = 𝑆 → (𝑆 (𝑞 𝑟) ↔ 𝑆 (𝑆 𝑟)))
2928rexbidv 3178 . . . . . . . 8 (𝑞 = 𝑆 → (∃𝑟𝑌 𝑆 (𝑞 𝑟) ↔ ∃𝑟𝑌 𝑆 (𝑆 𝑟)))
3029rspcev 3621 . . . . . . 7 ((𝑆𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑆 𝑟)) → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))
3126, 30syl6 35 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
3231adantrl 716 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
338, 32jcad 512 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋 → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
34 simpl3 1193 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → 𝑌𝐴)
3534sseld 3981 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌𝑆𝐴))
36 simpll1 1212 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝐾 ∈ Lat)
37 ssel2 3977 . . . . . . . . . . . . . . . . . 18 ((𝑋𝐴𝑞𝑋) → 𝑞𝐴)
38373ad2antl2 1186 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → 𝑞𝐴)
3938adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑞𝐴)
4013, 3atbase 39291 . . . . . . . . . . . . . . . 16 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
4139, 40syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑞 ∈ (Base‘𝐾))
42 simpl3 1193 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → 𝑌𝐴)
4342sselda 3982 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆𝐴)
4443, 14syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆 ∈ (Base‘𝐾))
4513, 1, 2latlej2 18495 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 (𝑞 𝑆))
4636, 41, 44, 45syl3anc 1372 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆 (𝑞 𝑆))
4746ex 412 . . . . . . . . . . . . 13 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌𝑆 (𝑞 𝑆)))
4847ancld 550 . . . . . . . . . . . 12 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌 → (𝑆𝑌𝑆 (𝑞 𝑆))))
49 oveq2 7440 . . . . . . . . . . . . . 14 (𝑟 = 𝑆 → (𝑞 𝑟) = (𝑞 𝑆))
5049breq2d 5154 . . . . . . . . . . . . 13 (𝑟 = 𝑆 → (𝑆 (𝑞 𝑟) ↔ 𝑆 (𝑞 𝑆)))
5150rspcev 3621 . . . . . . . . . . . 12 ((𝑆𝑌𝑆 (𝑞 𝑆)) → ∃𝑟𝑌 𝑆 (𝑞 𝑟))
5248, 51syl6 35 . . . . . . . . . . 11 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌 → ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5352impancom 451 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑞𝑋 → ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5453ancld 550 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑞𝑋 → (𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟))))
5554eximdv 1916 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (∃𝑞 𝑞𝑋 → ∃𝑞(𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟))))
56 n0 4352 . . . . . . . 8 (𝑋 ≠ ∅ ↔ ∃𝑞 𝑞𝑋)
57 df-rex 3070 . . . . . . . 8 (∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟) ↔ ∃𝑞(𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5855, 56, 573imtr4g 296 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑋 ≠ ∅ → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
5958impancom 451 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋 ≠ ∅) → (𝑆𝑌 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
6059adantrr 717 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
6135, 60jcad 512 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌 → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
6233, 61jaod 859 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑆𝑋𝑆𝑌) → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
63 pm4.72 951 . . 3 (((𝑆𝑋𝑆𝑌) → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
6462, 63sylib 218 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
656, 64bitr4d 282 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wne 2939  wrex 3069  wss 3950  c0 4332   class class class wbr 5142  cfv 6560  (class class class)co 7432  Basecbs 17248  lecple 17305  joincjn 18358  Latclat 18477  Atomscatm 39265  +𝑃cpadd 39798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-lub 18392  df-join 18394  df-lat 18478  df-ats 39269  df-padd 39799
This theorem is referenced by:  paddvaln0N  39804  elpaddri  39805  elpaddat  39807  paddasslem15  39837  paddasslem16  39838  pmodlem2  39850  pmapjat1  39856
  Copyright terms: Public domain W3C validator