Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddn0 Structured version   Visualization version   GIF version

Theorem elpaddn0 37814
Description: Member of projective subspace sum of nonempty sets. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpaddn0 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
Distinct variable groups:   𝑟,𝑞,𝐾   𝑋,𝑞   𝑌,𝑞,𝑟   𝑆,𝑞,𝑟   𝐴,𝑞,𝑟   ,𝑞,𝑟   ,𝑞,𝑟   𝑋,𝑟
Allowed substitution hints:   + (𝑟,𝑞)

Proof of Theorem elpaddn0
StepHypRef Expression
1 paddfval.l . . . 4 = (le‘𝐾)
2 paddfval.j . . . 4 = (join‘𝐾)
3 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 paddfval.p . . . 4 + = (+𝑃𝐾)
51, 2, 3, 4elpadd 37813 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
65adantr 481 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
7 simpl2 1191 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → 𝑋𝐴)
87sseld 3920 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋𝑆𝐴))
9 simpll1 1211 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝐾 ∈ Lat)
10 ssel2 3916 . . . . . . . . . . . . . . . 16 ((𝑋𝐴𝑆𝑋) → 𝑆𝐴)
11103ad2antl2 1185 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) → 𝑆𝐴)
1211adantr 481 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆𝐴)
13 eqid 2738 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
1413, 3atbase 37303 . . . . . . . . . . . . . 14 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1512, 14syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆 ∈ (Base‘𝐾))
16 simpl3 1192 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) → 𝑌𝐴)
1716sselda 3921 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑟𝐴)
1813, 3atbase 37303 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑟 ∈ (Base‘𝐾))
2013, 1, 2latlej1 18166 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → 𝑆 (𝑆 𝑟))
219, 15, 19, 20syl3anc 1370 . . . . . . . . . . . 12 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆 (𝑆 𝑟))
2221reximdva0 4285 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑌 ≠ ∅) → ∃𝑟𝑌 𝑆 (𝑆 𝑟))
2322exp31 420 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑆𝑋 → (𝑌 ≠ ∅ → ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
2423com23 86 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑌 ≠ ∅ → (𝑆𝑋 → ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
2524imp 407 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → ∃𝑟𝑌 𝑆 (𝑆 𝑟)))
2625ancld 551 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → (𝑆𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
27 oveq1 7282 . . . . . . . . . 10 (𝑞 = 𝑆 → (𝑞 𝑟) = (𝑆 𝑟))
2827breq2d 5086 . . . . . . . . 9 (𝑞 = 𝑆 → (𝑆 (𝑞 𝑟) ↔ 𝑆 (𝑆 𝑟)))
2928rexbidv 3226 . . . . . . . 8 (𝑞 = 𝑆 → (∃𝑟𝑌 𝑆 (𝑞 𝑟) ↔ ∃𝑟𝑌 𝑆 (𝑆 𝑟)))
3029rspcev 3561 . . . . . . 7 ((𝑆𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑆 𝑟)) → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))
3126, 30syl6 35 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
3231adantrl 713 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
338, 32jcad 513 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋 → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
34 simpl3 1192 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → 𝑌𝐴)
3534sseld 3920 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌𝑆𝐴))
36 simpll1 1211 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝐾 ∈ Lat)
37 ssel2 3916 . . . . . . . . . . . . . . . . . 18 ((𝑋𝐴𝑞𝑋) → 𝑞𝐴)
38373ad2antl2 1185 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → 𝑞𝐴)
3938adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑞𝐴)
4013, 3atbase 37303 . . . . . . . . . . . . . . . 16 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
4139, 40syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑞 ∈ (Base‘𝐾))
42 simpl3 1192 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → 𝑌𝐴)
4342sselda 3921 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆𝐴)
4443, 14syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆 ∈ (Base‘𝐾))
4513, 1, 2latlej2 18167 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 (𝑞 𝑆))
4636, 41, 44, 45syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆 (𝑞 𝑆))
4746ex 413 . . . . . . . . . . . . 13 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌𝑆 (𝑞 𝑆)))
4847ancld 551 . . . . . . . . . . . 12 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌 → (𝑆𝑌𝑆 (𝑞 𝑆))))
49 oveq2 7283 . . . . . . . . . . . . . 14 (𝑟 = 𝑆 → (𝑞 𝑟) = (𝑞 𝑆))
5049breq2d 5086 . . . . . . . . . . . . 13 (𝑟 = 𝑆 → (𝑆 (𝑞 𝑟) ↔ 𝑆 (𝑞 𝑆)))
5150rspcev 3561 . . . . . . . . . . . 12 ((𝑆𝑌𝑆 (𝑞 𝑆)) → ∃𝑟𝑌 𝑆 (𝑞 𝑟))
5248, 51syl6 35 . . . . . . . . . . 11 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌 → ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5352impancom 452 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑞𝑋 → ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5453ancld 551 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑞𝑋 → (𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟))))
5554eximdv 1920 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (∃𝑞 𝑞𝑋 → ∃𝑞(𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟))))
56 n0 4280 . . . . . . . 8 (𝑋 ≠ ∅ ↔ ∃𝑞 𝑞𝑋)
57 df-rex 3070 . . . . . . . 8 (∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟) ↔ ∃𝑞(𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5855, 56, 573imtr4g 296 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑋 ≠ ∅ → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
5958impancom 452 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋 ≠ ∅) → (𝑆𝑌 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
6059adantrr 714 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
6135, 60jcad 513 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌 → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
6233, 61jaod 856 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑆𝑋𝑆𝑌) → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
63 pm4.72 947 . . 3 (((𝑆𝑋𝑆𝑌) → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
6462, 63sylib 217 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
656, 64bitr4d 281 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  wss 3887  c0 4256   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Latclat 18149  Atomscatm 37277  +𝑃cpadd 37809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-lub 18064  df-join 18066  df-lat 18150  df-ats 37281  df-padd 37810
This theorem is referenced by:  paddvaln0N  37815  elpaddri  37816  elpaddat  37818  paddasslem15  37848  paddasslem16  37849  pmodlem2  37861  pmapjat1  37867
  Copyright terms: Public domain W3C validator