Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddn0 Structured version   Visualization version   GIF version

Theorem elpaddn0 36417
Description: Member of projective subspace sum of nonempty sets. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpaddn0 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
Distinct variable groups:   𝑟,𝑞,𝐾   𝑋,𝑞   𝑌,𝑞,𝑟   𝑆,𝑞,𝑟   𝐴,𝑞,𝑟   ,𝑞,𝑟   ,𝑞,𝑟   𝑋,𝑟
Allowed substitution hints:   + (𝑟,𝑞)

Proof of Theorem elpaddn0
StepHypRef Expression
1 paddfval.l . . . 4 = (le‘𝐾)
2 paddfval.j . . . 4 = (join‘𝐾)
3 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 paddfval.p . . . 4 + = (+𝑃𝐾)
51, 2, 3, 4elpadd 36416 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
65adantr 481 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
7 simpl2 1183 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → 𝑋𝐴)
87sseld 3883 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋𝑆𝐴))
9 simpll1 1203 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝐾 ∈ Lat)
10 ssel2 3879 . . . . . . . . . . . . . . . 16 ((𝑋𝐴𝑆𝑋) → 𝑆𝐴)
11103ad2antl2 1177 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) → 𝑆𝐴)
1211adantr 481 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆𝐴)
13 eqid 2793 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
1413, 3atbase 35906 . . . . . . . . . . . . . 14 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1512, 14syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆 ∈ (Base‘𝐾))
16 simpl3 1184 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) → 𝑌𝐴)
1716sselda 3884 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑟𝐴)
1813, 3atbase 35906 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑟 ∈ (Base‘𝐾))
2013, 1, 2latlej1 17487 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → 𝑆 (𝑆 𝑟))
219, 15, 19, 20syl3anc 1362 . . . . . . . . . . . 12 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆 (𝑆 𝑟))
2221reximdva0 4226 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑌 ≠ ∅) → ∃𝑟𝑌 𝑆 (𝑆 𝑟))
2322exp31 420 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑆𝑋 → (𝑌 ≠ ∅ → ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
2423com23 86 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑌 ≠ ∅ → (𝑆𝑋 → ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
2524imp 407 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → ∃𝑟𝑌 𝑆 (𝑆 𝑟)))
2625ancld 551 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → (𝑆𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
27 oveq1 7014 . . . . . . . . . 10 (𝑞 = 𝑆 → (𝑞 𝑟) = (𝑆 𝑟))
2827breq2d 4968 . . . . . . . . 9 (𝑞 = 𝑆 → (𝑆 (𝑞 𝑟) ↔ 𝑆 (𝑆 𝑟)))
2928rexbidv 3257 . . . . . . . 8 (𝑞 = 𝑆 → (∃𝑟𝑌 𝑆 (𝑞 𝑟) ↔ ∃𝑟𝑌 𝑆 (𝑆 𝑟)))
3029rspcev 3554 . . . . . . 7 ((𝑆𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑆 𝑟)) → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))
3126, 30syl6 35 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
3231adantrl 712 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
338, 32jcad 513 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋 → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
34 simpl3 1184 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → 𝑌𝐴)
3534sseld 3883 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌𝑆𝐴))
36 simpll1 1203 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝐾 ∈ Lat)
37 ssel2 3879 . . . . . . . . . . . . . . . . . 18 ((𝑋𝐴𝑞𝑋) → 𝑞𝐴)
38373ad2antl2 1177 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → 𝑞𝐴)
3938adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑞𝐴)
4013, 3atbase 35906 . . . . . . . . . . . . . . . 16 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
4139, 40syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑞 ∈ (Base‘𝐾))
42 simpl3 1184 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → 𝑌𝐴)
4342sselda 3884 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆𝐴)
4443, 14syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆 ∈ (Base‘𝐾))
4513, 1, 2latlej2 17488 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 (𝑞 𝑆))
4636, 41, 44, 45syl3anc 1362 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆 (𝑞 𝑆))
4746ex 413 . . . . . . . . . . . . 13 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌𝑆 (𝑞 𝑆)))
4847ancld 551 . . . . . . . . . . . 12 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌 → (𝑆𝑌𝑆 (𝑞 𝑆))))
49 oveq2 7015 . . . . . . . . . . . . . 14 (𝑟 = 𝑆 → (𝑞 𝑟) = (𝑞 𝑆))
5049breq2d 4968 . . . . . . . . . . . . 13 (𝑟 = 𝑆 → (𝑆 (𝑞 𝑟) ↔ 𝑆 (𝑞 𝑆)))
5150rspcev 3554 . . . . . . . . . . . 12 ((𝑆𝑌𝑆 (𝑞 𝑆)) → ∃𝑟𝑌 𝑆 (𝑞 𝑟))
5248, 51syl6 35 . . . . . . . . . . 11 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌 → ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5352impancom 452 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑞𝑋 → ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5453ancld 551 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑞𝑋 → (𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟))))
5554eximdv 1893 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (∃𝑞 𝑞𝑋 → ∃𝑞(𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟))))
56 n0 4224 . . . . . . . 8 (𝑋 ≠ ∅ ↔ ∃𝑞 𝑞𝑋)
57 df-rex 3109 . . . . . . . 8 (∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟) ↔ ∃𝑞(𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5855, 56, 573imtr4g 297 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑋 ≠ ∅ → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
5958impancom 452 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋 ≠ ∅) → (𝑆𝑌 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
6059adantrr 713 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
6135, 60jcad 513 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌 → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
6233, 61jaod 854 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑆𝑋𝑆𝑌) → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
63 pm4.72 942 . . 3 (((𝑆𝑋𝑆𝑌) → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
6462, 63sylib 219 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
656, 64bitr4d 283 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842  w3a 1078   = wceq 1520  wex 1759  wcel 2079  wne 2982  wrex 3104  wss 3854  c0 4206   class class class wbr 4956  cfv 6217  (class class class)co 7007  Basecbs 16300  lecple 16389  joincjn 17371  Latclat 17472  Atomscatm 35880  +𝑃cpadd 36412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-1st 7536  df-2nd 7537  df-lub 17401  df-join 17403  df-lat 17473  df-ats 35884  df-padd 36413
This theorem is referenced by:  paddvaln0N  36418  elpaddri  36419  elpaddat  36421  paddasslem15  36451  paddasslem16  36452  pmodlem2  36464  pmapjat1  36470
  Copyright terms: Public domain W3C validator