Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddn0 Structured version   Visualization version   GIF version

Theorem elpaddn0 35756
Description: Member of projective subspace sum of nonempty sets. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpaddn0 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
Distinct variable groups:   𝑟,𝑞,𝐾   𝑋,𝑞   𝑌,𝑞,𝑟   𝑆,𝑞,𝑟   𝐴,𝑞,𝑟   ,𝑞,𝑟   ,𝑞,𝑟   𝑋,𝑟
Allowed substitution hints:   + (𝑟,𝑞)

Proof of Theorem elpaddn0
StepHypRef Expression
1 paddfval.l . . . 4 = (le‘𝐾)
2 paddfval.j . . . 4 = (join‘𝐾)
3 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 paddfval.p . . . 4 + = (+𝑃𝐾)
51, 2, 3, 4elpadd 35755 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
65adantr 472 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
7 simpl2 1244 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → 𝑋𝐴)
87sseld 3760 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋𝑆𝐴))
9 simpll1 1269 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝐾 ∈ Lat)
10 ssel2 3756 . . . . . . . . . . . . . . . 16 ((𝑋𝐴𝑆𝑋) → 𝑆𝐴)
11103ad2antl2 1237 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) → 𝑆𝐴)
1211adantr 472 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆𝐴)
13 eqid 2765 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
1413, 3atbase 35245 . . . . . . . . . . . . . 14 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1512, 14syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆 ∈ (Base‘𝐾))
16 simpl3 1246 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) → 𝑌𝐴)
1716sselda 3761 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑟𝐴)
1813, 3atbase 35245 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑟 ∈ (Base‘𝐾))
2013, 1, 2latlej1 17326 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → 𝑆 (𝑆 𝑟))
219, 15, 19, 20syl3anc 1490 . . . . . . . . . . . 12 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆 (𝑆 𝑟))
2221reximdva0 4097 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑌 ≠ ∅) → ∃𝑟𝑌 𝑆 (𝑆 𝑟))
2322exp31 410 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑆𝑋 → (𝑌 ≠ ∅ → ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
2423com23 86 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑌 ≠ ∅ → (𝑆𝑋 → ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
2524imp 395 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → ∃𝑟𝑌 𝑆 (𝑆 𝑟)))
2625ancld 546 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → (𝑆𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
27 oveq1 6849 . . . . . . . . . 10 (𝑞 = 𝑆 → (𝑞 𝑟) = (𝑆 𝑟))
2827breq2d 4821 . . . . . . . . 9 (𝑞 = 𝑆 → (𝑆 (𝑞 𝑟) ↔ 𝑆 (𝑆 𝑟)))
2928rexbidv 3199 . . . . . . . 8 (𝑞 = 𝑆 → (∃𝑟𝑌 𝑆 (𝑞 𝑟) ↔ ∃𝑟𝑌 𝑆 (𝑆 𝑟)))
3029rspcev 3461 . . . . . . 7 ((𝑆𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑆 𝑟)) → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))
3126, 30syl6 35 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
3231adantrl 707 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
338, 32jcad 508 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋 → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
34 simpl3 1246 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → 𝑌𝐴)
3534sseld 3760 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌𝑆𝐴))
36 simpll1 1269 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝐾 ∈ Lat)
37 ssel2 3756 . . . . . . . . . . . . . . . . . 18 ((𝑋𝐴𝑞𝑋) → 𝑞𝐴)
38373ad2antl2 1237 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → 𝑞𝐴)
3938adantr 472 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑞𝐴)
4013, 3atbase 35245 . . . . . . . . . . . . . . . 16 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
4139, 40syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑞 ∈ (Base‘𝐾))
42 simpl3 1246 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → 𝑌𝐴)
4342sselda 3761 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆𝐴)
4443, 14syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆 ∈ (Base‘𝐾))
4513, 1, 2latlej2 17327 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 (𝑞 𝑆))
4636, 41, 44, 45syl3anc 1490 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆 (𝑞 𝑆))
4746ex 401 . . . . . . . . . . . . 13 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌𝑆 (𝑞 𝑆)))
4847ancld 546 . . . . . . . . . . . 12 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌 → (𝑆𝑌𝑆 (𝑞 𝑆))))
49 oveq2 6850 . . . . . . . . . . . . . 14 (𝑟 = 𝑆 → (𝑞 𝑟) = (𝑞 𝑆))
5049breq2d 4821 . . . . . . . . . . . . 13 (𝑟 = 𝑆 → (𝑆 (𝑞 𝑟) ↔ 𝑆 (𝑞 𝑆)))
5150rspcev 3461 . . . . . . . . . . . 12 ((𝑆𝑌𝑆 (𝑞 𝑆)) → ∃𝑟𝑌 𝑆 (𝑞 𝑟))
5248, 51syl6 35 . . . . . . . . . . 11 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌 → ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5352impancom 443 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑞𝑋 → ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5453ancld 546 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑞𝑋 → (𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟))))
5554eximdv 2012 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (∃𝑞 𝑞𝑋 → ∃𝑞(𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟))))
56 n0 4095 . . . . . . . 8 (𝑋 ≠ ∅ ↔ ∃𝑞 𝑞𝑋)
57 df-rex 3061 . . . . . . . 8 (∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟) ↔ ∃𝑞(𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5855, 56, 573imtr4g 287 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑋 ≠ ∅ → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
5958impancom 443 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋 ≠ ∅) → (𝑆𝑌 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
6059adantrr 708 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
6135, 60jcad 508 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌 → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
6233, 61jaod 885 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑆𝑋𝑆𝑌) → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
63 pm4.72 972 . . 3 (((𝑆𝑋𝑆𝑌) → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
6462, 63sylib 209 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
656, 64bitr4d 273 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wne 2937  wrex 3056  wss 3732  c0 4079   class class class wbr 4809  cfv 6068  (class class class)co 6842  Basecbs 16130  lecple 16221  joincjn 17210  Latclat 17311  Atomscatm 35219  +𝑃cpadd 35751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-lub 17240  df-join 17242  df-lat 17312  df-ats 35223  df-padd 35752
This theorem is referenced by:  paddvaln0N  35757  elpaddri  35758  elpaddat  35760  paddasslem15  35790  paddasslem16  35791  pmodlem2  35803  pmapjat1  35809
  Copyright terms: Public domain W3C validator