![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssequn1 | Structured version Visualization version GIF version |
Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssequn1 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 222 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
2 | pm4.72 950 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) | |
3 | elun 4176 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
4 | 3 | bibi1i 338 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
5 | 1, 2, 4 | 3bitr4i 303 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
6 | 5 | albii 1817 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
7 | df-ss 3993 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
8 | dfcleq 2733 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 846 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 |
This theorem is referenced by: ssequn2 4212 undif 4505 uniop 5534 pwssun 5590 cnvimassrndm 6183 unisucg 6473 ordssun 6497 ordequn 6498 onunel 6500 onun2 6503 funiunfv 7285 sorpssun 7765 ordunpr 7862 onuninsuci 7877 omun 7926 sucdom2OLD 9148 domss2 9202 findcard2s 9231 sucdom2 9269 rankopb 9921 ranksuc 9934 kmlem11 10230 fin1a2lem10 10478 trclublem 15044 trclubi 15045 trclub 15047 reltrclfv 15066 modfsummods 15841 cvgcmpce 15866 mreexexlem3d 17704 dprd2da 20086 dpjcntz 20096 dpjdisj 20097 dpjlsm 20098 dpjidcl 20102 ablfac1eu 20117 perfcls 23394 dfconn2 23448 comppfsc 23561 llycmpkgen2 23579 trfil2 23916 fixufil 23951 tsmsres 24173 ustssco 24244 ustuqtop1 24271 xrge0gsumle 24874 volsup 25610 mbfss 25700 itg2cnlem2 25817 iblss2 25861 vieta1lem2 26371 amgm 27052 wilthlem2 27130 ftalem3 27136 rpvmasum2 27574 noetalem1 27804 madeoldsuc 27941 iuninc 32583 pmtrcnel 33082 pmtrcnelor 33084 hgt750lemb 34633 rankaltopb 35943 hfun 36142 bj-prmoore 37081 nacsfix 42668 cantnfresb 43286 omabs2 43294 onsucunipr 43334 oaun2 43343 oaun3 43344 fvnonrel 43559 rclexi 43577 rtrclex 43579 trclubgNEW 43580 trclubNEW 43581 dfrtrcl5 43591 trrelsuperrel2dg 43633 iunrelexp0 43664 corcltrcl 43701 isotone1 44010 aacllem 48895 |
Copyright terms: Public domain | W3C validator |