Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssequn1 | Structured version Visualization version GIF version |
Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssequn1 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 221 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
2 | pm4.72 946 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) | |
3 | elun 4079 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
4 | 3 | bibi1i 338 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
5 | 1, 2, 4 | 3bitr4i 302 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
6 | 5 | albii 1823 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
7 | dfss2 3903 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
8 | dfcleq 2731 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4i 302 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 |
This theorem is referenced by: ssequn2 4113 undif 4412 uniop 5423 pwssun 5476 cnvimassrndm 6044 unisuc 6327 ordssun 6350 ordequn 6351 onun2 6355 funiunfv 7103 sorpssun 7561 ordunpr 7648 onuninsuci 7662 sucdom2 8822 domss2 8872 findcard2s 8910 rankopb 9541 ranksuc 9554 kmlem11 9847 fin1a2lem10 10096 trclublem 14634 trclubi 14635 trclub 14637 reltrclfv 14656 modfsummods 15433 cvgcmpce 15458 mreexexlem3d 17272 dprd2da 19560 dpjcntz 19570 dpjdisj 19571 dpjlsm 19572 dpjidcl 19576 ablfac1eu 19591 perfcls 22424 dfconn2 22478 comppfsc 22591 llycmpkgen2 22609 trfil2 22946 fixufil 22981 tsmsres 23203 ustssco 23274 ustuqtop1 23301 xrge0gsumle 23902 volsup 24625 mbfss 24715 itg2cnlem2 24832 iblss2 24875 vieta1lem2 25376 amgm 26045 wilthlem2 26123 ftalem3 26129 rpvmasum2 26565 iuninc 30801 pmtrcnel 31260 pmtrcnelor 31262 hgt750lemb 32536 onunel 33592 noetalem1 33871 madeoldsuc 33994 rankaltopb 34208 hfun 34407 bj-prmoore 35213 nacsfix 40450 fvnonrel 41094 rclexi 41112 rtrclex 41114 trclubgNEW 41115 trclubNEW 41116 dfrtrcl5 41126 trrelsuperrel2dg 41168 iunrelexp0 41199 corcltrcl 41236 isotone1 41547 aacllem 46391 |
Copyright terms: Public domain | W3C validator |