| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssequn1 | Structured version Visualization version GIF version | ||
| Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssequn1 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
| 2 | pm4.72 951 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) | |
| 3 | elun 4133 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 4 | 3 | bibi1i 338 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 5 | 1, 2, 4 | 3bitr4i 303 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 6 | 5 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 7 | df-ss 3948 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 8 | dfcleq 2729 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 |
| This theorem is referenced by: ssequn2 4169 undif 4462 uniop 5495 pwssun 5550 cnvimassrndm 6146 unisucg 6437 ordssun 6461 ordequn 6462 onunel 6464 onun2 6467 funiunfv 7245 sorpssun 7729 ordunpr 7825 onuninsuci 7840 omun 7888 sucdom2OLD 9101 domss2 9155 findcard2s 9184 sucdom2 9222 rankopb 9871 ranksuc 9884 kmlem11 10180 fin1a2lem10 10428 trclublem 15019 trclubi 15020 trclub 15022 reltrclfv 15041 modfsummods 15814 cvgcmpce 15839 mreexexlem3d 17663 dprd2da 20030 dpjcntz 20040 dpjdisj 20041 dpjlsm 20042 dpjidcl 20046 ablfac1eu 20061 perfcls 23308 dfconn2 23362 comppfsc 23475 llycmpkgen2 23493 trfil2 23830 fixufil 23865 tsmsres 24087 ustssco 24158 ustuqtop1 24185 xrge0gsumle 24778 volsup 25514 mbfss 25604 itg2cnlem2 25720 iblss2 25764 vieta1lem2 26276 amgm 26958 wilthlem2 27036 ftalem3 27042 rpvmasum2 27480 noetalem1 27710 madeoldsuc 27853 iuninc 32546 pmtrcnel 33105 pmtrcnelor 33107 hgt750lemb 34693 rankaltopb 36002 hfun 36201 bj-prmoore 37138 nacsfix 42710 cantnfresb 43323 omabs2 43331 onsucunipr 43371 oaun2 43380 oaun3 43381 fvnonrel 43596 rclexi 43614 rtrclex 43616 trclubgNEW 43617 trclubNEW 43618 dfrtrcl5 43628 trrelsuperrel2dg 43670 iunrelexp0 43701 corcltrcl 43738 isotone1 44047 aacllem 49645 |
| Copyright terms: Public domain | W3C validator |