| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssequn1 | Structured version Visualization version GIF version | ||
| Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssequn1 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
| 2 | pm4.72 951 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) | |
| 3 | elun 4106 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 4 | 3 | bibi1i 338 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 5 | 1, 2, 4 | 3bitr4i 303 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 6 | 5 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 7 | df-ss 3922 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 8 | dfcleq 2722 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-ss 3922 |
| This theorem is referenced by: ssequn2 4142 undif 4435 uniop 5462 pwssun 5515 cnvimassrndm 6105 unisucg 6391 ordssun 6415 ordequn 6416 onunel 6418 onun2 6421 funiunfv 7188 sorpssun 7670 ordunpr 7765 onuninsuci 7780 omun 7828 domss2 9060 findcard2s 9089 sucdom2 9127 rankopb 9767 ranksuc 9780 kmlem11 10074 fin1a2lem10 10322 trclublem 14920 trclubi 14921 trclub 14923 reltrclfv 14942 modfsummods 15718 cvgcmpce 15743 mreexexlem3d 17570 dprd2da 19941 dpjcntz 19951 dpjdisj 19952 dpjlsm 19953 dpjidcl 19957 ablfac1eu 19972 perfcls 23268 dfconn2 23322 comppfsc 23435 llycmpkgen2 23453 trfil2 23790 fixufil 23825 tsmsres 24047 ustssco 24118 ustuqtop1 24145 xrge0gsumle 24738 volsup 25473 mbfss 25563 itg2cnlem2 25679 iblss2 25723 vieta1lem2 26235 amgm 26917 wilthlem2 26995 ftalem3 27001 rpvmasum2 27439 noetalem1 27669 madeoldsuc 27817 iuninc 32522 pmtrcnel 33044 pmtrcnelor 33046 hgt750lemb 34626 rankaltopb 35955 hfun 36154 bj-prmoore 37091 nacsfix 42688 cantnfresb 43300 omabs2 43308 onsucunipr 43348 oaun2 43357 oaun3 43358 fvnonrel 43573 rclexi 43591 rtrclex 43593 trclubgNEW 43594 trclubNEW 43595 dfrtrcl5 43605 trrelsuperrel2dg 43647 iunrelexp0 43678 corcltrcl 43715 isotone1 44024 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |