MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssequn1 Structured version   Visualization version   GIF version

Theorem ssequn1 4180
Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ssequn1 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)

Proof of Theorem ssequn1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bicom 221 . . . 4 ((𝑥𝐵 ↔ (𝑥𝐴𝑥𝐵)) ↔ ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐵))
2 pm4.72 949 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐵 ↔ (𝑥𝐴𝑥𝐵)))
3 elun 4148 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
43bibi1i 339 . . . 4 ((𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐵))
51, 2, 43bitr4i 303 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
65albii 1822 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
7 dfss2 3968 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
8 dfcleq 2726 . 2 ((𝐴𝐵) = 𝐵 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
96, 7, 83bitr4i 303 1 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 846  wal 1540   = wceq 1542  wcel 2107  cun 3946  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3953  df-in 3955  df-ss 3965
This theorem is referenced by:  ssequn2  4183  undif  4481  uniop  5515  pwssun  5571  cnvimassrndm  6149  unisucg  6440  ordssun  6464  ordequn  6465  onunel  6467  onun2  6470  funiunfv  7244  sorpssun  7717  ordunpr  7811  onuninsuci  7826  omun  7875  sucdom2OLD  9079  domss2  9133  findcard2s  9162  sucdom2  9203  rankopb  9844  ranksuc  9857  kmlem11  10152  fin1a2lem10  10401  trclublem  14939  trclubi  14940  trclub  14942  reltrclfv  14961  modfsummods  15736  cvgcmpce  15761  mreexexlem3d  17587  dprd2da  19907  dpjcntz  19917  dpjdisj  19918  dpjlsm  19919  dpjidcl  19923  ablfac1eu  19938  perfcls  22861  dfconn2  22915  comppfsc  23028  llycmpkgen2  23046  trfil2  23383  fixufil  23418  tsmsres  23640  ustssco  23711  ustuqtop1  23738  xrge0gsumle  24341  volsup  25065  mbfss  25155  itg2cnlem2  25272  iblss2  25315  vieta1lem2  25816  amgm  26485  wilthlem2  26563  ftalem3  26569  rpvmasum2  27005  noetalem1  27234  madeoldsuc  27369  iuninc  31780  pmtrcnel  32238  pmtrcnelor  32240  hgt750lemb  33657  rankaltopb  34940  hfun  35139  bj-prmoore  35985  nacsfix  41436  cantnfresb  42060  omabs2  42068  onsucunipr  42108  oaun2  42117  oaun3  42118  fvnonrel  42334  rclexi  42352  rtrclex  42354  trclubgNEW  42355  trclubNEW  42356  dfrtrcl5  42366  trrelsuperrel2dg  42408  iunrelexp0  42439  corcltrcl  42476  isotone1  42785  aacllem  47802
  Copyright terms: Public domain W3C validator