![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssequn1 | Structured version Visualization version GIF version |
Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssequn1 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 222 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
2 | pm4.72 951 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) | |
3 | elun 4163 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
4 | 3 | bibi1i 338 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
5 | 1, 2, 4 | 3bitr4i 303 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
6 | 5 | albii 1816 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
7 | df-ss 3980 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
8 | dfcleq 2728 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 |
This theorem is referenced by: ssequn2 4199 undif 4488 uniop 5525 pwssun 5580 cnvimassrndm 6174 unisucg 6464 ordssun 6488 ordequn 6489 onunel 6491 onun2 6494 funiunfv 7268 sorpssun 7749 ordunpr 7846 onuninsuci 7861 omun 7910 sucdom2OLD 9121 domss2 9175 findcard2s 9204 sucdom2 9241 rankopb 9890 ranksuc 9903 kmlem11 10199 fin1a2lem10 10447 trclublem 15031 trclubi 15032 trclub 15034 reltrclfv 15053 modfsummods 15826 cvgcmpce 15851 mreexexlem3d 17691 dprd2da 20077 dpjcntz 20087 dpjdisj 20088 dpjlsm 20089 dpjidcl 20093 ablfac1eu 20108 perfcls 23389 dfconn2 23443 comppfsc 23556 llycmpkgen2 23574 trfil2 23911 fixufil 23946 tsmsres 24168 ustssco 24239 ustuqtop1 24266 xrge0gsumle 24869 volsup 25605 mbfss 25695 itg2cnlem2 25812 iblss2 25856 vieta1lem2 26368 amgm 27049 wilthlem2 27127 ftalem3 27133 rpvmasum2 27571 noetalem1 27801 madeoldsuc 27938 iuninc 32581 pmtrcnel 33092 pmtrcnelor 33094 hgt750lemb 34650 rankaltopb 35961 hfun 36160 bj-prmoore 37098 nacsfix 42700 cantnfresb 43314 omabs2 43322 onsucunipr 43362 oaun2 43371 oaun3 43372 fvnonrel 43587 rclexi 43605 rtrclex 43607 trclubgNEW 43608 trclubNEW 43609 dfrtrcl5 43619 trrelsuperrel2dg 43661 iunrelexp0 43692 corcltrcl 43729 isotone1 44038 aacllem 49032 |
Copyright terms: Public domain | W3C validator |