| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssequn1 | Structured version Visualization version GIF version | ||
| Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssequn1 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
| 2 | pm4.72 951 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) | |
| 3 | elun 4152 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 4 | 3 | bibi1i 338 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 5 | 1, 2, 4 | 3bitr4i 303 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 6 | 5 | albii 1818 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 7 | df-ss 3967 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 8 | dfcleq 2729 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1537 = wceq 1539 ∈ wcel 2107 ∪ cun 3948 ⊆ wss 3950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-un 3955 df-ss 3967 |
| This theorem is referenced by: ssequn2 4188 undif 4481 uniop 5519 pwssun 5574 cnvimassrndm 6171 unisucg 6461 ordssun 6485 ordequn 6486 onunel 6488 onun2 6491 funiunfv 7269 sorpssun 7751 ordunpr 7847 onuninsuci 7862 omun 7910 sucdom2OLD 9123 domss2 9177 findcard2s 9206 sucdom2 9244 rankopb 9893 ranksuc 9906 kmlem11 10202 fin1a2lem10 10450 trclublem 15035 trclubi 15036 trclub 15038 reltrclfv 15057 modfsummods 15830 cvgcmpce 15855 mreexexlem3d 17690 dprd2da 20063 dpjcntz 20073 dpjdisj 20074 dpjlsm 20075 dpjidcl 20079 ablfac1eu 20094 perfcls 23374 dfconn2 23428 comppfsc 23541 llycmpkgen2 23559 trfil2 23896 fixufil 23931 tsmsres 24153 ustssco 24224 ustuqtop1 24251 xrge0gsumle 24856 volsup 25592 mbfss 25682 itg2cnlem2 25798 iblss2 25842 vieta1lem2 26354 amgm 27035 wilthlem2 27113 ftalem3 27119 rpvmasum2 27557 noetalem1 27787 madeoldsuc 27924 iuninc 32574 pmtrcnel 33110 pmtrcnelor 33112 hgt750lemb 34672 rankaltopb 35981 hfun 36180 bj-prmoore 37117 nacsfix 42728 cantnfresb 43342 omabs2 43350 onsucunipr 43390 oaun2 43399 oaun3 43400 fvnonrel 43615 rclexi 43633 rtrclex 43635 trclubgNEW 43636 trclubNEW 43637 dfrtrcl5 43647 trrelsuperrel2dg 43689 iunrelexp0 43720 corcltrcl 43757 isotone1 44066 aacllem 49375 |
| Copyright terms: Public domain | W3C validator |