![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssequn1 | Structured version Visualization version GIF version |
Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssequn1 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 221 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
2 | pm4.72 949 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) | |
3 | elun 4148 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
4 | 3 | bibi1i 339 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
5 | 1, 2, 4 | 3bitr4i 303 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
6 | 5 | albii 1822 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
7 | dfss2 3968 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
8 | dfcleq 2726 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 846 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∪ cun 3946 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3953 df-in 3955 df-ss 3965 |
This theorem is referenced by: ssequn2 4183 undif 4481 uniop 5515 pwssun 5571 cnvimassrndm 6149 unisucg 6440 ordssun 6464 ordequn 6465 onunel 6467 onun2 6470 funiunfv 7244 sorpssun 7717 ordunpr 7811 onuninsuci 7826 omun 7875 sucdom2OLD 9079 domss2 9133 findcard2s 9162 sucdom2 9203 rankopb 9844 ranksuc 9857 kmlem11 10152 fin1a2lem10 10401 trclublem 14939 trclubi 14940 trclub 14942 reltrclfv 14961 modfsummods 15736 cvgcmpce 15761 mreexexlem3d 17587 dprd2da 19907 dpjcntz 19917 dpjdisj 19918 dpjlsm 19919 dpjidcl 19923 ablfac1eu 19938 perfcls 22861 dfconn2 22915 comppfsc 23028 llycmpkgen2 23046 trfil2 23383 fixufil 23418 tsmsres 23640 ustssco 23711 ustuqtop1 23738 xrge0gsumle 24341 volsup 25065 mbfss 25155 itg2cnlem2 25272 iblss2 25315 vieta1lem2 25816 amgm 26485 wilthlem2 26563 ftalem3 26569 rpvmasum2 27005 noetalem1 27234 madeoldsuc 27369 iuninc 31780 pmtrcnel 32238 pmtrcnelor 32240 hgt750lemb 33657 rankaltopb 34940 hfun 35139 bj-prmoore 35985 nacsfix 41436 cantnfresb 42060 omabs2 42068 onsucunipr 42108 oaun2 42117 oaun3 42118 fvnonrel 42334 rclexi 42352 rtrclex 42354 trclubgNEW 42355 trclubNEW 42356 dfrtrcl5 42366 trrelsuperrel2dg 42408 iunrelexp0 42439 corcltrcl 42476 isotone1 42785 aacllem 47802 |
Copyright terms: Public domain | W3C validator |