| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssequn1 | Structured version Visualization version GIF version | ||
| Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssequn1 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
| 2 | pm4.72 951 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) | |
| 3 | elun 4102 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 4 | 3 | bibi1i 338 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 5 | 1, 2, 4 | 3bitr4i 303 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 6 | 5 | albii 1820 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 7 | df-ss 3915 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 8 | dfcleq 2726 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1539 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 |
| This theorem is referenced by: ssequn2 4138 undif 4431 uniop 5460 pwssun 5513 cnvimassrndm 6106 unisucg 6393 ordssun 6417 ordequn 6418 onunel 6420 onun2 6423 funiunfv 7190 sorpssun 7671 ordunpr 7764 onuninsuci 7778 omun 7826 domss2 9058 findcard2s 9084 sucdom2 9121 rankopb 9754 ranksuc 9767 kmlem11 10061 fin1a2lem10 10309 trclublem 14906 trclubi 14907 trclub 14909 reltrclfv 14928 modfsummods 15704 cvgcmpce 15729 mreexexlem3d 17556 dprd2da 19960 dpjcntz 19970 dpjdisj 19971 dpjlsm 19972 dpjidcl 19976 ablfac1eu 19991 perfcls 23283 dfconn2 23337 comppfsc 23450 llycmpkgen2 23468 trfil2 23805 fixufil 23840 tsmsres 24062 ustssco 24133 ustuqtop1 24159 xrge0gsumle 24752 volsup 25487 mbfss 25577 itg2cnlem2 25693 iblss2 25737 vieta1lem2 26249 amgm 26931 wilthlem2 27009 ftalem3 27015 rpvmasum2 27453 noetalem1 27683 madeoldsuc 27833 iuninc 32544 pmtrcnel 33067 pmtrcnelor 33069 hgt750lemb 34692 rankaltopb 36046 hfun 36245 bj-prmoore 37182 nacsfix 42832 cantnfresb 43444 omabs2 43452 onsucunipr 43492 oaun2 43501 oaun3 43502 fvnonrel 43717 rclexi 43735 rtrclex 43737 trclubgNEW 43738 trclubNEW 43739 dfrtrcl5 43749 trrelsuperrel2dg 43791 iunrelexp0 43822 corcltrcl 43859 isotone1 44168 aacllem 49929 |
| Copyright terms: Public domain | W3C validator |