| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssequn1 | Structured version Visualization version GIF version | ||
| Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssequn1 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
| 2 | pm4.72 951 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) | |
| 3 | elun 4103 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 4 | 3 | bibi1i 338 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 5 | 1, 2, 4 | 3bitr4i 303 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 6 | 5 | albii 1820 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 7 | df-ss 3919 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 8 | dfcleq 2724 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 |
| This theorem is referenced by: ssequn2 4139 undif 4432 uniop 5455 pwssun 5508 cnvimassrndm 6099 unisucg 6386 ordssun 6410 ordequn 6411 onunel 6413 onun2 6416 funiunfv 7182 sorpssun 7663 ordunpr 7756 onuninsuci 7770 omun 7818 domss2 9049 findcard2s 9075 sucdom2 9112 rankopb 9745 ranksuc 9758 kmlem11 10052 fin1a2lem10 10300 trclublem 14902 trclubi 14903 trclub 14905 reltrclfv 14924 modfsummods 15700 cvgcmpce 15725 mreexexlem3d 17552 dprd2da 19957 dpjcntz 19967 dpjdisj 19968 dpjlsm 19969 dpjidcl 19973 ablfac1eu 19988 perfcls 23281 dfconn2 23335 comppfsc 23448 llycmpkgen2 23466 trfil2 23803 fixufil 23838 tsmsres 24060 ustssco 24131 ustuqtop1 24157 xrge0gsumle 24750 volsup 25485 mbfss 25575 itg2cnlem2 25691 iblss2 25735 vieta1lem2 26247 amgm 26929 wilthlem2 27007 ftalem3 27013 rpvmasum2 27451 noetalem1 27681 madeoldsuc 27831 iuninc 32538 pmtrcnel 33056 pmtrcnelor 33058 hgt750lemb 34667 rankaltopb 36019 hfun 36218 bj-prmoore 37155 nacsfix 42751 cantnfresb 43363 omabs2 43371 onsucunipr 43411 oaun2 43420 oaun3 43421 fvnonrel 43636 rclexi 43654 rtrclex 43656 trclubgNEW 43657 trclubNEW 43658 dfrtrcl5 43668 trrelsuperrel2dg 43710 iunrelexp0 43741 corcltrcl 43778 isotone1 44087 aacllem 49839 |
| Copyright terms: Public domain | W3C validator |