| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssequn1 | Structured version Visualization version GIF version | ||
| Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssequn1 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
| 2 | pm4.72 951 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) | |
| 3 | elun 4116 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 4 | 3 | bibi1i 338 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 5 | 1, 2, 4 | 3bitr4i 303 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 6 | 5 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 7 | df-ss 3931 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 8 | dfcleq 2722 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 |
| This theorem is referenced by: ssequn2 4152 undif 4445 uniop 5475 pwssun 5530 cnvimassrndm 6125 unisucg 6412 ordssun 6436 ordequn 6437 onunel 6439 onun2 6442 funiunfv 7222 sorpssun 7706 ordunpr 7801 onuninsuci 7816 omun 7864 domss2 9100 findcard2s 9129 sucdom2 9167 rankopb 9805 ranksuc 9818 kmlem11 10114 fin1a2lem10 10362 trclublem 14961 trclubi 14962 trclub 14964 reltrclfv 14983 modfsummods 15759 cvgcmpce 15784 mreexexlem3d 17607 dprd2da 19974 dpjcntz 19984 dpjdisj 19985 dpjlsm 19986 dpjidcl 19990 ablfac1eu 20005 perfcls 23252 dfconn2 23306 comppfsc 23419 llycmpkgen2 23437 trfil2 23774 fixufil 23809 tsmsres 24031 ustssco 24102 ustuqtop1 24129 xrge0gsumle 24722 volsup 25457 mbfss 25547 itg2cnlem2 25663 iblss2 25707 vieta1lem2 26219 amgm 26901 wilthlem2 26979 ftalem3 26985 rpvmasum2 27423 noetalem1 27653 madeoldsuc 27796 iuninc 32489 pmtrcnel 33046 pmtrcnelor 33048 hgt750lemb 34647 rankaltopb 35967 hfun 36166 bj-prmoore 37103 nacsfix 42700 cantnfresb 43313 omabs2 43321 onsucunipr 43361 oaun2 43370 oaun3 43371 fvnonrel 43586 rclexi 43604 rtrclex 43606 trclubgNEW 43607 trclubNEW 43608 dfrtrcl5 43618 trrelsuperrel2dg 43660 iunrelexp0 43691 corcltrcl 43728 isotone1 44037 aacllem 49787 |
| Copyright terms: Public domain | W3C validator |