MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssunsn2 Structured version   Visualization version   GIF version

Theorem ssunsn2 4757
Description: The property of being sandwiched between two sets naturally splits under union with a singleton. This is the induction hypothesis for the determination of large powersets such as pwtp 4831. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ssunsn2 ((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))))

Proof of Theorem ssunsn2
StepHypRef Expression
1 snssi 4738 . . . . 5 (𝐷𝐴 → {𝐷} ⊆ 𝐴)
2 unss 4114 . . . . . . 7 ((𝐵𝐴 ∧ {𝐷} ⊆ 𝐴) ↔ (𝐵 ∪ {𝐷}) ⊆ 𝐴)
32bicomi 223 . . . . . 6 ((𝐵 ∪ {𝐷}) ⊆ 𝐴 ↔ (𝐵𝐴 ∧ {𝐷} ⊆ 𝐴))
43rbaibr 537 . . . . 5 ({𝐷} ⊆ 𝐴 → (𝐵𝐴 ↔ (𝐵 ∪ {𝐷}) ⊆ 𝐴))
51, 4syl 17 . . . 4 (𝐷𝐴 → (𝐵𝐴 ↔ (𝐵 ∪ {𝐷}) ⊆ 𝐴))
65anbi1d 629 . . 3 (𝐷𝐴 → ((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))))
72biimpi 215 . . . . . . 7 ((𝐵𝐴 ∧ {𝐷} ⊆ 𝐴) → (𝐵 ∪ {𝐷}) ⊆ 𝐴)
87expcom 413 . . . . . 6 ({𝐷} ⊆ 𝐴 → (𝐵𝐴 → (𝐵 ∪ {𝐷}) ⊆ 𝐴))
91, 8syl 17 . . . . 5 (𝐷𝐴 → (𝐵𝐴 → (𝐵 ∪ {𝐷}) ⊆ 𝐴))
10 ssun3 4104 . . . . . 6 (𝐴𝐶𝐴 ⊆ (𝐶 ∪ {𝐷}))
1110a1i 11 . . . . 5 (𝐷𝐴 → (𝐴𝐶𝐴 ⊆ (𝐶 ∪ {𝐷})))
129, 11anim12d 608 . . . 4 (𝐷𝐴 → ((𝐵𝐴𝐴𝐶) → ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))))
13 pm4.72 946 . . . 4 (((𝐵𝐴𝐴𝐶) → ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))) ↔ (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})))))
1412, 13sylib 217 . . 3 (𝐷𝐴 → (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})))))
156, 14bitrd 278 . 2 (𝐷𝐴 → ((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})))))
16 uncom 4083 . . . . . . 7 ({𝐷} ∪ 𝐶) = (𝐶 ∪ {𝐷})
1716sseq2i 3946 . . . . . 6 (𝐴 ⊆ ({𝐷} ∪ 𝐶) ↔ 𝐴 ⊆ (𝐶 ∪ {𝐷}))
18 ssundif 4415 . . . . . 6 (𝐴 ⊆ ({𝐷} ∪ 𝐶) ↔ (𝐴 ∖ {𝐷}) ⊆ 𝐶)
1917, 18bitr3i 276 . . . . 5 (𝐴 ⊆ (𝐶 ∪ {𝐷}) ↔ (𝐴 ∖ {𝐷}) ⊆ 𝐶)
20 disjsn 4644 . . . . . . 7 ((𝐴 ∩ {𝐷}) = ∅ ↔ ¬ 𝐷𝐴)
21 disj3 4384 . . . . . . 7 ((𝐴 ∩ {𝐷}) = ∅ ↔ 𝐴 = (𝐴 ∖ {𝐷}))
2220, 21bitr3i 276 . . . . . 6 𝐷𝐴𝐴 = (𝐴 ∖ {𝐷}))
23 sseq1 3942 . . . . . 6 (𝐴 = (𝐴 ∖ {𝐷}) → (𝐴𝐶 ↔ (𝐴 ∖ {𝐷}) ⊆ 𝐶))
2422, 23sylbi 216 . . . . 5 𝐷𝐴 → (𝐴𝐶 ↔ (𝐴 ∖ {𝐷}) ⊆ 𝐶))
2519, 24bitr4id 289 . . . 4 𝐷𝐴 → (𝐴 ⊆ (𝐶 ∪ {𝐷}) ↔ 𝐴𝐶))
2625anbi2d 628 . . 3 𝐷𝐴 → ((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ (𝐵𝐴𝐴𝐶)))
273simplbi 497 . . . . . . 7 ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐵𝐴)
2827a1i 11 . . . . . 6 𝐷𝐴 → ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐵𝐴))
2925biimpd 228 . . . . . 6 𝐷𝐴 → (𝐴 ⊆ (𝐶 ∪ {𝐷}) → 𝐴𝐶))
3028, 29anim12d 608 . . . . 5 𝐷𝐴 → (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) → (𝐵𝐴𝐴𝐶)))
31 pm4.72 946 . . . . 5 ((((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) → (𝐵𝐴𝐴𝐶)) ↔ ((𝐵𝐴𝐴𝐶) ↔ (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ∨ (𝐵𝐴𝐴𝐶))))
3230, 31sylib 217 . . . 4 𝐷𝐴 → ((𝐵𝐴𝐴𝐶) ↔ (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ∨ (𝐵𝐴𝐴𝐶))))
33 orcom 866 . . . 4 ((((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ∨ (𝐵𝐴𝐴𝐶)) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))))
3432, 33bitrdi 286 . . 3 𝐷𝐴 → ((𝐵𝐴𝐴𝐶) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})))))
3526, 34bitrd 278 . 2 𝐷𝐴 → ((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})))))
3615, 35pm2.61i 182 1 ((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559
This theorem is referenced by:  ssunsn  4758  ssunpr  4762  sstp  4764
  Copyright terms: Public domain W3C validator