MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxd0nedgb Structured version   Visualization version   GIF version

Theorem vtxd0nedgb 29434
Description: A vertex has degree 0 iff there is no edge incident with the vertex. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxd0nedgb.v 𝑉 = (Vtx‘𝐺)
vtxd0nedgb.i 𝐼 = (iEdg‘𝐺)
vtxd0nedgb.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxd0nedgb (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
Distinct variable groups:   𝑖,𝐺   𝑖,𝐼   𝑈,𝑖   𝑖,𝑉
Allowed substitution hint:   𝐷(𝑖)

Proof of Theorem vtxd0nedgb
StepHypRef Expression
1 vtxd0nedgb.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
21fveq1i 6823 . . . 4 (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈)
3 vtxd0nedgb.v . . . . 5 𝑉 = (Vtx‘𝐺)
4 vtxd0nedgb.i . . . . 5 𝐼 = (iEdg‘𝐺)
5 eqid 2729 . . . . 5 dom 𝐼 = dom 𝐼
63, 4, 5vtxdgval 29414 . . . 4 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})))
72, 6eqtrid 2776 . . 3 (𝑈𝑉 → (𝐷𝑈) = ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})))
87eqeq1d 2731 . 2 (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})) = 0))
94fvexi 6836 . . . . . . 7 𝐼 ∈ V
109dmex 7842 . . . . . 6 dom 𝐼 ∈ V
1110rabex 5278 . . . . 5 {𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} ∈ V
12 hashxnn0 14246 . . . . 5 ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} ∈ V → (♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0*)
1311, 12ax-mp 5 . . . 4 (♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0*
1410rabex 5278 . . . . 5 {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} ∈ V
15 hashxnn0 14246 . . . . 5 ({𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} ∈ V → (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*)
1614, 15ax-mp 5 . . . 4 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*
1713, 16pm3.2i 470 . . 3 ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0* ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*)
18 xnn0xadd0 13149 . . 3 (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0* ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*) → (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0)))
1917, 18mp1i 13 . 2 (𝑈𝑉 → (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0)))
20 hasheq0 14270 . . . . . 6 ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} ∈ V → ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ↔ {𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅))
2111, 20ax-mp 5 . . . . 5 ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ↔ {𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅)
22 hasheq0 14270 . . . . . 6 ({𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} ∈ V → ((♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0 ↔ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅))
2314, 22ax-mp 5 . . . . 5 ((♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0 ↔ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅)
2421, 23anbi12i 628 . . . 4 (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0) ↔ ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅ ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅))
25 rabeq0 4339 . . . . 5 ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅ ↔ ∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖))
26 rabeq0 4339 . . . . 5 ({𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅ ↔ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈})
2725, 26anbi12i 628 . . . 4 (({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅ ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}))
28 ralnex 3055 . . . . . . 7 (∀𝑖 ∈ dom 𝐼 ¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
2928bicomi 224 . . . . . 6 (¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ∀𝑖 ∈ dom 𝐼 ¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
30 ioran 985 . . . . . . 7 (¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ (¬ 𝑈 ∈ (𝐼𝑖) ∧ ¬ (𝐼𝑖) = {𝑈}))
3130ralbii 3075 . . . . . 6 (∀𝑖 ∈ dom 𝐼 ¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ∀𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖) ∧ ¬ (𝐼𝑖) = {𝑈}))
32 r19.26 3089 . . . . . 6 (∀𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖) ∧ ¬ (𝐼𝑖) = {𝑈}) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}))
3329, 31, 323bitri 297 . . . . 5 (¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}))
3433bicomi 224 . . . 4 ((∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
3524, 27, 343bitri 297 . . 3 (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
36 orcom 870 . . . . . 6 ((𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ((𝐼𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼𝑖)))
37 snidg 4612 . . . . . . . 8 (𝑈𝑉𝑈 ∈ {𝑈})
38 eleq2 2817 . . . . . . . 8 ((𝐼𝑖) = {𝑈} → (𝑈 ∈ (𝐼𝑖) ↔ 𝑈 ∈ {𝑈}))
3937, 38syl5ibrcom 247 . . . . . . 7 (𝑈𝑉 → ((𝐼𝑖) = {𝑈} → 𝑈 ∈ (𝐼𝑖)))
40 pm4.72 951 . . . . . . 7 (((𝐼𝑖) = {𝑈} → 𝑈 ∈ (𝐼𝑖)) ↔ (𝑈 ∈ (𝐼𝑖) ↔ ((𝐼𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼𝑖))))
4139, 40sylib 218 . . . . . 6 (𝑈𝑉 → (𝑈 ∈ (𝐼𝑖) ↔ ((𝐼𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼𝑖))))
4236, 41bitr4id 290 . . . . 5 (𝑈𝑉 → ((𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ 𝑈 ∈ (𝐼𝑖)))
4342rexbidv 3153 . . . 4 (𝑈𝑉 → (∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
4443notbid 318 . . 3 (𝑈𝑉 → (¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
4535, 44bitrid 283 . 2 (𝑈𝑉 → (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0) ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
468, 19, 453bitrd 305 1 (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  c0 4284  {csn 4577  dom cdm 5619  cfv 6482  (class class class)co 7349  0cc0 11009  0*cxnn0 12457   +𝑒 cxad 13012  chash 14237  Vtxcvtx 28941  iEdgciedg 28942  VtxDegcvtxdg 29411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-xadd 13015  df-fz 13411  df-hash 14238  df-vtxdg 29412
This theorem is referenced by:  vtxduhgr0nedg  29438  vtxduhgr0edgnel  29440  1loopgrvd0  29450  1hevtxdg0  29451
  Copyright terms: Public domain W3C validator