MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxd0nedgb Structured version   Visualization version   GIF version

Theorem vtxd0nedgb 29423
Description: A vertex has degree 0 iff there is no edge incident with the vertex. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxd0nedgb.v 𝑉 = (Vtx‘𝐺)
vtxd0nedgb.i 𝐼 = (iEdg‘𝐺)
vtxd0nedgb.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxd0nedgb (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
Distinct variable groups:   𝑖,𝐺   𝑖,𝐼   𝑈,𝑖   𝑖,𝑉
Allowed substitution hint:   𝐷(𝑖)

Proof of Theorem vtxd0nedgb
StepHypRef Expression
1 vtxd0nedgb.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
21fveq1i 6862 . . . 4 (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈)
3 vtxd0nedgb.v . . . . 5 𝑉 = (Vtx‘𝐺)
4 vtxd0nedgb.i . . . . 5 𝐼 = (iEdg‘𝐺)
5 eqid 2730 . . . . 5 dom 𝐼 = dom 𝐼
63, 4, 5vtxdgval 29403 . . . 4 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})))
72, 6eqtrid 2777 . . 3 (𝑈𝑉 → (𝐷𝑈) = ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})))
87eqeq1d 2732 . 2 (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})) = 0))
94fvexi 6875 . . . . . . 7 𝐼 ∈ V
109dmex 7888 . . . . . 6 dom 𝐼 ∈ V
1110rabex 5297 . . . . 5 {𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} ∈ V
12 hashxnn0 14311 . . . . 5 ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} ∈ V → (♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0*)
1311, 12ax-mp 5 . . . 4 (♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0*
1410rabex 5297 . . . . 5 {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} ∈ V
15 hashxnn0 14311 . . . . 5 ({𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} ∈ V → (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*)
1614, 15ax-mp 5 . . . 4 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*
1713, 16pm3.2i 470 . . 3 ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0* ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*)
18 xnn0xadd0 13214 . . 3 (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0* ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*) → (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0)))
1917, 18mp1i 13 . 2 (𝑈𝑉 → (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0)))
20 hasheq0 14335 . . . . . 6 ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} ∈ V → ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ↔ {𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅))
2111, 20ax-mp 5 . . . . 5 ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ↔ {𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅)
22 hasheq0 14335 . . . . . 6 ({𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} ∈ V → ((♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0 ↔ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅))
2314, 22ax-mp 5 . . . . 5 ((♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0 ↔ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅)
2421, 23anbi12i 628 . . . 4 (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0) ↔ ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅ ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅))
25 rabeq0 4354 . . . . 5 ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅ ↔ ∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖))
26 rabeq0 4354 . . . . 5 ({𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅ ↔ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈})
2725, 26anbi12i 628 . . . 4 (({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅ ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}))
28 ralnex 3056 . . . . . . 7 (∀𝑖 ∈ dom 𝐼 ¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
2928bicomi 224 . . . . . 6 (¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ∀𝑖 ∈ dom 𝐼 ¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
30 ioran 985 . . . . . . 7 (¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ (¬ 𝑈 ∈ (𝐼𝑖) ∧ ¬ (𝐼𝑖) = {𝑈}))
3130ralbii 3076 . . . . . 6 (∀𝑖 ∈ dom 𝐼 ¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ∀𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖) ∧ ¬ (𝐼𝑖) = {𝑈}))
32 r19.26 3092 . . . . . 6 (∀𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖) ∧ ¬ (𝐼𝑖) = {𝑈}) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}))
3329, 31, 323bitri 297 . . . . 5 (¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}))
3433bicomi 224 . . . 4 ((∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
3524, 27, 343bitri 297 . . 3 (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
36 orcom 870 . . . . . 6 ((𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ((𝐼𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼𝑖)))
37 snidg 4627 . . . . . . . 8 (𝑈𝑉𝑈 ∈ {𝑈})
38 eleq2 2818 . . . . . . . 8 ((𝐼𝑖) = {𝑈} → (𝑈 ∈ (𝐼𝑖) ↔ 𝑈 ∈ {𝑈}))
3937, 38syl5ibrcom 247 . . . . . . 7 (𝑈𝑉 → ((𝐼𝑖) = {𝑈} → 𝑈 ∈ (𝐼𝑖)))
40 pm4.72 951 . . . . . . 7 (((𝐼𝑖) = {𝑈} → 𝑈 ∈ (𝐼𝑖)) ↔ (𝑈 ∈ (𝐼𝑖) ↔ ((𝐼𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼𝑖))))
4139, 40sylib 218 . . . . . 6 (𝑈𝑉 → (𝑈 ∈ (𝐼𝑖) ↔ ((𝐼𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼𝑖))))
4236, 41bitr4id 290 . . . . 5 (𝑈𝑉 → ((𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ 𝑈 ∈ (𝐼𝑖)))
4342rexbidv 3158 . . . 4 (𝑈𝑉 → (∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
4443notbid 318 . . 3 (𝑈𝑉 → (¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
4535, 44bitrid 283 . 2 (𝑈𝑉 → (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0) ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
468, 19, 453bitrd 305 1 (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  c0 4299  {csn 4592  dom cdm 5641  cfv 6514  (class class class)co 7390  0cc0 11075  0*cxnn0 12522   +𝑒 cxad 13077  chash 14302  Vtxcvtx 28930  iEdgciedg 28931  VtxDegcvtxdg 29400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-xadd 13080  df-fz 13476  df-hash 14303  df-vtxdg 29401
This theorem is referenced by:  vtxduhgr0nedg  29427  vtxduhgr0edgnel  29429  1loopgrvd0  29439  1hevtxdg0  29440
  Copyright terms: Public domain W3C validator