Proof of Theorem vtxd0nedgb
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | vtxd0nedgb.d | . . . . 5
⊢ 𝐷 = (VtxDeg‘𝐺) | 
| 2 | 1 | fveq1i 6907 | . . . 4
⊢ (𝐷‘𝑈) = ((VtxDeg‘𝐺)‘𝑈) | 
| 3 |  | vtxd0nedgb.v | . . . . 5
⊢ 𝑉 = (Vtx‘𝐺) | 
| 4 |  | vtxd0nedgb.i | . . . . 5
⊢ 𝐼 = (iEdg‘𝐺) | 
| 5 |  | eqid 2737 | . . . . 5
⊢ dom 𝐼 = dom 𝐼 | 
| 6 | 3, 4, 5 | vtxdgval 29486 | . . . 4
⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) +𝑒
(♯‘{𝑖 ∈
dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}}))) | 
| 7 | 2, 6 | eqtrid 2789 | . . 3
⊢ (𝑈 ∈ 𝑉 → (𝐷‘𝑈) = ((♯‘{𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) +𝑒
(♯‘{𝑖 ∈
dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}}))) | 
| 8 | 7 | eqeq1d 2739 | . 2
⊢ (𝑈 ∈ 𝑉 → ((𝐷‘𝑈) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) +𝑒
(♯‘{𝑖 ∈
dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}})) = 0)) | 
| 9 | 4 | fvexi 6920 | . . . . . . 7
⊢ 𝐼 ∈ V | 
| 10 | 9 | dmex 7931 | . . . . . 6
⊢ dom 𝐼 ∈ V | 
| 11 | 10 | rabex 5339 | . . . . 5
⊢ {𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)} ∈ V | 
| 12 |  | hashxnn0 14378 | . . . . 5
⊢ ({𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)} ∈ V → (♯‘{𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) ∈
ℕ0*) | 
| 13 | 11, 12 | ax-mp 5 | . . . 4
⊢
(♯‘{𝑖
∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) ∈
ℕ0* | 
| 14 | 10 | rabex 5339 | . . . . 5
⊢ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}} ∈ V | 
| 15 |  | hashxnn0 14378 | . . . . 5
⊢ ({𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}} ∈ V → (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}}) ∈
ℕ0*) | 
| 16 | 14, 15 | ax-mp 5 | . . . 4
⊢
(♯‘{𝑖
∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}}) ∈
ℕ0* | 
| 17 | 13, 16 | pm3.2i 470 | . . 3
⊢
((♯‘{𝑖
∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) ∈ ℕ0*
∧ (♯‘{𝑖
∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}}) ∈
ℕ0*) | 
| 18 |  | xnn0xadd0 13289 | . . 3
⊢
(((♯‘{𝑖
∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) ∈ ℕ0*
∧ (♯‘{𝑖
∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}}) ∈ ℕ0*)
→ (((♯‘{𝑖
∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) +𝑒
(♯‘{𝑖 ∈
dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}})) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}}) = 0))) | 
| 19 | 17, 18 | mp1i 13 | . 2
⊢ (𝑈 ∈ 𝑉 → (((♯‘{𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) +𝑒
(♯‘{𝑖 ∈
dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}})) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}}) = 0))) | 
| 20 |  | hasheq0 14402 | . . . . . 6
⊢ ({𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)} ∈ V → ((♯‘{𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) = 0 ↔ {𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)} = ∅)) | 
| 21 | 11, 20 | ax-mp 5 | . . . . 5
⊢
((♯‘{𝑖
∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) = 0 ↔ {𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)} = ∅) | 
| 22 |  | hasheq0 14402 | . . . . . 6
⊢ ({𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}} ∈ V → ((♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}}) = 0 ↔ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}} = ∅)) | 
| 23 | 14, 22 | ax-mp 5 | . . . . 5
⊢
((♯‘{𝑖
∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}}) = 0 ↔ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}} = ∅) | 
| 24 | 21, 23 | anbi12i 628 | . . . 4
⊢
(((♯‘{𝑖
∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}}) = 0) ↔ ({𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)} = ∅ ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}} = ∅)) | 
| 25 |  | rabeq0 4388 | . . . . 5
⊢ ({𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)} = ∅ ↔ ∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼‘𝑖)) | 
| 26 |  | rabeq0 4388 | . . . . 5
⊢ ({𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}} = ∅ ↔ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼‘𝑖) = {𝑈}) | 
| 27 | 25, 26 | anbi12i 628 | . . . 4
⊢ (({𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)} = ∅ ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}} = ∅) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼‘𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼‘𝑖) = {𝑈})) | 
| 28 |  | ralnex 3072 | . . . . . . 7
⊢
(∀𝑖 ∈
dom 𝐼 ¬ (𝑈 ∈ (𝐼‘𝑖) ∨ (𝐼‘𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼‘𝑖) ∨ (𝐼‘𝑖) = {𝑈})) | 
| 29 | 28 | bicomi 224 | . . . . . 6
⊢ (¬
∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼‘𝑖) ∨ (𝐼‘𝑖) = {𝑈}) ↔ ∀𝑖 ∈ dom 𝐼 ¬ (𝑈 ∈ (𝐼‘𝑖) ∨ (𝐼‘𝑖) = {𝑈})) | 
| 30 |  | ioran 986 | . . . . . . 7
⊢ (¬
(𝑈 ∈ (𝐼‘𝑖) ∨ (𝐼‘𝑖) = {𝑈}) ↔ (¬ 𝑈 ∈ (𝐼‘𝑖) ∧ ¬ (𝐼‘𝑖) = {𝑈})) | 
| 31 | 30 | ralbii 3093 | . . . . . 6
⊢
(∀𝑖 ∈
dom 𝐼 ¬ (𝑈 ∈ (𝐼‘𝑖) ∨ (𝐼‘𝑖) = {𝑈}) ↔ ∀𝑖 ∈ dom 𝐼(¬ 𝑈 ∈ (𝐼‘𝑖) ∧ ¬ (𝐼‘𝑖) = {𝑈})) | 
| 32 |  | r19.26 3111 | . . . . . 6
⊢
(∀𝑖 ∈
dom 𝐼(¬ 𝑈 ∈ (𝐼‘𝑖) ∧ ¬ (𝐼‘𝑖) = {𝑈}) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼‘𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼‘𝑖) = {𝑈})) | 
| 33 | 29, 31, 32 | 3bitri 297 | . . . . 5
⊢ (¬
∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼‘𝑖) ∨ (𝐼‘𝑖) = {𝑈}) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼‘𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼‘𝑖) = {𝑈})) | 
| 34 | 33 | bicomi 224 | . . . 4
⊢
((∀𝑖 ∈
dom 𝐼 ¬ 𝑈 ∈ (𝐼‘𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼‘𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼‘𝑖) ∨ (𝐼‘𝑖) = {𝑈})) | 
| 35 | 24, 27, 34 | 3bitri 297 | . . 3
⊢
(((♯‘{𝑖
∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}}) = 0) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼‘𝑖) ∨ (𝐼‘𝑖) = {𝑈})) | 
| 36 |  | orcom 871 | . . . . . 6
⊢ ((𝑈 ∈ (𝐼‘𝑖) ∨ (𝐼‘𝑖) = {𝑈}) ↔ ((𝐼‘𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼‘𝑖))) | 
| 37 |  | snidg 4660 | . . . . . . . 8
⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈}) | 
| 38 |  | eleq2 2830 | . . . . . . . 8
⊢ ((𝐼‘𝑖) = {𝑈} → (𝑈 ∈ (𝐼‘𝑖) ↔ 𝑈 ∈ {𝑈})) | 
| 39 | 37, 38 | syl5ibrcom 247 | . . . . . . 7
⊢ (𝑈 ∈ 𝑉 → ((𝐼‘𝑖) = {𝑈} → 𝑈 ∈ (𝐼‘𝑖))) | 
| 40 |  | pm4.72 952 | . . . . . . 7
⊢ (((𝐼‘𝑖) = {𝑈} → 𝑈 ∈ (𝐼‘𝑖)) ↔ (𝑈 ∈ (𝐼‘𝑖) ↔ ((𝐼‘𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼‘𝑖)))) | 
| 41 | 39, 40 | sylib 218 | . . . . . 6
⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ (𝐼‘𝑖) ↔ ((𝐼‘𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼‘𝑖)))) | 
| 42 | 36, 41 | bitr4id 290 | . . . . 5
⊢ (𝑈 ∈ 𝑉 → ((𝑈 ∈ (𝐼‘𝑖) ∨ (𝐼‘𝑖) = {𝑈}) ↔ 𝑈 ∈ (𝐼‘𝑖))) | 
| 43 | 42 | rexbidv 3179 | . . . 4
⊢ (𝑈 ∈ 𝑉 → (∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼‘𝑖) ∨ (𝐼‘𝑖) = {𝑈}) ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) | 
| 44 | 43 | notbid 318 | . . 3
⊢ (𝑈 ∈ 𝑉 → (¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼‘𝑖) ∨ (𝐼‘𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) | 
| 45 | 35, 44 | bitrid 283 | . 2
⊢ (𝑈 ∈ 𝑉 → (((♯‘{𝑖 ∈ dom 𝐼 ∣ 𝑈 ∈ (𝐼‘𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑈}}) = 0) ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) | 
| 46 | 8, 19, 45 | 3bitrd 305 | 1
⊢ (𝑈 ∈ 𝑉 → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼‘𝑖))) |