MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxd0nedgb Structured version   Visualization version   GIF version

Theorem vtxd0nedgb 29524
Description: A vertex has degree 0 iff there is no edge incident with the vertex. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxd0nedgb.v 𝑉 = (Vtx‘𝐺)
vtxd0nedgb.i 𝐼 = (iEdg‘𝐺)
vtxd0nedgb.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxd0nedgb (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
Distinct variable groups:   𝑖,𝐺   𝑖,𝐼   𝑈,𝑖   𝑖,𝑉
Allowed substitution hint:   𝐷(𝑖)

Proof of Theorem vtxd0nedgb
StepHypRef Expression
1 vtxd0nedgb.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
21fveq1i 6921 . . . 4 (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈)
3 vtxd0nedgb.v . . . . 5 𝑉 = (Vtx‘𝐺)
4 vtxd0nedgb.i . . . . 5 𝐼 = (iEdg‘𝐺)
5 eqid 2740 . . . . 5 dom 𝐼 = dom 𝐼
63, 4, 5vtxdgval 29504 . . . 4 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})))
72, 6eqtrid 2792 . . 3 (𝑈𝑉 → (𝐷𝑈) = ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})))
87eqeq1d 2742 . 2 (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})) = 0))
94fvexi 6934 . . . . . . 7 𝐼 ∈ V
109dmex 7949 . . . . . 6 dom 𝐼 ∈ V
1110rabex 5357 . . . . 5 {𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} ∈ V
12 hashxnn0 14388 . . . . 5 ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} ∈ V → (♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0*)
1311, 12ax-mp 5 . . . 4 (♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0*
1410rabex 5357 . . . . 5 {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} ∈ V
15 hashxnn0 14388 . . . . 5 ({𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} ∈ V → (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*)
1614, 15ax-mp 5 . . . 4 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*
1713, 16pm3.2i 470 . . 3 ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0* ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*)
18 xnn0xadd0 13309 . . 3 (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0* ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*) → (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0)))
1917, 18mp1i 13 . 2 (𝑈𝑉 → (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0)))
20 hasheq0 14412 . . . . . 6 ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} ∈ V → ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ↔ {𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅))
2111, 20ax-mp 5 . . . . 5 ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ↔ {𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅)
22 hasheq0 14412 . . . . . 6 ({𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} ∈ V → ((♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0 ↔ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅))
2314, 22ax-mp 5 . . . . 5 ((♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0 ↔ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅)
2421, 23anbi12i 627 . . . 4 (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0) ↔ ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅ ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅))
25 rabeq0 4411 . . . . 5 ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅ ↔ ∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖))
26 rabeq0 4411 . . . . 5 ({𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅ ↔ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈})
2725, 26anbi12i 627 . . . 4 (({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅ ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}))
28 ralnex 3078 . . . . . . 7 (∀𝑖 ∈ dom 𝐼 ¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
2928bicomi 224 . . . . . 6 (¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ∀𝑖 ∈ dom 𝐼 ¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
30 ioran 984 . . . . . . 7 (¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ (¬ 𝑈 ∈ (𝐼𝑖) ∧ ¬ (𝐼𝑖) = {𝑈}))
3130ralbii 3099 . . . . . 6 (∀𝑖 ∈ dom 𝐼 ¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ∀𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖) ∧ ¬ (𝐼𝑖) = {𝑈}))
32 r19.26 3117 . . . . . 6 (∀𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖) ∧ ¬ (𝐼𝑖) = {𝑈}) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}))
3329, 31, 323bitri 297 . . . . 5 (¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}))
3433bicomi 224 . . . 4 ((∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
3524, 27, 343bitri 297 . . 3 (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
36 orcom 869 . . . . . 6 ((𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ((𝐼𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼𝑖)))
37 snidg 4682 . . . . . . . 8 (𝑈𝑉𝑈 ∈ {𝑈})
38 eleq2 2833 . . . . . . . 8 ((𝐼𝑖) = {𝑈} → (𝑈 ∈ (𝐼𝑖) ↔ 𝑈 ∈ {𝑈}))
3937, 38syl5ibrcom 247 . . . . . . 7 (𝑈𝑉 → ((𝐼𝑖) = {𝑈} → 𝑈 ∈ (𝐼𝑖)))
40 pm4.72 950 . . . . . . 7 (((𝐼𝑖) = {𝑈} → 𝑈 ∈ (𝐼𝑖)) ↔ (𝑈 ∈ (𝐼𝑖) ↔ ((𝐼𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼𝑖))))
4139, 40sylib 218 . . . . . 6 (𝑈𝑉 → (𝑈 ∈ (𝐼𝑖) ↔ ((𝐼𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼𝑖))))
4236, 41bitr4id 290 . . . . 5 (𝑈𝑉 → ((𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ 𝑈 ∈ (𝐼𝑖)))
4342rexbidv 3185 . . . 4 (𝑈𝑉 → (∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
4443notbid 318 . . 3 (𝑈𝑉 → (¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
4535, 44bitrid 283 . 2 (𝑈𝑉 → (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0) ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
468, 19, 453bitrd 305 1 (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  c0 4352  {csn 4648  dom cdm 5700  cfv 6573  (class class class)co 7448  0cc0 11184  0*cxnn0 12625   +𝑒 cxad 13173  chash 14379  Vtxcvtx 29031  iEdgciedg 29032  VtxDegcvtxdg 29501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-xadd 13176  df-fz 13568  df-hash 14380  df-vtxdg 29502
This theorem is referenced by:  vtxduhgr0nedg  29528  vtxduhgr0edgnel  29530  1loopgrvd0  29540  1hevtxdg0  29541
  Copyright terms: Public domain W3C validator