MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxd0nedgb Structured version   Visualization version   GIF version

Theorem vtxd0nedgb 26953
Description: A vertex has degree 0 iff there is no edge incident with the vertex. (Contributed by AV, 24-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxd0nedgb.v 𝑉 = (Vtx‘𝐺)
vtxd0nedgb.i 𝐼 = (iEdg‘𝐺)
vtxd0nedgb.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxd0nedgb (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
Distinct variable groups:   𝑖,𝐺   𝑖,𝐼   𝑈,𝑖   𝑖,𝑉
Allowed substitution hint:   𝐷(𝑖)

Proof of Theorem vtxd0nedgb
StepHypRef Expression
1 vtxd0nedgb.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
21fveq1i 6539 . . . 4 (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈)
3 vtxd0nedgb.v . . . . 5 𝑉 = (Vtx‘𝐺)
4 vtxd0nedgb.i . . . . 5 𝐼 = (iEdg‘𝐺)
5 eqid 2795 . . . . 5 dom 𝐼 = dom 𝐼
63, 4, 5vtxdgval 26933 . . . 4 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})))
72, 6syl5eq 2843 . . 3 (𝑈𝑉 → (𝐷𝑈) = ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})))
87eqeq1d 2797 . 2 (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})) = 0))
94fvexi 6552 . . . . . . 7 𝐼 ∈ V
109dmex 7472 . . . . . 6 dom 𝐼 ∈ V
1110rabex 5126 . . . . 5 {𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} ∈ V
12 hashxnn0 13549 . . . . 5 ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} ∈ V → (♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0*)
1311, 12ax-mp 5 . . . 4 (♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0*
1410rabex 5126 . . . . 5 {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} ∈ V
15 hashxnn0 13549 . . . . 5 ({𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} ∈ V → (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*)
1614, 15ax-mp 5 . . . 4 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*
1713, 16pm3.2i 471 . . 3 ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0* ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*)
18 xnn0xadd0 12490 . . 3 (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) ∈ ℕ0* ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) ∈ ℕ0*) → (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0)))
1917, 18mp1i 13 . 2 (𝑈𝑉 → (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}})) = 0 ↔ ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0)))
20 hasheq0 13574 . . . . . 6 ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} ∈ V → ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ↔ {𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅))
2111, 20ax-mp 5 . . . . 5 ((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ↔ {𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅)
22 hasheq0 13574 . . . . . 6 ({𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} ∈ V → ((♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0 ↔ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅))
2314, 22ax-mp 5 . . . . 5 ((♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0 ↔ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅)
2421, 23anbi12i 626 . . . 4 (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0) ↔ ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅ ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅))
25 rabeq0 4258 . . . . 5 ({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅ ↔ ∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖))
26 rabeq0 4258 . . . . 5 ({𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅ ↔ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈})
2725, 26anbi12i 626 . . . 4 (({𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)} = ∅ ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}} = ∅) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}))
28 ralnex 3200 . . . . . . 7 (∀𝑖 ∈ dom 𝐼 ¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
2928bicomi 225 . . . . . 6 (¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ∀𝑖 ∈ dom 𝐼 ¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
30 ioran 978 . . . . . . 7 (¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ (¬ 𝑈 ∈ (𝐼𝑖) ∧ ¬ (𝐼𝑖) = {𝑈}))
3130ralbii 3132 . . . . . 6 (∀𝑖 ∈ dom 𝐼 ¬ (𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ∀𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖) ∧ ¬ (𝐼𝑖) = {𝑈}))
32 r19.26 3137 . . . . . 6 (∀𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖) ∧ ¬ (𝐼𝑖) = {𝑈}) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}))
3329, 31, 323bitri 298 . . . . 5 (¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ (∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}))
3433bicomi 225 . . . 4 ((∀𝑖 ∈ dom 𝐼 ¬ 𝑈 ∈ (𝐼𝑖) ∧ ∀𝑖 ∈ dom 𝐼 ¬ (𝐼𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
3524, 27, 343bitri 298 . . 3 (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0) ↔ ¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}))
36 snidg 4504 . . . . . . . 8 (𝑈𝑉𝑈 ∈ {𝑈})
37 eleq2 2871 . . . . . . . 8 ((𝐼𝑖) = {𝑈} → (𝑈 ∈ (𝐼𝑖) ↔ 𝑈 ∈ {𝑈}))
3836, 37syl5ibrcom 248 . . . . . . 7 (𝑈𝑉 → ((𝐼𝑖) = {𝑈} → 𝑈 ∈ (𝐼𝑖)))
39 pm4.72 944 . . . . . . 7 (((𝐼𝑖) = {𝑈} → 𝑈 ∈ (𝐼𝑖)) ↔ (𝑈 ∈ (𝐼𝑖) ↔ ((𝐼𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼𝑖))))
4038, 39sylib 219 . . . . . 6 (𝑈𝑉 → (𝑈 ∈ (𝐼𝑖) ↔ ((𝐼𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼𝑖))))
41 orcom 865 . . . . . 6 ((𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ((𝐼𝑖) = {𝑈} ∨ 𝑈 ∈ (𝐼𝑖)))
4240, 41syl6rbbr 291 . . . . 5 (𝑈𝑉 → ((𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ 𝑈 ∈ (𝐼𝑖)))
4342rexbidv 3260 . . . 4 (𝑈𝑉 → (∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
4443notbid 319 . . 3 (𝑈𝑉 → (¬ ∃𝑖 ∈ dom 𝐼(𝑈 ∈ (𝐼𝑖) ∨ (𝐼𝑖) = {𝑈}) ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
4535, 44syl5bb 284 . 2 (𝑈𝑉 → (((♯‘{𝑖 ∈ dom 𝐼𝑈 ∈ (𝐼𝑖)}) = 0 ∧ (♯‘{𝑖 ∈ dom 𝐼 ∣ (𝐼𝑖) = {𝑈}}) = 0) ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
468, 19, 453bitrd 306 1 (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842   = wceq 1522  wcel 2081  wral 3105  wrex 3106  {crab 3109  Vcvv 3437  c0 4211  {csn 4472  dom cdm 5443  cfv 6225  (class class class)co 7016  0cc0 10383  0*cxnn0 11815   +𝑒 cxad 12355  chash 13540  Vtxcvtx 26464  iEdgciedg 26465  VtxDegcvtxdg 26930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-n0 11746  df-xnn0 11816  df-z 11830  df-uz 12094  df-xadd 12358  df-fz 12743  df-hash 13541  df-vtxdg 26931
This theorem is referenced by:  vtxduhgr0nedg  26957  vtxduhgr0edgnel  26959  1loopgrvd0  26969  1hevtxdg0  26970
  Copyright terms: Public domain W3C validator