MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odd2np1 Structured version   Visualization version   GIF version

Theorem odd2np1 16247
Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem odd2np1
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 12499 . . . 4 2 ∈ ℤ
2 divides 16160 . . . 4 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
31, 2mpan 690 . . 3 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
43notbid 318 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
5 elznn0 12478 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
6 odd2np1lem 16246 . . . . . 6 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
76adantl 481 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
8 peano2z 12508 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℤ)
9 znegcl 12502 . . . . . . . . . . 11 ((𝑥 + 1) ∈ ℤ → -(𝑥 + 1) ∈ ℤ)
108, 9syl 17 . . . . . . . . . 10 (𝑥 ∈ ℤ → -(𝑥 + 1) ∈ ℤ)
1110ad2antlr 727 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → -(𝑥 + 1) ∈ ℤ)
12 zcn 12468 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
13 2cn 12195 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
14 mulcl 11085 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
1513, 14mpan 690 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (2 · 𝑥) ∈ ℂ)
16 peano2cn 11280 . . . . . . . . . . . . . . 15 ((2 · 𝑥) ∈ ℂ → ((2 · 𝑥) + 1) ∈ ℂ)
1715, 16syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((2 · 𝑥) + 1) ∈ ℂ)
1812, 17syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) ∈ ℂ)
1918adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((2 · 𝑥) + 1) ∈ ℂ)
20 simpl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℝ)
2120recnd 11135 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℂ)
22 negcon2 11409 . . . . . . . . . . . 12 ((((2 · 𝑥) + 1) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((2 · 𝑥) + 1) = -𝑁𝑁 = -((2 · 𝑥) + 1)))
2319, 21, 22syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = -𝑁𝑁 = -((2 · 𝑥) + 1)))
24 eqcom 2738 . . . . . . . . . . . 12 (𝑁 = -((2 · 𝑥) + 1) ↔ -((2 · 𝑥) + 1) = 𝑁)
2513, 12, 14sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
26 ax-1cn 11059 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
2713, 26mulcli 11114 . . . . . . . . . . . . . . . . . . . 20 (2 · 1) ∈ ℂ
28 addsubass 11365 . . . . . . . . . . . . . . . . . . . 20 (((2 · 𝑥) ∈ ℂ ∧ (2 · 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
2927, 26, 28mp3an23 1455 . . . . . . . . . . . . . . . . . . 19 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
3025, 29syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
31 2t1e2 12278 . . . . . . . . . . . . . . . . . . . . 21 (2 · 1) = 2
3231oveq1i 7351 . . . . . . . . . . . . . . . . . . . 20 ((2 · 1) − 1) = (2 − 1)
33 2m1e1 12241 . . . . . . . . . . . . . . . . . . . 20 (2 − 1) = 1
3432, 33eqtri 2754 . . . . . . . . . . . . . . . . . . 19 ((2 · 1) − 1) = 1
3534oveq2i 7352 . . . . . . . . . . . . . . . . . 18 ((2 · 𝑥) + ((2 · 1) − 1)) = ((2 · 𝑥) + 1)
3630, 35eqtr2di 2783 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) = (((2 · 𝑥) + (2 · 1)) − 1))
37 adddi 11090 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
3813, 26, 37mp3an13 1454 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
3912, 38syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
4039oveq1d 7356 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → ((2 · (𝑥 + 1)) − 1) = (((2 · 𝑥) + (2 · 1)) − 1))
4136, 40eqtr4d 2769 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) = ((2 · (𝑥 + 1)) − 1))
4241negeqd 11349 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → -((2 · 𝑥) + 1) = -((2 · (𝑥 + 1)) − 1))
438zcnd 12573 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℂ)
44 mulneg2 11549 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝑥 + 1) ∈ ℂ) → (2 · -(𝑥 + 1)) = -(2 · (𝑥 + 1)))
4513, 43, 44sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (2 · -(𝑥 + 1)) = -(2 · (𝑥 + 1)))
4645oveq1d 7356 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → ((2 · -(𝑥 + 1)) + 1) = (-(2 · (𝑥 + 1)) + 1))
47 mulcl 11085 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝑥 + 1) ∈ ℂ) → (2 · (𝑥 + 1)) ∈ ℂ)
4813, 43, 47sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (2 · (𝑥 + 1)) ∈ ℂ)
49 negsubdi 11412 . . . . . . . . . . . . . . . . 17 (((2 · (𝑥 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → -((2 · (𝑥 + 1)) − 1) = (-(2 · (𝑥 + 1)) + 1))
5048, 26, 49sylancl 586 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → -((2 · (𝑥 + 1)) − 1) = (-(2 · (𝑥 + 1)) + 1))
5146, 50eqtr4d 2769 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → ((2 · -(𝑥 + 1)) + 1) = -((2 · (𝑥 + 1)) − 1))
5242, 51eqtr4d 2769 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → -((2 · 𝑥) + 1) = ((2 · -(𝑥 + 1)) + 1))
5352adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → -((2 · 𝑥) + 1) = ((2 · -(𝑥 + 1)) + 1))
5453eqeq1d 2733 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-((2 · 𝑥) + 1) = 𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5524, 54bitrid 283 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑁 = -((2 · 𝑥) + 1) ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5623, 55bitrd 279 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = -𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5756biimpa 476 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → ((2 · -(𝑥 + 1)) + 1) = 𝑁)
58 oveq2 7349 . . . . . . . . . . . 12 (𝑛 = -(𝑥 + 1) → (2 · 𝑛) = (2 · -(𝑥 + 1)))
5958oveq1d 7356 . . . . . . . . . . 11 (𝑛 = -(𝑥 + 1) → ((2 · 𝑛) + 1) = ((2 · -(𝑥 + 1)) + 1))
6059eqeq1d 2733 . . . . . . . . . 10 (𝑛 = -(𝑥 + 1) → (((2 · 𝑛) + 1) = 𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
6160rspcev 3572 . . . . . . . . 9 ((-(𝑥 + 1) ∈ ℤ ∧ ((2 · -(𝑥 + 1)) + 1) = 𝑁) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
6211, 57, 61syl2anc 584 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
6362rexlimdva2 3135 . . . . . . 7 (𝑁 ∈ ℝ → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
64 znegcl 12502 . . . . . . . . . 10 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6564ad2antlr 727 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → -𝑦 ∈ ℤ)
66 zcn 12468 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
67 mulcl 11085 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑦 · 2) ∈ ℂ)
6866, 13, 67sylancl 586 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (𝑦 · 2) ∈ ℂ)
69 recn 11091 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
70 negcon2 11409 . . . . . . . . . . . 12 (((𝑦 · 2) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑦 · 2) = -𝑁𝑁 = -(𝑦 · 2)))
7168, 69, 70syl2anr 597 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((𝑦 · 2) = -𝑁𝑁 = -(𝑦 · 2)))
72 eqcom 2738 . . . . . . . . . . . 12 (𝑁 = -(𝑦 · 2) ↔ -(𝑦 · 2) = 𝑁)
73 mulneg1 11548 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (-𝑦 · 2) = -(𝑦 · 2))
7466, 13, 73sylancl 586 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (-𝑦 · 2) = -(𝑦 · 2))
7574adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (-𝑦 · 2) = -(𝑦 · 2))
7675eqeq1d 2733 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((-𝑦 · 2) = 𝑁 ↔ -(𝑦 · 2) = 𝑁))
7772, 76bitr4id 290 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (𝑁 = -(𝑦 · 2) ↔ (-𝑦 · 2) = 𝑁))
7871, 77bitrd 279 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((𝑦 · 2) = -𝑁 ↔ (-𝑦 · 2) = 𝑁))
7978biimpa 476 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → (-𝑦 · 2) = 𝑁)
80 oveq1 7348 . . . . . . . . . . 11 (𝑘 = -𝑦 → (𝑘 · 2) = (-𝑦 · 2))
8180eqeq1d 2733 . . . . . . . . . 10 (𝑘 = -𝑦 → ((𝑘 · 2) = 𝑁 ↔ (-𝑦 · 2) = 𝑁))
8281rspcev 3572 . . . . . . . . 9 ((-𝑦 ∈ ℤ ∧ (-𝑦 · 2) = 𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
8365, 79, 82syl2anc 584 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
8483rexlimdva2 3135 . . . . . . 7 (𝑁 ∈ ℝ → (∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁 → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
8563, 84orim12d 966 . . . . . 6 (𝑁 ∈ ℝ → ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
86 odd2np1lem 16246 . . . . . 6 (-𝑁 ∈ ℕ0 → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁))
8785, 86impel 505 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
887, 87jaodan 959 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
895, 88sylbi 217 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
90 halfnz 12546 . . . 4 ¬ (1 / 2) ∈ ℤ
91 reeanv 3204 . . . . 5 (∃𝑛 ∈ ℤ ∃𝑘 ∈ ℤ (((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
92 eqtr3 2753 . . . . . . 7 ((((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → ((2 · 𝑛) + 1) = (𝑘 · 2))
93 zcn 12468 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
94 mulcom 11087 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑘 · 2) = (2 · 𝑘))
9593, 13, 94sylancl 586 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 · 2) = (2 · 𝑘))
9695eqeq2d 2742 . . . . . . . . 9 (𝑘 ∈ ℤ → (((2 · 𝑛) + 1) = (𝑘 · 2) ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
9796adantl 481 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (𝑘 · 2) ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
98 mulcl 11085 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
9913, 93, 98sylancr 587 . . . . . . . . . 10 (𝑘 ∈ ℤ → (2 · 𝑘) ∈ ℂ)
100 zcn 12468 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
101 mulcl 11085 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
10213, 100, 101sylancr 587 . . . . . . . . . 10 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
103 subadd 11358 . . . . . . . . . . 11 (((2 · 𝑘) ∈ ℂ ∧ (2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
10426, 103mp3an3 1452 . . . . . . . . . 10 (((2 · 𝑘) ∈ ℂ ∧ (2 · 𝑛) ∈ ℂ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
10599, 102, 104syl2anr 597 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
106 subcl 11354 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑘𝑛) ∈ ℂ)
107 2cnne0 12325 . . . . . . . . . . . . . . 15 (2 ∈ ℂ ∧ 2 ≠ 0)
108 eqcom 2738 . . . . . . . . . . . . . . . 16 ((𝑘𝑛) = (1 / 2) ↔ (1 / 2) = (𝑘𝑛))
109 divmul 11774 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((1 / 2) = (𝑘𝑛) ↔ (2 · (𝑘𝑛)) = 1))
110108, 109bitrid 283 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
11126, 107, 110mp3an13 1454 . . . . . . . . . . . . . 14 ((𝑘𝑛) ∈ ℂ → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
112106, 111syl 17 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
113112ancoms 458 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
114 subdi 11545 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
11513, 114mp3an1 1450 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
116115ancoms 458 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
117116eqeq1d 2733 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((2 · (𝑘𝑛)) = 1 ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
118113, 117bitrd 279 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
119100, 93, 118syl2an 596 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
120 zsubcl 12509 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑘𝑛) ∈ ℤ)
121 eleq1 2819 . . . . . . . . . . . 12 ((𝑘𝑛) = (1 / 2) → ((𝑘𝑛) ∈ ℤ ↔ (1 / 2) ∈ ℤ))
122120, 121syl5ibcom 245 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) → (1 / 2) ∈ ℤ))
123122ancoms 458 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) → (1 / 2) ∈ ℤ))
124119, 123sylbird 260 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 → (1 / 2) ∈ ℤ))
125105, 124sylbird 260 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (2 · 𝑘) → (1 / 2) ∈ ℤ))
12697, 125sylbid 240 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (𝑘 · 2) → (1 / 2) ∈ ℤ))
12792, 126syl5 34 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ))
128127rexlimivv 3174 . . . . 5 (∃𝑛 ∈ ℤ ∃𝑘 ∈ ℤ (((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ)
12991, 128sylbir 235 . . . 4 ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ)
13090, 129mto 197 . . 3 ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
131 pm5.17 1013 . . . 4 (((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ∧ ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
132 bicom 222 . . . 4 ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ↔ (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
133131, 132bitri 275 . . 3 (((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ∧ ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) ↔ (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
13489, 130, 133sylanblc 589 . 2 (𝑁 ∈ ℤ → (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
1354, 134bitrd 279 1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5086  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  cmin 11339  -cneg 11340   / cdiv 11769  2c2 12175  0cn0 12376  cz 12463  cdvds 16158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-dvds 16159
This theorem is referenced by:  oddm1even  16249  oexpneg  16251  mod2eq1n2dvds  16253  oddnn02np1  16254  2tp1odd  16258  sqoddm1div8z  16260  ltoddhalfle  16267  halfleoddlt  16268  opoe  16269  omoe  16270  opeo  16271  omeo  16272  m1expo  16281  m1exp1  16282  flodddiv4  16321  iserodd  16742  lgsquadlem1  27313  knoppndvlem9  36554  coskpi2  45904  cosknegpi  45907  stirlinglem5  46116  fourierswlem  46268  fmtnoodd  47564  dfodd3  47681
  Copyright terms: Public domain W3C validator