MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odd2np1 Structured version   Visualization version   GIF version

Theorem odd2np1 16048
Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem odd2np1
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 12352 . . . 4 2 ∈ ℤ
2 divides 15963 . . . 4 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
31, 2mpan 687 . . 3 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
43notbid 318 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
5 elznn0 12334 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
6 odd2np1lem 16047 . . . . . 6 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
76adantl 482 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
8 peano2z 12361 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℤ)
9 znegcl 12355 . . . . . . . . . . 11 ((𝑥 + 1) ∈ ℤ → -(𝑥 + 1) ∈ ℤ)
108, 9syl 17 . . . . . . . . . 10 (𝑥 ∈ ℤ → -(𝑥 + 1) ∈ ℤ)
1110ad2antlr 724 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → -(𝑥 + 1) ∈ ℤ)
12 zcn 12324 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
13 2cn 12048 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
14 mulcl 10956 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
1513, 14mpan 687 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (2 · 𝑥) ∈ ℂ)
16 peano2cn 11147 . . . . . . . . . . . . . . 15 ((2 · 𝑥) ∈ ℂ → ((2 · 𝑥) + 1) ∈ ℂ)
1715, 16syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((2 · 𝑥) + 1) ∈ ℂ)
1812, 17syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) ∈ ℂ)
1918adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((2 · 𝑥) + 1) ∈ ℂ)
20 simpl 483 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℝ)
2120recnd 11004 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℂ)
22 negcon2 11274 . . . . . . . . . . . 12 ((((2 · 𝑥) + 1) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((2 · 𝑥) + 1) = -𝑁𝑁 = -((2 · 𝑥) + 1)))
2319, 21, 22syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = -𝑁𝑁 = -((2 · 𝑥) + 1)))
24 eqcom 2747 . . . . . . . . . . . 12 (𝑁 = -((2 · 𝑥) + 1) ↔ -((2 · 𝑥) + 1) = 𝑁)
2513, 12, 14sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
26 ax-1cn 10930 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
2713, 26mulcli 10983 . . . . . . . . . . . . . . . . . . . 20 (2 · 1) ∈ ℂ
28 addsubass 11231 . . . . . . . . . . . . . . . . . . . 20 (((2 · 𝑥) ∈ ℂ ∧ (2 · 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
2927, 26, 28mp3an23 1452 . . . . . . . . . . . . . . . . . . 19 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
3025, 29syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
31 2t1e2 12136 . . . . . . . . . . . . . . . . . . . . 21 (2 · 1) = 2
3231oveq1i 7281 . . . . . . . . . . . . . . . . . . . 20 ((2 · 1) − 1) = (2 − 1)
33 2m1e1 12099 . . . . . . . . . . . . . . . . . . . 20 (2 − 1) = 1
3432, 33eqtri 2768 . . . . . . . . . . . . . . . . . . 19 ((2 · 1) − 1) = 1
3534oveq2i 7282 . . . . . . . . . . . . . . . . . 18 ((2 · 𝑥) + ((2 · 1) − 1)) = ((2 · 𝑥) + 1)
3630, 35eqtr2di 2797 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) = (((2 · 𝑥) + (2 · 1)) − 1))
37 adddi 10961 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
3813, 26, 37mp3an13 1451 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
3912, 38syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
4039oveq1d 7286 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → ((2 · (𝑥 + 1)) − 1) = (((2 · 𝑥) + (2 · 1)) − 1))
4136, 40eqtr4d 2783 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) = ((2 · (𝑥 + 1)) − 1))
4241negeqd 11215 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → -((2 · 𝑥) + 1) = -((2 · (𝑥 + 1)) − 1))
438zcnd 12426 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℂ)
44 mulneg2 11412 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝑥 + 1) ∈ ℂ) → (2 · -(𝑥 + 1)) = -(2 · (𝑥 + 1)))
4513, 43, 44sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (2 · -(𝑥 + 1)) = -(2 · (𝑥 + 1)))
4645oveq1d 7286 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → ((2 · -(𝑥 + 1)) + 1) = (-(2 · (𝑥 + 1)) + 1))
47 mulcl 10956 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝑥 + 1) ∈ ℂ) → (2 · (𝑥 + 1)) ∈ ℂ)
4813, 43, 47sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (2 · (𝑥 + 1)) ∈ ℂ)
49 negsubdi 11277 . . . . . . . . . . . . . . . . 17 (((2 · (𝑥 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → -((2 · (𝑥 + 1)) − 1) = (-(2 · (𝑥 + 1)) + 1))
5048, 26, 49sylancl 586 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → -((2 · (𝑥 + 1)) − 1) = (-(2 · (𝑥 + 1)) + 1))
5146, 50eqtr4d 2783 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → ((2 · -(𝑥 + 1)) + 1) = -((2 · (𝑥 + 1)) − 1))
5242, 51eqtr4d 2783 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → -((2 · 𝑥) + 1) = ((2 · -(𝑥 + 1)) + 1))
5352adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → -((2 · 𝑥) + 1) = ((2 · -(𝑥 + 1)) + 1))
5453eqeq1d 2742 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-((2 · 𝑥) + 1) = 𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5524, 54syl5bb 283 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑁 = -((2 · 𝑥) + 1) ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5623, 55bitrd 278 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = -𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5756biimpa 477 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → ((2 · -(𝑥 + 1)) + 1) = 𝑁)
58 oveq2 7279 . . . . . . . . . . . 12 (𝑛 = -(𝑥 + 1) → (2 · 𝑛) = (2 · -(𝑥 + 1)))
5958oveq1d 7286 . . . . . . . . . . 11 (𝑛 = -(𝑥 + 1) → ((2 · 𝑛) + 1) = ((2 · -(𝑥 + 1)) + 1))
6059eqeq1d 2742 . . . . . . . . . 10 (𝑛 = -(𝑥 + 1) → (((2 · 𝑛) + 1) = 𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
6160rspcev 3561 . . . . . . . . 9 ((-(𝑥 + 1) ∈ ℤ ∧ ((2 · -(𝑥 + 1)) + 1) = 𝑁) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
6211, 57, 61syl2anc 584 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
6362rexlimdva2 3218 . . . . . . 7 (𝑁 ∈ ℝ → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
64 znegcl 12355 . . . . . . . . . 10 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6564ad2antlr 724 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → -𝑦 ∈ ℤ)
66 zcn 12324 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
67 mulcl 10956 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑦 · 2) ∈ ℂ)
6866, 13, 67sylancl 586 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (𝑦 · 2) ∈ ℂ)
69 recn 10962 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
70 negcon2 11274 . . . . . . . . . . . 12 (((𝑦 · 2) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑦 · 2) = -𝑁𝑁 = -(𝑦 · 2)))
7168, 69, 70syl2anr 597 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((𝑦 · 2) = -𝑁𝑁 = -(𝑦 · 2)))
72 eqcom 2747 . . . . . . . . . . . 12 (𝑁 = -(𝑦 · 2) ↔ -(𝑦 · 2) = 𝑁)
73 mulneg1 11411 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (-𝑦 · 2) = -(𝑦 · 2))
7466, 13, 73sylancl 586 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (-𝑦 · 2) = -(𝑦 · 2))
7574adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (-𝑦 · 2) = -(𝑦 · 2))
7675eqeq1d 2742 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((-𝑦 · 2) = 𝑁 ↔ -(𝑦 · 2) = 𝑁))
7772, 76bitr4id 290 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (𝑁 = -(𝑦 · 2) ↔ (-𝑦 · 2) = 𝑁))
7871, 77bitrd 278 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((𝑦 · 2) = -𝑁 ↔ (-𝑦 · 2) = 𝑁))
7978biimpa 477 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → (-𝑦 · 2) = 𝑁)
80 oveq1 7278 . . . . . . . . . . 11 (𝑘 = -𝑦 → (𝑘 · 2) = (-𝑦 · 2))
8180eqeq1d 2742 . . . . . . . . . 10 (𝑘 = -𝑦 → ((𝑘 · 2) = 𝑁 ↔ (-𝑦 · 2) = 𝑁))
8281rspcev 3561 . . . . . . . . 9 ((-𝑦 ∈ ℤ ∧ (-𝑦 · 2) = 𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
8365, 79, 82syl2anc 584 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
8483rexlimdva2 3218 . . . . . . 7 (𝑁 ∈ ℝ → (∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁 → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
8563, 84orim12d 962 . . . . . 6 (𝑁 ∈ ℝ → ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
86 odd2np1lem 16047 . . . . . 6 (-𝑁 ∈ ℕ0 → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁))
8785, 86impel 506 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
887, 87jaodan 955 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
895, 88sylbi 216 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
90 halfnz 12398 . . . 4 ¬ (1 / 2) ∈ ℤ
91 reeanv 3295 . . . . 5 (∃𝑛 ∈ ℤ ∃𝑘 ∈ ℤ (((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
92 eqtr3 2766 . . . . . . 7 ((((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → ((2 · 𝑛) + 1) = (𝑘 · 2))
93 zcn 12324 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
94 mulcom 10958 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑘 · 2) = (2 · 𝑘))
9593, 13, 94sylancl 586 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 · 2) = (2 · 𝑘))
9695eqeq2d 2751 . . . . . . . . 9 (𝑘 ∈ ℤ → (((2 · 𝑛) + 1) = (𝑘 · 2) ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
9796adantl 482 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (𝑘 · 2) ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
98 mulcl 10956 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
9913, 93, 98sylancr 587 . . . . . . . . . 10 (𝑘 ∈ ℤ → (2 · 𝑘) ∈ ℂ)
100 zcn 12324 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
101 mulcl 10956 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
10213, 100, 101sylancr 587 . . . . . . . . . 10 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
103 subadd 11224 . . . . . . . . . . 11 (((2 · 𝑘) ∈ ℂ ∧ (2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
10426, 103mp3an3 1449 . . . . . . . . . 10 (((2 · 𝑘) ∈ ℂ ∧ (2 · 𝑛) ∈ ℂ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
10599, 102, 104syl2anr 597 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
106 subcl 11220 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑘𝑛) ∈ ℂ)
107 2cnne0 12183 . . . . . . . . . . . . . . 15 (2 ∈ ℂ ∧ 2 ≠ 0)
108 eqcom 2747 . . . . . . . . . . . . . . . 16 ((𝑘𝑛) = (1 / 2) ↔ (1 / 2) = (𝑘𝑛))
109 divmul 11636 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((1 / 2) = (𝑘𝑛) ↔ (2 · (𝑘𝑛)) = 1))
110108, 109syl5bb 283 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
11126, 107, 110mp3an13 1451 . . . . . . . . . . . . . 14 ((𝑘𝑛) ∈ ℂ → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
112106, 111syl 17 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
113112ancoms 459 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
114 subdi 11408 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
11513, 114mp3an1 1447 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
116115ancoms 459 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
117116eqeq1d 2742 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((2 · (𝑘𝑛)) = 1 ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
118113, 117bitrd 278 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
119100, 93, 118syl2an 596 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
120 zsubcl 12362 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑘𝑛) ∈ ℤ)
121 eleq1 2828 . . . . . . . . . . . 12 ((𝑘𝑛) = (1 / 2) → ((𝑘𝑛) ∈ ℤ ↔ (1 / 2) ∈ ℤ))
122120, 121syl5ibcom 244 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) → (1 / 2) ∈ ℤ))
123122ancoms 459 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) → (1 / 2) ∈ ℤ))
124119, 123sylbird 259 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 → (1 / 2) ∈ ℤ))
125105, 124sylbird 259 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (2 · 𝑘) → (1 / 2) ∈ ℤ))
12697, 125sylbid 239 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (𝑘 · 2) → (1 / 2) ∈ ℤ))
12792, 126syl5 34 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ))
128127rexlimivv 3223 . . . . 5 (∃𝑛 ∈ ℤ ∃𝑘 ∈ ℤ (((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ)
12991, 128sylbir 234 . . . 4 ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ)
13090, 129mto 196 . . 3 ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
131 pm5.17 1009 . . . 4 (((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ∧ ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
132 bicom 221 . . . 4 ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ↔ (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
133131, 132bitri 274 . . 3 (((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ∧ ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) ↔ (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
13489, 130, 133sylanblc 589 . 2 (𝑁 ∈ ℤ → (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
1354, 134bitrd 278 1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wrex 3067   class class class wbr 5079  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  0cn0 12233  cz 12319  cdvds 15961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-dvds 15962
This theorem is referenced by:  oddm1even  16050  oexpneg  16052  mod2eq1n2dvds  16054  oddnn02np1  16055  2tp1odd  16059  sqoddm1div8z  16061  ltoddhalfle  16068  halfleoddlt  16069  opoe  16070  omoe  16071  opeo  16072  omeo  16073  m1expo  16082  m1exp1  16083  flodddiv4  16120  iserodd  16534  lgsquadlem1  26526  knoppndvlem9  34696  coskpi2  43378  cosknegpi  43381  stirlinglem5  43590  fourierswlem  43742  fmtnoodd  44954  dfodd3  45071
  Copyright terms: Public domain W3C validator