MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm2 Structured version   Visualization version   GIF version

Theorem isprm2 16715
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 1nprm 16712 . . . . 5 ¬ 1 ∈ ℙ
2 eleq1 2826 . . . . . 6 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
32biimpcd 249 . . . . 5 (𝑃 ∈ ℙ → (𝑃 = 1 → 1 ∈ ℙ))
41, 3mtoi 199 . . . 4 (𝑃 ∈ ℙ → ¬ 𝑃 = 1)
54neqned 2944 . . 3 (𝑃 ∈ ℙ → 𝑃 ≠ 1)
65pm4.71i 559 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 1))
7 isprm 16706 . . . 4 (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
8 isprm2lem 16714 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
9 eqss 4010 . . . . . . . . . . 11 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} ↔ ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃}))
109imbi2i 336 . . . . . . . . . 10 ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}) ↔ (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})))
11 1idssfct 16713 . . . . . . . . . . 11 (𝑃 ∈ ℕ → {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
12 jcab 517 . . . . . . . . . . 11 ((𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})) ↔ ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ (𝑃 ∈ ℕ → {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})))
1311, 12mpbiran2 710 . . . . . . . . . 10 ((𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑃})) ↔ (𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1410, 13bitri 275 . . . . . . . . 9 ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}) ↔ (𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1514pm5.74ri 272 . . . . . . . 8 (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1615adantr 480 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
178, 16bitrd 279 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
1817expcom 413 . . . . 5 (𝑃 ≠ 1 → (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
1918pm5.32d 577 . . . 4 (𝑃 ≠ 1 → ((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o) ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
207, 19bitrid 283 . . 3 (𝑃 ≠ 1 → (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
2120pm5.32ri 575 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 1) ↔ ((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1))
22 ancom 460 . . . 4 (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ (𝑃 ≠ 1 ∧ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
23 anass 468 . . . 4 (((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ≠ 1 ∧ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃})))
2422, 23bitr4i 278 . . 3 (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
25 ancom 460 . . . . 5 ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ↔ (𝑃 ∈ ℕ ∧ 𝑃 ≠ 1))
26 eluz2b3 12961 . . . . 5 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 𝑃 ≠ 1))
2725, 26bitr4i 278 . . . 4 ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ↔ 𝑃 ∈ (ℤ‘2))
2827anbi1i 624 . . 3 (((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ∈ (ℤ‘2) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}))
29 df-ss 3979 . . . . 5 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ↔ ∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}))
30 breq1 5150 . . . . . . . . . 10 (𝑛 = 𝑧 → (𝑛𝑃𝑧𝑃))
3130elrab 3694 . . . . . . . . 9 (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ (𝑧 ∈ ℕ ∧ 𝑧𝑃))
32 vex 3481 . . . . . . . . . 10 𝑧 ∈ V
3332elpr 4654 . . . . . . . . 9 (𝑧 ∈ {1, 𝑃} ↔ (𝑧 = 1 ∨ 𝑧 = 𝑃))
3431, 33imbi12i 350 . . . . . . . 8 ((𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ((𝑧 ∈ ℕ ∧ 𝑧𝑃) → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
35 impexp 450 . . . . . . . 8 (((𝑧 ∈ ℕ ∧ 𝑧𝑃) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3634, 35bitri 275 . . . . . . 7 ((𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3736albii 1815 . . . . . 6 (∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ∀𝑧(𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
38 df-ral 3059 . . . . . 6 (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ∀𝑧(𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
3937, 38bitr4i 278 . . . . 5 (∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
4029, 39bitri 275 . . . 4 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃} ↔ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
4140anbi2i 623 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
4224, 28, 413bitri 297 . 2 (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
436, 21, 423bitri 297 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wal 1534   = wceq 1536  wcel 2105  wne 2937  wral 3058  {crab 3432  wss 3962  {cpr 4632   class class class wbr 5147  cfv 6562  2oc2o 8498  cen 8980  1c1 11153  cn 12263  2c2 12318  cuz 12875  cdvds 16286  cprime 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-prm 16705
This theorem is referenced by:  isprm3  16716  isprm4  16717  dvdsprime  16720  coprm  16744  isprm6  16747  ablsimpgprmd  20149  prmirredlem  21500  znidomb  21597  perfectlem2  27288  perfectALTVlem2  47646
  Copyright terms: Public domain W3C validator