Step | Hyp | Ref
| Expression |
1 | | 1nprm 16384 |
. . . . 5
⊢ ¬ 1
∈ ℙ |
2 | | eleq1 2826 |
. . . . . 6
⊢ (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈
ℙ)) |
3 | 2 | biimpcd 248 |
. . . . 5
⊢ (𝑃 ∈ ℙ → (𝑃 = 1 → 1 ∈
ℙ)) |
4 | 1, 3 | mtoi 198 |
. . . 4
⊢ (𝑃 ∈ ℙ → ¬
𝑃 = 1) |
5 | 4 | neqned 2950 |
. . 3
⊢ (𝑃 ∈ ℙ → 𝑃 ≠ 1) |
6 | 5 | pm4.71i 560 |
. 2
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 1)) |
7 | | isprm 16378 |
. . . 4
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
8 | | isprm2lem 16386 |
. . . . . . 7
⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃})) |
9 | | eqss 3936 |
. . . . . . . . . . 11
⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃} ↔ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃})) |
10 | 9 | imbi2i 336 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃}) ↔ (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}))) |
11 | | 1idssfct 16385 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℕ → {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}) |
12 | | jcab 518 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃})) ↔ ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ∧ (𝑃 ∈ ℕ → {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}))) |
13 | 11, 12 | mpbiran2 707 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃} ∧ {1, 𝑃} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃})) ↔ (𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) |
14 | 10, 13 | bitri 274 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃}) ↔ (𝑃 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) |
15 | 14 | pm5.74ri 271 |
. . . . . . . 8
⊢ (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃} ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) |
16 | 15 | adantr 481 |
. . . . . . 7
⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃} ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) |
17 | 8, 16 | bitrd 278 |
. . . . . 6
⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) |
18 | 17 | expcom 414 |
. . . . 5
⊢ (𝑃 ≠ 1 → (𝑃 ∈ ℕ → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}))) |
19 | 18 | pm5.32d 577 |
. . . 4
⊢ (𝑃 ≠ 1 → ((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o) ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}))) |
20 | 7, 19 | bitrid 282 |
. . 3
⊢ (𝑃 ≠ 1 → (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}))) |
21 | 20 | pm5.32ri 576 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 1) ↔ ((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1)) |
22 | | ancom 461 |
. . . 4
⊢ (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ (𝑃 ≠ 1 ∧ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}))) |
23 | | anass 469 |
. . . 4
⊢ (((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ≠ 1 ∧ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}))) |
24 | 22, 23 | bitr4i 277 |
. . 3
⊢ (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) |
25 | | ancom 461 |
. . . . 5
⊢ ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ↔ (𝑃 ∈ ℕ ∧ 𝑃 ≠ 1)) |
26 | | eluz2b3 12662 |
. . . . 5
⊢ (𝑃 ∈
(ℤ≥‘2) ↔ (𝑃 ∈ ℕ ∧ 𝑃 ≠ 1)) |
27 | 25, 26 | bitr4i 277 |
. . . 4
⊢ ((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ↔ 𝑃 ∈
(ℤ≥‘2)) |
28 | 27 | anbi1i 624 |
. . 3
⊢ (((𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ∈ (ℤ≥‘2)
∧ {𝑛 ∈ ℕ
∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃})) |
29 | | dfss2 3907 |
. . . . 5
⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃} ↔ ∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} → 𝑧 ∈ {1, 𝑃})) |
30 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑧 → (𝑛 ∥ 𝑃 ↔ 𝑧 ∥ 𝑃)) |
31 | 30 | elrab 3624 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃)) |
32 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
33 | 32 | elpr 4584 |
. . . . . . . . 9
⊢ (𝑧 ∈ {1, 𝑃} ↔ (𝑧 = 1 ∨ 𝑧 = 𝑃)) |
34 | 31, 33 | imbi12i 351 |
. . . . . . . 8
⊢ ((𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ((𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃) → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
35 | | impexp 451 |
. . . . . . . 8
⊢ (((𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃) → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
36 | 34, 35 | bitri 274 |
. . . . . . 7
⊢ ((𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
37 | 36 | albii 1822 |
. . . . . 6
⊢
(∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ∀𝑧(𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
38 | | df-ral 3069 |
. . . . . 6
⊢
(∀𝑧 ∈
ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ∀𝑧(𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
39 | 37, 38 | bitr4i 277 |
. . . . 5
⊢
(∀𝑧(𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} → 𝑧 ∈ {1, 𝑃}) ↔ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
40 | 29, 39 | bitri 274 |
. . . 4
⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃} ↔ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
41 | 40 | anbi2i 623 |
. . 3
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ↔ (𝑃 ∈ (ℤ≥‘2)
∧ ∀𝑧 ∈
ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
42 | 24, 28, 41 | 3bitri 297 |
. 2
⊢ (((𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ⊆ {1, 𝑃}) ∧ 𝑃 ≠ 1) ↔ (𝑃 ∈ (ℤ≥‘2)
∧ ∀𝑧 ∈
ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
43 | 6, 21, 42 | 3bitri 297 |
1
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |