Step | Hyp | Ref
| Expression |
1 | | ufilfil 22210 |
. . . . 5
⊢ (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (Fil‘𝑋)) |
2 | | ufilmax 22213 |
. . . . . . . 8
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑓) → 𝐹 = 𝑓) |
3 | 2 | 3expa 1098 |
. . . . . . 7
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑓) → 𝐹 = 𝑓) |
4 | 3 | eqcomd 2778 |
. . . . . 6
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑓) → 𝑓 = 𝐹) |
5 | 4 | ex 405 |
. . . . 5
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋)) → (𝐹 ⊆ 𝑓 → 𝑓 = 𝐹)) |
6 | 1, 5 | sylan2 583 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → (𝐹 ⊆ 𝑓 → 𝑓 = 𝐹)) |
7 | 6 | ralrimiva 3126 |
. . 3
⊢ (𝐹 ∈ (UFil‘𝑋) → ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 → 𝑓 = 𝐹)) |
8 | | ssid 3873 |
. . . 4
⊢ 𝐹 ⊆ 𝐹 |
9 | | sseq2 3877 |
. . . . 5
⊢ (𝑓 = 𝐹 → (𝐹 ⊆ 𝑓 ↔ 𝐹 ⊆ 𝐹)) |
10 | 9 | eqreu 3626 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 ⊆ 𝐹 ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 → 𝑓 = 𝐹)) → ∃!𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
11 | 8, 10 | mp3an2 1428 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 → 𝑓 = 𝐹)) → ∃!𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
12 | 7, 11 | mpdan 674 |
. 2
⊢ (𝐹 ∈ (UFil‘𝑋) → ∃!𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
13 | | reu6 3623 |
. . 3
⊢
(∃!𝑓 ∈
(UFil‘𝑋)𝐹 ⊆ 𝑓 ↔ ∃𝑔 ∈ (UFil‘𝑋)∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) |
14 | | ibibr 361 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝑔 → 𝐹 ⊆ 𝑓) ↔ (𝑓 = 𝑔 → (𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔))) |
15 | 14 | pm5.74ri 264 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝐹 ⊆ 𝑓 ↔ (𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔))) |
16 | | sseq2 3877 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝐹 ⊆ 𝑓 ↔ 𝐹 ⊆ 𝑔)) |
17 | 15, 16 | bitr3d 273 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → ((𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) ↔ 𝐹 ⊆ 𝑔)) |
18 | 17 | rspcva 3527 |
. . . . . . 7
⊢ ((𝑔 ∈ (UFil‘𝑋) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → 𝐹 ⊆ 𝑔) |
19 | 18 | adantll 701 |
. . . . . 6
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → 𝐹 ⊆ 𝑔) |
20 | | ufilfil 22210 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (UFil‘𝑋) → 𝑔 ∈ (Fil‘𝑋)) |
21 | | filelss 22158 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝑔) → 𝑥 ⊆ 𝑋) |
22 | 21 | ex 405 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝑔 → 𝑥 ⊆ 𝑋)) |
23 | 20, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝑔 ∈ (UFil‘𝑋) → (𝑥 ∈ 𝑔 → 𝑥 ⊆ 𝑋)) |
24 | 23 | ad2antlr 714 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → (𝑥 ∈ 𝑔 → 𝑥 ⊆ 𝑋)) |
25 | | filsspw 22157 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) |
26 | 25 | ad2antrr 713 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝐹 ⊆ 𝒫 𝑋) |
27 | | difss 3992 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑋 ∖ 𝑥) ⊆ 𝑋 |
28 | | filtop 22161 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
29 | 28 | ad2antrr 713 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝑋 ∈ 𝐹) |
30 | | difexg 5081 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑋 ∈ 𝐹 → (𝑋 ∖ 𝑥) ∈ V) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ V) |
32 | | elpwg 4424 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑋 ∖ 𝑥) ∈ V → ((𝑋 ∖ 𝑥) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ 𝑥) ⊆ 𝑋)) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((𝑋 ∖ 𝑥) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ 𝑥) ⊆ 𝑋)) |
34 | 27, 33 | mpbiri 250 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ 𝒫 𝑋) |
35 | 34 | snssd 4610 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → {(𝑋 ∖ 𝑥)} ⊆ 𝒫 𝑋) |
36 | 26, 35 | unssd 4044 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ⊆ 𝒫 𝑋) |
37 | | ssun1 4031 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐹 ⊆ (𝐹 ∪ {(𝑋 ∖ 𝑥)}) |
38 | | filn0 22168 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) |
39 | 38 | ad2antrr 713 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝐹 ≠ ∅) |
40 | | ssn0 4234 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 ⊆ (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ∧ 𝐹 ≠ ∅) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ≠ ∅) |
41 | 37, 39, 40 | sylancr 578 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ≠ ∅) |
42 | | filelss 22158 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑓 ∈ 𝐹) → 𝑓 ⊆ 𝑋) |
43 | 42 | ad2ant2rl 736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹)) → 𝑓 ⊆ 𝑋) |
44 | | df-ss 3837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 ⊆ 𝑋 ↔ (𝑓 ∩ 𝑋) = 𝑓) |
45 | 43, 44 | sylib 210 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹)) → (𝑓 ∩ 𝑋) = 𝑓) |
46 | 45 | sseq1d 3882 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹)) → ((𝑓 ∩ 𝑋) ⊆ 𝑥 ↔ 𝑓 ⊆ 𝑥)) |
47 | | filss 22159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑓 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑓 ⊆ 𝑥)) → 𝑥 ∈ 𝐹) |
48 | 47 | 3exp2 1334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑓 ∈ 𝐹 → (𝑥 ⊆ 𝑋 → (𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹)))) |
49 | 48 | impcomd 403 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹) → (𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹))) |
50 | 49 | adantr 473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) → ((𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹) → (𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹))) |
51 | 50 | imp 398 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹)) → (𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹)) |
52 | 46, 51 | sylbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹)) → ((𝑓 ∩ 𝑋) ⊆ 𝑥 → 𝑥 ∈ 𝐹)) |
53 | 52 | con3d 150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹)) → (¬ 𝑥 ∈ 𝐹 → ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥)) |
54 | 53 | expr 449 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ 𝑥 ⊆ 𝑋) → (𝑓 ∈ 𝐹 → (¬ 𝑥 ∈ 𝐹 → ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥))) |
55 | 54 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ 𝑥 ⊆ 𝑋) → (¬ 𝑥 ∈ 𝐹 → (𝑓 ∈ 𝐹 → ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥))) |
56 | 55 | impr 447 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑓 ∈ 𝐹 → ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥)) |
57 | 56 | imp 398 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) ∧ 𝑓 ∈ 𝐹) → ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥) |
58 | | ineq2 4064 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑔 = (𝑋 ∖ 𝑥) → (𝑓 ∩ 𝑔) = (𝑓 ∩ (𝑋 ∖ 𝑥))) |
59 | 58 | neeq1d 3020 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑔 = (𝑋 ∖ 𝑥) → ((𝑓 ∩ 𝑔) ≠ ∅ ↔ (𝑓 ∩ (𝑋 ∖ 𝑥)) ≠ ∅)) |
60 | 59 | ralsng 4481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑋 ∖ 𝑥) ∈ V → (∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅ ↔ (𝑓 ∩ (𝑋 ∖ 𝑥)) ≠ ∅)) |
61 | | inssdif0 4209 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∩ 𝑋) ⊆ 𝑥 ↔ (𝑓 ∩ (𝑋 ∖ 𝑥)) = ∅) |
62 | 61 | necon3bbii 3008 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (¬
(𝑓 ∩ 𝑋) ⊆ 𝑥 ↔ (𝑓 ∩ (𝑋 ∖ 𝑥)) ≠ ∅) |
63 | 60, 62 | syl6bbr 281 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑋 ∖ 𝑥) ∈ V → (∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅ ↔ ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥)) |
64 | 31, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅ ↔ ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥)) |
65 | 64 | adantr 473 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) ∧ 𝑓 ∈ 𝐹) → (∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅ ↔ ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥)) |
66 | 57, 65 | mpbird 249 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) ∧ 𝑓 ∈ 𝐹) → ∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅) |
67 | 66 | ralrimiva 3126 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅) |
68 | | filfbas 22154 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
69 | 68 | ad2antrr 713 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝐹 ∈ (fBas‘𝑋)) |
70 | | difssd 3993 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ⊆ 𝑋) |
71 | | ssdif0 4203 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑋 ⊆ 𝑥 ↔ (𝑋 ∖ 𝑥) = ∅) |
72 | | eqss 3867 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = 𝑋 ↔ (𝑥 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑥)) |
73 | 72 | simplbi2 493 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 ⊆ 𝑋 → (𝑋 ⊆ 𝑥 → 𝑥 = 𝑋)) |
74 | | eleq1 2847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐹 ↔ 𝑋 ∈ 𝐹)) |
75 | 74 | notbid 310 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = 𝑋 → (¬ 𝑥 ∈ 𝐹 ↔ ¬ 𝑋 ∈ 𝐹)) |
76 | 75 | biimpcd 241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (¬
𝑥 ∈ 𝐹 → (𝑥 = 𝑋 → ¬ 𝑋 ∈ 𝐹)) |
77 | 73, 76 | sylan9 500 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹) → (𝑋 ⊆ 𝑥 → ¬ 𝑋 ∈ 𝐹)) |
78 | 77 | adantl 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ⊆ 𝑥 → ¬ 𝑋 ∈ 𝐹)) |
79 | 71, 78 | syl5bir 235 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((𝑋 ∖ 𝑥) = ∅ → ¬ 𝑋 ∈ 𝐹)) |
80 | 79 | necon2ad 2976 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∈ 𝐹 → (𝑋 ∖ 𝑥) ≠ ∅)) |
81 | 29, 80 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ≠ ∅) |
82 | | snfbas 22172 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑋 ∖ 𝑥) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑥) ≠ ∅ ∧ 𝑋 ∈ 𝐹) → {(𝑋 ∖ 𝑥)} ∈ (fBas‘𝑋)) |
83 | 70, 81, 29, 82 | syl3anc 1351 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → {(𝑋 ∖ 𝑥)} ∈ (fBas‘𝑋)) |
84 | | fbunfip 22175 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ {(𝑋 ∖ 𝑥)} ∈ (fBas‘𝑋)) → (¬ ∅ ∈
(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ↔ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅)) |
85 | 69, 83, 84 | syl2anc 576 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (¬ ∅ ∈
(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ↔ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅)) |
86 | 67, 85 | mpbird 249 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ¬ ∅ ∈
(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) |
87 | | fsubbas 22173 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑋 ∈ 𝐹 → ((fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {(𝑋 ∖ 𝑥)}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))))) |
88 | 29, 87 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {(𝑋 ∖ 𝑥)}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))))) |
89 | 36, 41, 86, 88 | mpbir3and 1322 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ∈ (fBas‘𝑋)) |
90 | | fgcl 22184 |
. . . . . . . . . . . . . . . . . . 19
⊢
((fi‘(𝐹 ∪
{(𝑋 ∖ 𝑥)})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ∈ (Fil‘𝑋)) |
91 | 89, 90 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ∈ (Fil‘𝑋)) |
92 | | filssufil 22218 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓) |
93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓) |
94 | | r19.29 3194 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑓 ∈
(UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) ∧ ∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓) → ∃𝑓 ∈ (UFil‘𝑋)((𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓)) |
95 | | biimp 207 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) → (𝐹 ⊆ 𝑓 → 𝑓 = 𝑔)) |
96 | | simpll 754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝐹 ∈ (Fil‘𝑋)) |
97 | | snex 5182 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {(𝑋 ∖ 𝑥)} ∈ V |
98 | | unexg 7283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ {(𝑋 ∖ 𝑥)} ∈ V) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ∈ V) |
99 | 96, 97, 98 | sylancl 577 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ∈ V) |
100 | | ssfii 8672 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐹 ∪ {(𝑋 ∖ 𝑥)}) ∈ V → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ⊆ (fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) |
101 | 99, 100 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ⊆ (fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) |
102 | | ssfg 22178 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((fi‘(𝐹 ∪
{(𝑋 ∖ 𝑥)})) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})))) |
103 | 89, 102 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})))) |
104 | 101, 103 | sstrd 3862 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})))) |
105 | 104 | unssad 4045 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})))) |
106 | | sstr2 3859 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → 𝐹 ⊆ 𝑓)) |
107 | 105, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → 𝐹 ⊆ 𝑓)) |
108 | 107 | imim1d 82 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((𝐹 ⊆ 𝑓 → 𝑓 = 𝑔) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → 𝑓 = 𝑔))) |
109 | | sseq2 3877 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑔 → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 ↔ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
110 | 109 | biimpcd 241 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → (𝑓 = 𝑔 → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
111 | 110 | a2i 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → 𝑓 = 𝑔) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
112 | 95, 108, 111 | syl56 36 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔))) |
113 | 112 | impd 402 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (((𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
114 | 113 | rexlimdvw 3229 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (∃𝑓 ∈ (UFil‘𝑋)((𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
115 | 94, 114 | syl5 34 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) ∧ ∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
116 | 93, 115 | mpan2d 681 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
117 | 116 | imp 398 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔) |
118 | 117 | an32s 639 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔) |
119 | | snidg 4465 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∖ 𝑥) ∈ V → (𝑋 ∖ 𝑥) ∈ {(𝑋 ∖ 𝑥)}) |
120 | 31, 119 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ {(𝑋 ∖ 𝑥)}) |
121 | | elun2 4036 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∖ 𝑥) ∈ {(𝑋 ∖ 𝑥)} → (𝑋 ∖ 𝑥) ∈ (𝐹 ∪ {(𝑋 ∖ 𝑥)})) |
122 | 120, 121 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ (𝐹 ∪ {(𝑋 ∖ 𝑥)})) |
123 | 104, 122 | sseldd 3853 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})))) |
124 | 123 | adantlr 702 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})))) |
125 | 118, 124 | sseldd 3853 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ 𝑔) |
126 | | simpllr 763 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝑔 ∈ (UFil‘𝑋)) |
127 | | simprl 758 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝑥 ⊆ 𝑋) |
128 | | ufilb 22212 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (¬ 𝑥 ∈ 𝑔 ↔ (𝑋 ∖ 𝑥) ∈ 𝑔)) |
129 | 126, 127,
128 | syl2anc 576 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (¬ 𝑥 ∈ 𝑔 ↔ (𝑋 ∖ 𝑥) ∈ 𝑔)) |
130 | 125, 129 | mpbird 249 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ¬ 𝑥 ∈ 𝑔) |
131 | 130 | expr 449 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ 𝑥 ⊆ 𝑋) → (¬ 𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ 𝑔)) |
132 | 131 | con4d 115 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ 𝑔 → 𝑥 ∈ 𝐹)) |
133 | 132 | ex 405 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → (𝑥 ⊆ 𝑋 → (𝑥 ∈ 𝑔 → 𝑥 ∈ 𝐹))) |
134 | 133 | com23 86 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → (𝑥 ∈ 𝑔 → (𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝐹))) |
135 | 24, 134 | mpdd 43 |
. . . . . . 7
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → (𝑥 ∈ 𝑔 → 𝑥 ∈ 𝐹)) |
136 | 135 | ssrdv 3858 |
. . . . . 6
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → 𝑔 ⊆ 𝐹) |
137 | 19, 136 | eqssd 3869 |
. . . . 5
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → 𝐹 = 𝑔) |
138 | | simplr 756 |
. . . . 5
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → 𝑔 ∈ (UFil‘𝑋)) |
139 | 137, 138 | eqeltrd 2860 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → 𝐹 ∈ (UFil‘𝑋)) |
140 | 139 | rexlimdva2 3226 |
. . 3
⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑔 ∈ (UFil‘𝑋)∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) → 𝐹 ∈ (UFil‘𝑋))) |
141 | 13, 140 | syl5bi 234 |
. 2
⊢ (𝐹 ∈ (Fil‘𝑋) → (∃!𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓 → 𝐹 ∈ (UFil‘𝑋))) |
142 | 12, 141 | impbid2 218 |
1
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∈ (UFil‘𝑋) ↔ ∃!𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓)) |