Step | Hyp | Ref
| Expression |
1 | | ufilfil 23064 |
. . . . 5
⊢ (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (Fil‘𝑋)) |
2 | | ufilmax 23067 |
. . . . . . . 8
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑓) → 𝐹 = 𝑓) |
3 | 2 | 3expa 1117 |
. . . . . . 7
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑓) → 𝐹 = 𝑓) |
4 | 3 | eqcomd 2745 |
. . . . . 6
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑓) → 𝑓 = 𝐹) |
5 | 4 | ex 413 |
. . . . 5
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋)) → (𝐹 ⊆ 𝑓 → 𝑓 = 𝐹)) |
6 | 1, 5 | sylan2 593 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → (𝐹 ⊆ 𝑓 → 𝑓 = 𝐹)) |
7 | 6 | ralrimiva 3104 |
. . 3
⊢ (𝐹 ∈ (UFil‘𝑋) → ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 → 𝑓 = 𝐹)) |
8 | | ssid 3944 |
. . . 4
⊢ 𝐹 ⊆ 𝐹 |
9 | | sseq2 3948 |
. . . . 5
⊢ (𝑓 = 𝐹 → (𝐹 ⊆ 𝑓 ↔ 𝐹 ⊆ 𝐹)) |
10 | 9 | eqreu 3665 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 ⊆ 𝐹 ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 → 𝑓 = 𝐹)) → ∃!𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
11 | 8, 10 | mp3an2 1448 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 → 𝑓 = 𝐹)) → ∃!𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
12 | 7, 11 | mpdan 684 |
. 2
⊢ (𝐹 ∈ (UFil‘𝑋) → ∃!𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓) |
13 | | reu6 3662 |
. . 3
⊢
(∃!𝑓 ∈
(UFil‘𝑋)𝐹 ⊆ 𝑓 ↔ ∃𝑔 ∈ (UFil‘𝑋)∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) |
14 | | ibibr 369 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝑔 → 𝐹 ⊆ 𝑓) ↔ (𝑓 = 𝑔 → (𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔))) |
15 | 14 | pm5.74ri 271 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝐹 ⊆ 𝑓 ↔ (𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔))) |
16 | | sseq2 3948 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝐹 ⊆ 𝑓 ↔ 𝐹 ⊆ 𝑔)) |
17 | 15, 16 | bitr3d 280 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → ((𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) ↔ 𝐹 ⊆ 𝑔)) |
18 | 17 | rspcva 3560 |
. . . . . . 7
⊢ ((𝑔 ∈ (UFil‘𝑋) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → 𝐹 ⊆ 𝑔) |
19 | 18 | adantll 711 |
. . . . . 6
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → 𝐹 ⊆ 𝑔) |
20 | | ufilfil 23064 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (UFil‘𝑋) → 𝑔 ∈ (Fil‘𝑋)) |
21 | | filelss 23012 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝑔) → 𝑥 ⊆ 𝑋) |
22 | 21 | ex 413 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝑔 → 𝑥 ⊆ 𝑋)) |
23 | 20, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝑔 ∈ (UFil‘𝑋) → (𝑥 ∈ 𝑔 → 𝑥 ⊆ 𝑋)) |
24 | 23 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → (𝑥 ∈ 𝑔 → 𝑥 ⊆ 𝑋)) |
25 | | filsspw 23011 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) |
26 | 25 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝐹 ⊆ 𝒫 𝑋) |
27 | | difss 4067 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑋 ∖ 𝑥) ⊆ 𝑋 |
28 | | filtop 23015 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
29 | 28 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝑋 ∈ 𝐹) |
30 | 29 | difexd 5254 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ V) |
31 | | elpwg 4537 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑋 ∖ 𝑥) ∈ V → ((𝑋 ∖ 𝑥) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ 𝑥) ⊆ 𝑋)) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((𝑋 ∖ 𝑥) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ 𝑥) ⊆ 𝑋)) |
33 | 27, 32 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ 𝒫 𝑋) |
34 | 33 | snssd 4743 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → {(𝑋 ∖ 𝑥)} ⊆ 𝒫 𝑋) |
35 | 26, 34 | unssd 4121 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ⊆ 𝒫 𝑋) |
36 | | ssun1 4107 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐹 ⊆ (𝐹 ∪ {(𝑋 ∖ 𝑥)}) |
37 | | filn0 23022 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) |
38 | 37 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝐹 ≠ ∅) |
39 | | ssn0 4335 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 ⊆ (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ∧ 𝐹 ≠ ∅) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ≠ ∅) |
40 | 36, 38, 39 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ≠ ∅) |
41 | | filelss 23012 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑓 ∈ 𝐹) → 𝑓 ⊆ 𝑋) |
42 | 41 | ad2ant2rl 746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹)) → 𝑓 ⊆ 𝑋) |
43 | | df-ss 3905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 ⊆ 𝑋 ↔ (𝑓 ∩ 𝑋) = 𝑓) |
44 | 42, 43 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹)) → (𝑓 ∩ 𝑋) = 𝑓) |
45 | 44 | sseq1d 3953 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹)) → ((𝑓 ∩ 𝑋) ⊆ 𝑥 ↔ 𝑓 ⊆ 𝑥)) |
46 | | filss 23013 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑓 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑓 ⊆ 𝑥)) → 𝑥 ∈ 𝐹) |
47 | 46 | 3exp2 1353 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑓 ∈ 𝐹 → (𝑥 ⊆ 𝑋 → (𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹)))) |
48 | 47 | impcomd 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹) → (𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹))) |
49 | 48 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) → ((𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹) → (𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹))) |
50 | 49 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹)) → (𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹)) |
51 | 45, 50 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹)) → ((𝑓 ∩ 𝑋) ⊆ 𝑥 → 𝑥 ∈ 𝐹)) |
52 | 51 | con3d 152 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹)) → (¬ 𝑥 ∈ 𝐹 → ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥)) |
53 | 52 | expr 457 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ 𝑥 ⊆ 𝑋) → (𝑓 ∈ 𝐹 → (¬ 𝑥 ∈ 𝐹 → ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥))) |
54 | 53 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ 𝑥 ⊆ 𝑋) → (¬ 𝑥 ∈ 𝐹 → (𝑓 ∈ 𝐹 → ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥))) |
55 | 54 | impr 455 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑓 ∈ 𝐹 → ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥)) |
56 | 55 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) ∧ 𝑓 ∈ 𝐹) → ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥) |
57 | | ineq2 4141 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑔 = (𝑋 ∖ 𝑥) → (𝑓 ∩ 𝑔) = (𝑓 ∩ (𝑋 ∖ 𝑥))) |
58 | 57 | neeq1d 3004 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑔 = (𝑋 ∖ 𝑥) → ((𝑓 ∩ 𝑔) ≠ ∅ ↔ (𝑓 ∩ (𝑋 ∖ 𝑥)) ≠ ∅)) |
59 | 58 | ralsng 4610 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑋 ∖ 𝑥) ∈ V → (∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅ ↔ (𝑓 ∩ (𝑋 ∖ 𝑥)) ≠ ∅)) |
60 | | inssdif0 4304 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∩ 𝑋) ⊆ 𝑥 ↔ (𝑓 ∩ (𝑋 ∖ 𝑥)) = ∅) |
61 | 60 | necon3bbii 2992 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (¬
(𝑓 ∩ 𝑋) ⊆ 𝑥 ↔ (𝑓 ∩ (𝑋 ∖ 𝑥)) ≠ ∅) |
62 | 59, 61 | bitr4di 289 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑋 ∖ 𝑥) ∈ V → (∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅ ↔ ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥)) |
63 | 30, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅ ↔ ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥)) |
64 | 63 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) ∧ 𝑓 ∈ 𝐹) → (∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅ ↔ ¬ (𝑓 ∩ 𝑋) ⊆ 𝑥)) |
65 | 56, 64 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) ∧ 𝑓 ∈ 𝐹) → ∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅) |
66 | 65 | ralrimiva 3104 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅) |
67 | | filfbas 23008 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
68 | 67 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝐹 ∈ (fBas‘𝑋)) |
69 | | difssd 4068 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ⊆ 𝑋) |
70 | | ssdif0 4298 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑋 ⊆ 𝑥 ↔ (𝑋 ∖ 𝑥) = ∅) |
71 | | eqss 3937 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = 𝑋 ↔ (𝑥 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑥)) |
72 | 71 | simplbi2 501 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 ⊆ 𝑋 → (𝑋 ⊆ 𝑥 → 𝑥 = 𝑋)) |
73 | | eleq1 2827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐹 ↔ 𝑋 ∈ 𝐹)) |
74 | 73 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = 𝑋 → (¬ 𝑥 ∈ 𝐹 ↔ ¬ 𝑋 ∈ 𝐹)) |
75 | 74 | biimpcd 248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (¬
𝑥 ∈ 𝐹 → (𝑥 = 𝑋 → ¬ 𝑋 ∈ 𝐹)) |
76 | 72, 75 | sylan9 508 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹) → (𝑋 ⊆ 𝑥 → ¬ 𝑋 ∈ 𝐹)) |
77 | 76 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ⊆ 𝑥 → ¬ 𝑋 ∈ 𝐹)) |
78 | 70, 77 | syl5bir 242 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((𝑋 ∖ 𝑥) = ∅ → ¬ 𝑋 ∈ 𝐹)) |
79 | 78 | necon2ad 2959 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∈ 𝐹 → (𝑋 ∖ 𝑥) ≠ ∅)) |
80 | 29, 79 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ≠ ∅) |
81 | | snfbas 23026 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑋 ∖ 𝑥) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑥) ≠ ∅ ∧ 𝑋 ∈ 𝐹) → {(𝑋 ∖ 𝑥)} ∈ (fBas‘𝑋)) |
82 | 69, 80, 29, 81 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → {(𝑋 ∖ 𝑥)} ∈ (fBas‘𝑋)) |
83 | | fbunfip 23029 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ {(𝑋 ∖ 𝑥)} ∈ (fBas‘𝑋)) → (¬ ∅ ∈
(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ↔ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅)) |
84 | 68, 82, 83 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (¬ ∅ ∈
(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ↔ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ {(𝑋 ∖ 𝑥)} (𝑓 ∩ 𝑔) ≠ ∅)) |
85 | 66, 84 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ¬ ∅ ∈
(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) |
86 | | fsubbas 23027 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑋 ∈ 𝐹 → ((fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {(𝑋 ∖ 𝑥)}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))))) |
87 | 29, 86 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {(𝑋 ∖ 𝑥)}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))))) |
88 | 35, 40, 85, 87 | mpbir3and 1341 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ∈ (fBas‘𝑋)) |
89 | | fgcl 23038 |
. . . . . . . . . . . . . . . . . . 19
⊢
((fi‘(𝐹 ∪
{(𝑋 ∖ 𝑥)})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ∈ (Fil‘𝑋)) |
90 | 88, 89 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ∈ (Fil‘𝑋)) |
91 | | filssufil 23072 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓) |
92 | 90, 91 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓) |
93 | | r19.29 3185 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑓 ∈
(UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) ∧ ∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓) → ∃𝑓 ∈ (UFil‘𝑋)((𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓)) |
94 | | biimp 214 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) → (𝐹 ⊆ 𝑓 → 𝑓 = 𝑔)) |
95 | | simpll 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝐹 ∈ (Fil‘𝑋)) |
96 | | snex 5355 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {(𝑋 ∖ 𝑥)} ∈ V |
97 | | unexg 7608 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ {(𝑋 ∖ 𝑥)} ∈ V) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ∈ V) |
98 | 95, 96, 97 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ∈ V) |
99 | | ssfii 9187 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐹 ∪ {(𝑋 ∖ 𝑥)}) ∈ V → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ⊆ (fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) |
100 | 98, 99 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ⊆ (fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) |
101 | | ssfg 23032 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((fi‘(𝐹 ∪
{(𝑋 ∖ 𝑥)})) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})))) |
102 | 88, 101 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})))) |
103 | 100, 102 | sstrd 3932 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝐹 ∪ {(𝑋 ∖ 𝑥)}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})))) |
104 | 103 | unssad 4122 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})))) |
105 | | sstr2 3929 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → 𝐹 ⊆ 𝑓)) |
106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → 𝐹 ⊆ 𝑓)) |
107 | 106 | imim1d 82 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((𝐹 ⊆ 𝑓 → 𝑓 = 𝑔) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → 𝑓 = 𝑔))) |
108 | | sseq2 3948 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑔 → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 ↔ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
109 | 108 | biimpcd 248 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → (𝑓 = 𝑔 → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
110 | 109 | a2i 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → 𝑓 = 𝑔) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
111 | 94, 107, 110 | syl56 36 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓 → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔))) |
112 | 111 | impd 411 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (((𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
113 | 112 | rexlimdvw 3220 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (∃𝑓 ∈ (UFil‘𝑋)((𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
114 | 93, 113 | syl5 34 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ((∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) ∧ ∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑓) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
115 | 92, 114 | mpan2d 691 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔)) |
116 | 115 | imp 407 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔) |
117 | 116 | an32s 649 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)}))) ⊆ 𝑔) |
118 | | snidg 4596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∖ 𝑥) ∈ V → (𝑋 ∖ 𝑥) ∈ {(𝑋 ∖ 𝑥)}) |
119 | 30, 118 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ {(𝑋 ∖ 𝑥)}) |
120 | | elun2 4112 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∖ 𝑥) ∈ {(𝑋 ∖ 𝑥)} → (𝑋 ∖ 𝑥) ∈ (𝐹 ∪ {(𝑋 ∖ 𝑥)})) |
121 | 119, 120 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ (𝐹 ∪ {(𝑋 ∖ 𝑥)})) |
122 | 103, 121 | sseldd 3923 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})))) |
123 | 122 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋 ∖ 𝑥)})))) |
124 | 117, 123 | sseldd 3923 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (𝑋 ∖ 𝑥) ∈ 𝑔) |
125 | | simpllr 773 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝑔 ∈ (UFil‘𝑋)) |
126 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → 𝑥 ⊆ 𝑋) |
127 | | ufilb 23066 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (¬ 𝑥 ∈ 𝑔 ↔ (𝑋 ∖ 𝑥) ∈ 𝑔)) |
128 | 125, 126,
127 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → (¬ 𝑥 ∈ 𝑔 ↔ (𝑋 ∖ 𝑥) ∈ 𝑔)) |
129 | 124, 128 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ (𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹)) → ¬ 𝑥 ∈ 𝑔) |
130 | 129 | expr 457 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ 𝑥 ⊆ 𝑋) → (¬ 𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ 𝑔)) |
131 | 130 | con4d 115 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ 𝑔 → 𝑥 ∈ 𝐹)) |
132 | 131 | ex 413 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → (𝑥 ⊆ 𝑋 → (𝑥 ∈ 𝑔 → 𝑥 ∈ 𝐹))) |
133 | 132 | com23 86 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → (𝑥 ∈ 𝑔 → (𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝐹))) |
134 | 24, 133 | mpdd 43 |
. . . . . . 7
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → (𝑥 ∈ 𝑔 → 𝑥 ∈ 𝐹)) |
135 | 134 | ssrdv 3928 |
. . . . . 6
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → 𝑔 ⊆ 𝐹) |
136 | 19, 135 | eqssd 3939 |
. . . . 5
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → 𝐹 = 𝑔) |
137 | | simplr 766 |
. . . . 5
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → 𝑔 ∈ (UFil‘𝑋)) |
138 | 136, 137 | eqeltrd 2840 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑔 ∈ (UFil‘𝑋)) ∧ ∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔)) → 𝐹 ∈ (UFil‘𝑋)) |
139 | 138 | rexlimdva2 3217 |
. . 3
⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑔 ∈ (UFil‘𝑋)∀𝑓 ∈ (UFil‘𝑋)(𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔) → 𝐹 ∈ (UFil‘𝑋))) |
140 | 13, 139 | syl5bi 241 |
. 2
⊢ (𝐹 ∈ (Fil‘𝑋) → (∃!𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓 → 𝐹 ∈ (UFil‘𝑋))) |
141 | 12, 140 | impbid2 225 |
1
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∈ (UFil‘𝑋) ↔ ∃!𝑓 ∈ (UFil‘𝑋)𝐹 ⊆ 𝑓)) |