MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem8OLD Structured version   Visualization version   GIF version

Theorem wfrlem8OLD 8355
Description: Obsolete version as of 18-Nov-2024. Lemma for well-ordered recursion. Compute the predecessor class for an 𝑅 minimal element of (𝐴 ∖ dom 𝐹). (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.)
Hypothesis
Ref Expression
wfrlem6OLD.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrlem8OLD (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋))

Proof of Theorem wfrlem8OLD
StepHypRef Expression
1 wfrlem6OLD.1 . . . . 5 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
21wfrdmssOLD 8354 . . . 4 dom 𝐹𝐴
3 predpredss 6330 . . . 4 (dom 𝐹𝐴 → Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋))
42, 3ax-mp 5 . . 3 Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)
54biantru 529 . 2 (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ↔ (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ∧ Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)))
6 preddif 6352 . . . 4 Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, dom 𝐹, 𝑋))
76eqeq1i 2740 . . 3 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, dom 𝐹, 𝑋)) = ∅)
8 ssdif0 4372 . . 3 (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ↔ (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, dom 𝐹, 𝑋)) = ∅)
97, 8bitr4i 278 . 2 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋))
10 eqss 4011 . 2 (Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋) ↔ (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ∧ Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)))
115, 9, 103bitr4i 303 1 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  cdif 3960  wss 3963  c0 4339  dom cdm 5689  Predcpred 6322  wrecscwrecs 8335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-ov 7434  df-2nd 8014  df-frecs 8305  df-wrecs 8336
This theorem is referenced by:  wfrlem10OLD  8357
  Copyright terms: Public domain W3C validator