![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfrlem8OLD | Structured version Visualization version GIF version |
Description: Lemma for well-ordered recursion. Compute the prececessor class for an 𝑅 minimal element of (𝐴 ∖ dom 𝐹). Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) |
Ref | Expression |
---|---|
wfrlem6OLD.1 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfrlem8OLD | ⊢ (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem6OLD.1 | . . . . 5 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
2 | 1 | wfrdmssOLD 8315 | . . . 4 ⊢ dom 𝐹 ⊆ 𝐴 |
3 | predpredss 6308 | . . . 4 ⊢ (dom 𝐹 ⊆ 𝐴 → Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋) |
5 | 4 | biantru 531 | . 2 ⊢ (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ↔ (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ∧ Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋))) |
6 | preddif 6331 | . . . 4 ⊢ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, dom 𝐹, 𝑋)) | |
7 | 6 | eqeq1i 2738 | . . 3 ⊢ (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, dom 𝐹, 𝑋)) = ∅) |
8 | ssdif0 4364 | . . 3 ⊢ (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ↔ (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, dom 𝐹, 𝑋)) = ∅) | |
9 | 7, 8 | bitr4i 278 | . 2 ⊢ (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋)) |
10 | eqss 3998 | . 2 ⊢ (Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋) ↔ (Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, dom 𝐹, 𝑋) ∧ Pred(𝑅, dom 𝐹, 𝑋) ⊆ Pred(𝑅, 𝐴, 𝑋))) | |
11 | 5, 9, 10 | 3bitr4i 303 | 1 ⊢ (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑋) = ∅ ↔ Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, dom 𝐹, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∖ cdif 3946 ⊆ wss 3949 ∅c0 4323 dom cdm 5677 Predcpred 6300 wrecscwrecs 8296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fo 6550 df-fv 6552 df-ov 7412 df-2nd 7976 df-frecs 8266 df-wrecs 8297 |
This theorem is referenced by: wfrlem10OLD 8318 |
Copyright terms: Public domain | W3C validator |