![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predep | Structured version Visualization version GIF version |
Description: The predecessor under the membership relation is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
predep | ⊢ (𝑋 ∈ 𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6301 | . 2 ⊢ Pred( E , 𝐴, 𝑋) = (𝐴 ∩ (◡ E “ {𝑋})) | |
2 | relcnv 6104 | . . . . 5 ⊢ Rel ◡ E | |
3 | relimasn 6084 | . . . . 5 ⊢ (Rel ◡ E → (◡ E “ {𝑋}) = {𝑦 ∣ 𝑋◡ E 𝑦}) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (◡ E “ {𝑋}) = {𝑦 ∣ 𝑋◡ E 𝑦} |
5 | brcnvg 5880 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑦 ∈ V) → (𝑋◡ E 𝑦 ↔ 𝑦 E 𝑋)) | |
6 | 5 | elvd 3482 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑋◡ E 𝑦 ↔ 𝑦 E 𝑋)) |
7 | epelg 5582 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑦 E 𝑋 ↔ 𝑦 ∈ 𝑋)) | |
8 | 6, 7 | bitrd 279 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝑋◡ E 𝑦 ↔ 𝑦 ∈ 𝑋)) |
9 | 8 | eqabcdv 2869 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → {𝑦 ∣ 𝑋◡ E 𝑦} = 𝑋) |
10 | 4, 9 | eqtrid 2785 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (◡ E “ {𝑋}) = 𝑋) |
11 | 10 | ineq2d 4213 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝐴 ∩ (◡ E “ {𝑋})) = (𝐴 ∩ 𝑋)) |
12 | 1, 11 | eqtrid 2785 | 1 ⊢ (𝑋 ∈ 𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 {cab 2710 Vcvv 3475 ∩ cin 3948 {csn 4629 class class class wbr 5149 E cep 5580 ◡ccnv 5676 “ cima 5680 Rel wrel 5682 Predcpred 6300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-eprel 5581 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 |
This theorem is referenced by: trpred 6333 predonOLD 7774 omsindsOLD 7877 |
Copyright terms: Public domain | W3C validator |