![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predep | Structured version Visualization version GIF version |
Description: The predecessor under the membership relation is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
predep | ⊢ (𝑋 ∈ 𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6310 | . 2 ⊢ Pred( E , 𝐴, 𝑋) = (𝐴 ∩ (◡ E “ {𝑋})) | |
2 | relcnv 6113 | . . . . 5 ⊢ Rel ◡ E | |
3 | relimasn 6093 | . . . . 5 ⊢ (Rel ◡ E → (◡ E “ {𝑋}) = {𝑦 ∣ 𝑋◡ E 𝑦}) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (◡ E “ {𝑋}) = {𝑦 ∣ 𝑋◡ E 𝑦} |
5 | brcnvg 5886 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑦 ∈ V) → (𝑋◡ E 𝑦 ↔ 𝑦 E 𝑋)) | |
6 | 5 | elvd 3480 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑋◡ E 𝑦 ↔ 𝑦 E 𝑋)) |
7 | epelg 5587 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑦 E 𝑋 ↔ 𝑦 ∈ 𝑋)) | |
8 | 6, 7 | bitrd 278 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝑋◡ E 𝑦 ↔ 𝑦 ∈ 𝑋)) |
9 | 8 | eqabcdv 2864 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → {𝑦 ∣ 𝑋◡ E 𝑦} = 𝑋) |
10 | 4, 9 | eqtrid 2780 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (◡ E “ {𝑋}) = 𝑋) |
11 | 10 | ineq2d 4214 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝐴 ∩ (◡ E “ {𝑋})) = (𝐴 ∩ 𝑋)) |
12 | 1, 11 | eqtrid 2780 | 1 ⊢ (𝑋 ∈ 𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 {cab 2705 Vcvv 3473 ∩ cin 3948 {csn 4632 class class class wbr 5152 E cep 5585 ◡ccnv 5681 “ cima 5685 Rel wrel 5687 Predcpred 6309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-eprel 5586 df-xp 5688 df-rel 5689 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 |
This theorem is referenced by: trpred 6342 predonOLD 7795 omsindsOLD 7898 |
Copyright terms: Public domain | W3C validator |