MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predep Structured version   Visualization version   GIF version

Theorem predep 6168
Description: The predecessor under the membership relation is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
predep (𝑋𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))

Proof of Theorem predep
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-pred 6142 . 2 Pred( E , 𝐴, 𝑋) = (𝐴 ∩ ( E “ {𝑋}))
2 relcnv 5961 . . . . 5 Rel E
3 relimasn 5946 . . . . 5 (Rel E → ( E “ {𝑋}) = {𝑦𝑋 E 𝑦})
42, 3ax-mp 5 . . . 4 ( E “ {𝑋}) = {𝑦𝑋 E 𝑦}
5 brcnvg 5744 . . . . . . 7 ((𝑋𝐵𝑦 ∈ V) → (𝑋 E 𝑦𝑦 E 𝑋))
65elvd 3500 . . . . . 6 (𝑋𝐵 → (𝑋 E 𝑦𝑦 E 𝑋))
7 epelg 5460 . . . . . 6 (𝑋𝐵 → (𝑦 E 𝑋𝑦𝑋))
86, 7bitrd 281 . . . . 5 (𝑋𝐵 → (𝑋 E 𝑦𝑦𝑋))
98abbi1dv 2952 . . . 4 (𝑋𝐵 → {𝑦𝑋 E 𝑦} = 𝑋)
104, 9syl5eq 2868 . . 3 (𝑋𝐵 → ( E “ {𝑋}) = 𝑋)
1110ineq2d 4188 . 2 (𝑋𝐵 → (𝐴 ∩ ( E “ {𝑋})) = (𝐴𝑋))
121, 11syl5eq 2868 1 (𝑋𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  {cab 2799  Vcvv 3494  cin 3934  {csn 4560   class class class wbr 5058   E cep 5458  ccnv 5548  cima 5552  Rel wrel 5554  Predcpred 6141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-eprel 5459  df-xp 5555  df-rel 5556  df-cnv 5557  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142
This theorem is referenced by:  predon  7500  omsinds  7594
  Copyright terms: Public domain W3C validator