MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predep Structured version   Visualization version   GIF version

Theorem predep 6353
Description: The predecessor under the membership relation is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
predep (𝑋𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))

Proof of Theorem predep
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-pred 6323 . 2 Pred( E , 𝐴, 𝑋) = (𝐴 ∩ ( E “ {𝑋}))
2 relcnv 6125 . . . . 5 Rel E
3 relimasn 6105 . . . . 5 (Rel E → ( E “ {𝑋}) = {𝑦𝑋 E 𝑦})
42, 3ax-mp 5 . . . 4 ( E “ {𝑋}) = {𝑦𝑋 E 𝑦}
5 brcnvg 5893 . . . . . . 7 ((𝑋𝐵𝑦 ∈ V) → (𝑋 E 𝑦𝑦 E 𝑋))
65elvd 3484 . . . . . 6 (𝑋𝐵 → (𝑋 E 𝑦𝑦 E 𝑋))
7 epelg 5590 . . . . . 6 (𝑋𝐵 → (𝑦 E 𝑋𝑦𝑋))
86, 7bitrd 279 . . . . 5 (𝑋𝐵 → (𝑋 E 𝑦𝑦𝑋))
98eqabcdv 2874 . . . 4 (𝑋𝐵 → {𝑦𝑋 E 𝑦} = 𝑋)
104, 9eqtrid 2787 . . 3 (𝑋𝐵 → ( E “ {𝑋}) = 𝑋)
1110ineq2d 4228 . 2 (𝑋𝐵 → (𝐴 ∩ ( E “ {𝑋})) = (𝐴𝑋))
121, 11eqtrid 2787 1 (𝑋𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  {cab 2712  Vcvv 3478  cin 3962  {csn 4631   class class class wbr 5148   E cep 5588  ccnv 5688  cima 5692  Rel wrel 5694  Predcpred 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-eprel 5589  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323
This theorem is referenced by:  trpred  6354  predonOLD  7806  omsindsOLD  7909
  Copyright terms: Public domain W3C validator