MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predep Structured version   Visualization version   GIF version

Theorem predep 6272
Description: The predecessor under the membership relation is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
predep (𝑋𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))

Proof of Theorem predep
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-pred 6243 . 2 Pred( E , 𝐴, 𝑋) = (𝐴 ∩ ( E “ {𝑋}))
2 relcnv 6048 . . . . 5 Rel E
3 relimasn 6029 . . . . 5 (Rel E → ( E “ {𝑋}) = {𝑦𝑋 E 𝑦})
42, 3ax-mp 5 . . . 4 ( E “ {𝑋}) = {𝑦𝑋 E 𝑦}
5 brcnvg 5814 . . . . . . 7 ((𝑋𝐵𝑦 ∈ V) → (𝑋 E 𝑦𝑦 E 𝑋))
65elvd 3442 . . . . . 6 (𝑋𝐵 → (𝑋 E 𝑦𝑦 E 𝑋))
7 epelg 5512 . . . . . 6 (𝑋𝐵 → (𝑦 E 𝑋𝑦𝑋))
86, 7bitrd 279 . . . . 5 (𝑋𝐵 → (𝑋 E 𝑦𝑦𝑋))
98eqabcdv 2865 . . . 4 (𝑋𝐵 → {𝑦𝑋 E 𝑦} = 𝑋)
104, 9eqtrid 2778 . . 3 (𝑋𝐵 → ( E “ {𝑋}) = 𝑋)
1110ineq2d 4165 . 2 (𝑋𝐵 → (𝐴 ∩ ( E “ {𝑋})) = (𝐴𝑋))
121, 11eqtrid 2778 1 (𝑋𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  cin 3896  {csn 4571   class class class wbr 5086   E cep 5510  ccnv 5610  cima 5614  Rel wrel 5616  Predcpred 6242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-eprel 5511  df-xp 5617  df-rel 5618  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243
This theorem is referenced by:  trpred  6273
  Copyright terms: Public domain W3C validator