| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predep | Structured version Visualization version GIF version | ||
| Description: The predecessor under the membership relation is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| predep | ⊢ (𝑋 ∈ 𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6301 | . 2 ⊢ Pred( E , 𝐴, 𝑋) = (𝐴 ∩ (◡ E “ {𝑋})) | |
| 2 | relcnv 6102 | . . . . 5 ⊢ Rel ◡ E | |
| 3 | relimasn 6083 | . . . . 5 ⊢ (Rel ◡ E → (◡ E “ {𝑋}) = {𝑦 ∣ 𝑋◡ E 𝑦}) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (◡ E “ {𝑋}) = {𝑦 ∣ 𝑋◡ E 𝑦} |
| 5 | brcnvg 5870 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑦 ∈ V) → (𝑋◡ E 𝑦 ↔ 𝑦 E 𝑋)) | |
| 6 | 5 | elvd 3469 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑋◡ E 𝑦 ↔ 𝑦 E 𝑋)) |
| 7 | epelg 5565 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑦 E 𝑋 ↔ 𝑦 ∈ 𝑋)) | |
| 8 | 6, 7 | bitrd 279 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝑋◡ E 𝑦 ↔ 𝑦 ∈ 𝑋)) |
| 9 | 8 | eqabcdv 2868 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → {𝑦 ∣ 𝑋◡ E 𝑦} = 𝑋) |
| 10 | 4, 9 | eqtrid 2781 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (◡ E “ {𝑋}) = 𝑋) |
| 11 | 10 | ineq2d 4200 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝐴 ∩ (◡ E “ {𝑋})) = (𝐴 ∩ 𝑋)) |
| 12 | 1, 11 | eqtrid 2781 | 1 ⊢ (𝑋 ∈ 𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {cab 2712 Vcvv 3463 ∩ cin 3930 {csn 4606 class class class wbr 5123 E cep 5563 ◡ccnv 5664 “ cima 5668 Rel wrel 5670 Predcpred 6300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-eprel 5564 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 |
| This theorem is referenced by: trpred 6331 |
| Copyright terms: Public domain | W3C validator |