| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predep | Structured version Visualization version GIF version | ||
| Description: The predecessor under the membership relation is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| predep | ⊢ (𝑋 ∈ 𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6274 | . 2 ⊢ Pred( E , 𝐴, 𝑋) = (𝐴 ∩ (◡ E “ {𝑋})) | |
| 2 | relcnv 6075 | . . . . 5 ⊢ Rel ◡ E | |
| 3 | relimasn 6056 | . . . . 5 ⊢ (Rel ◡ E → (◡ E “ {𝑋}) = {𝑦 ∣ 𝑋◡ E 𝑦}) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (◡ E “ {𝑋}) = {𝑦 ∣ 𝑋◡ E 𝑦} |
| 5 | brcnvg 5843 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑦 ∈ V) → (𝑋◡ E 𝑦 ↔ 𝑦 E 𝑋)) | |
| 6 | 5 | elvd 3453 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑋◡ E 𝑦 ↔ 𝑦 E 𝑋)) |
| 7 | epelg 5539 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑦 E 𝑋 ↔ 𝑦 ∈ 𝑋)) | |
| 8 | 6, 7 | bitrd 279 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝑋◡ E 𝑦 ↔ 𝑦 ∈ 𝑋)) |
| 9 | 8 | eqabcdv 2862 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → {𝑦 ∣ 𝑋◡ E 𝑦} = 𝑋) |
| 10 | 4, 9 | eqtrid 2776 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (◡ E “ {𝑋}) = 𝑋) |
| 11 | 10 | ineq2d 4183 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝐴 ∩ (◡ E “ {𝑋})) = (𝐴 ∩ 𝑋)) |
| 12 | 1, 11 | eqtrid 2776 | 1 ⊢ (𝑋 ∈ 𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 ∩ cin 3913 {csn 4589 class class class wbr 5107 E cep 5537 ◡ccnv 5637 “ cima 5641 Rel wrel 5643 Predcpred 6273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 |
| This theorem is referenced by: trpred 6304 |
| Copyright terms: Public domain | W3C validator |