MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predpredss Structured version   Visualization version   GIF version

Theorem predpredss 6255
Description: If 𝐴 is a subset of 𝐵, then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
predpredss (𝐴𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋))

Proof of Theorem predpredss
StepHypRef Expression
1 ssrin 4192 . 2 (𝐴𝐵 → (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ (𝐵 ∩ (𝑅 “ {𝑋})))
2 df-pred 6248 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
3 df-pred 6248 . 2 Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (𝑅 “ {𝑋}))
41, 2, 33sstr4g 3988 1 (𝐴𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3901  wss 3902  {csn 4576  ccnv 5615  cima 5619  Predcpred 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-in 3909  df-ss 3919  df-pred 6248
This theorem is referenced by:  preddowncl  6279
  Copyright terms: Public domain W3C validator