Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predpredss | Structured version Visualization version GIF version |
Description: If 𝐴 is a subset of 𝐵, then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predpredss | ⊢ (𝐴 ⊆ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4167 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ (𝐵 ∩ (◡𝑅 “ {𝑋}))) | |
2 | df-pred 6202 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
3 | df-pred 6202 | . 2 ⊢ Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (◡𝑅 “ {𝑋})) | |
4 | 1, 2, 3 | 3sstr4g 3966 | 1 ⊢ (𝐴 ⊆ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3886 ⊆ wss 3887 {csn 4561 ◡ccnv 5588 “ cima 5592 Predcpred 6201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pred 6202 |
This theorem is referenced by: preddowncl 6235 wfrlem8OLD 8147 |
Copyright terms: Public domain | W3C validator |