| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predpredss | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is a subset of 𝐵, then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011.) |
| Ref | Expression |
|---|---|
| predpredss | ⊢ (𝐴 ⊆ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4191 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ (𝐵 ∩ (◡𝑅 “ {𝑋}))) | |
| 2 | df-pred 6253 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 3 | df-pred 6253 | . 2 ⊢ Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (◡𝑅 “ {𝑋})) | |
| 4 | 1, 2, 3 | 3sstr4g 3984 | 1 ⊢ (𝐴 ⊆ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3897 ⊆ wss 3898 {csn 4575 ◡ccnv 5618 “ cima 5622 Predcpred 6252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ss 3915 df-pred 6253 |
| This theorem is referenced by: preddowncl 6284 |
| Copyright terms: Public domain | W3C validator |