|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > predpredss | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is a subset of 𝐵, then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011.) | 
| Ref | Expression | 
|---|---|
| predpredss | ⊢ (𝐴 ⊆ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrin 4241 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ (𝐵 ∩ (◡𝑅 “ {𝑋}))) | |
| 2 | df-pred 6320 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 3 | df-pred 6320 | . 2 ⊢ Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (◡𝑅 “ {𝑋})) | |
| 4 | 1, 2, 3 | 3sstr4g 4036 | 1 ⊢ (𝐴 ⊆ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∩ cin 3949 ⊆ wss 3950 {csn 4625 ◡ccnv 5683 “ cima 5687 Predcpred 6319 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-in 3957 df-ss 3967 df-pred 6320 | 
| This theorem is referenced by: preddowncl 6352 wfrlem8OLD 8357 | 
| Copyright terms: Public domain | W3C validator |