![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predpredss | Structured version Visualization version GIF version |
Description: If 𝐴 is a subset of 𝐵, then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predpredss | ⊢ (𝐴 ⊆ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4233 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ (𝐵 ∩ (◡𝑅 “ {𝑋}))) | |
2 | df-pred 6300 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
3 | df-pred 6300 | . 2 ⊢ Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (◡𝑅 “ {𝑋})) | |
4 | 1, 2, 3 | 3sstr4g 4027 | 1 ⊢ (𝐴 ⊆ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3947 ⊆ wss 3948 {csn 4628 ◡ccnv 5675 “ cima 5679 Predcpred 6299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 df-pred 6300 |
This theorem is referenced by: preddowncl 6333 wfrlem8OLD 8322 |
Copyright terms: Public domain | W3C validator |